• 沒有找到結果。

Chapter 3 Result and Discussion

3.4 Summary

In this chapter, we confirm that after the supercritical fluid passivation achieve better device performances, including the on-current, the off-current, the threshold voltage and the subthreshold swing, and also better filed effect mobility. In addition, back channel is also repaired by supercritical fluid passivation. These improvements are attributed to the oxygen atoms passivation of the dangling bonds and it is observed by material analysis (i.e. FTIR, TDS and Contact angle). These mean that density of defect states in the channel region (amorphous silicon) are decreased after supercritical fluid passivation interfuse H2O.

Vg

-10 0 10 20

Log(NId)

1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7

Before After

Fig. 3-1 Transfer characteristics of a-Si TFTs before and after annealing for 2 hours at 150

(was measured at Vd=0.1V and T=30

)

Vg

-10 0 10 20

NId

0.0 2.0e-9 4.0e-9 6.0e-9 8.0e-9 1.0e-8 1.2e-8 1.4e-8 1.6e-8

Before After

Fig. 3-2 Transfer characteristics of a-Si TFTs before and after annealing

Device name W/L=20/10 Mobility (cm2/VS)

S.S.

(V/dec.)

Vth

(V)

Sample 1 Before 0.4018 2.0616 2.6603 After 0.3774 1.7849 1.5966 Sample 2 Before 0.4020 2.0539 2.2678 After 0.3938 1.8941 0.8000 Sample 3 Before 0.4032 2.0773 2.7078 After 0.3738 1.7901 1.1619

Table 3-1 Parameters of a-Si TFTs before and after annealing for 2 hours at 150

(was measured at Vd=0.1V and T=30

)

Vg

-10 0 10 20

Log(NId)

1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5

Before After

Fig. 3-3 Transfer characteristics of a-Si TFTs before and after annealing for 2 hours at 150

(was measured at Vd=10V and T=30

)

Vd

Fig. 3-4 Output characteristics of a-Si TFTs before and after annealing for 2 hours at 150

(was measured at T=30

)

Fig. 3-5 Transfer characteristics of a-Si TFTs before annealing for 2

Vg

Fig. 3-6 Transfer characteristics of a-Si TFTs after annealing for 2 hours at 150

(was measured at Vd=0.1V and T=30

~60

)

Fig. 3-7 Transfer characteristics of a-Si TFTs before annealing for 2 hours at 150

(was measured at Vd=10V and T=30

~60

)

Vg

-10 0 10 20

Log(NId)

1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5

30度 40度 50度 60度

Fig. 3-8 Transfer characteristics of a-Si TFTs after annealing for 2 hours at 150

(was measured at Vd=10V and T=30

~60

)

1/T

0.00295 0.00300 0.00305 0.00310 0.00315 0.00320 0.00325 0.00330 0.00335

Log (NId)

-28 -26 -24 -22 -20 -18 -16

Fig. 3-9 Temperature activation of the drain-source current of the only annealing 2 hours at 150

sample (Fig. 3-6) for different gate voltages

Vg

-6 -4 -2 0 2 4 6

Ea

0.0 0.2 0.4 0.6 0.8

Before After

Fig. 3-10 Activation energy vs. gate voltage for the samples before and after annealing in supercritical fluids treatment system (2 hours, 150

)

Et

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Density of states

1e+16 1e+17 1e+18 1e+19

Before After

Fig. 3-11 Density of states (DOS) vs. Et for the samples before and after annealing in supercritical fluids treatment system (2 hours, 150

)

Vg

-10 0 10 20

Log(NId)

1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7

Before(Vd=0.1V) After(Vd=5V)

Fig. 3-12 Transfer characteristics of a-Si TFTs before and after H2O passivation for 2 hours at 150

(was measured at linear region, T=30

)

Vg

-10 0 10 20

Log(NId)

0.0 2.0e-9 4.0e-9 6.0e-9 8.0e-9 1.0e-8 1.2e-8 1.4e-8 1.6e-8

Before(Vd=0.1V) After(Vd=5V)

Fig. 3-13 Transfer characteristics of a-Si TFTs before and after H2O

Device name W/L=20/10 Mobility (cm2/VS)

S.S.

(V/dec.)

Vth

(V)

Sample 1 Before 0.4234 1.6098 2.3000 After 0.0350 3.3959 3.7452 Sample 2 Before 0.4068 1.7174 3.3095 After 0.0419 3.1355 3.5212 Sample 3 Before 0.4108 1.6480 2.7408

After 1.05x10-5 X X

Table 3-2 Parameters of a-Si TFTs before and after H2O passivation for 2 hours at 150

(was measured at linear region and T=30

)

Vg

-10 0 10 20

Log(NId)

1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5

Before(Vd=10V) After(Vd=20V)

Fig. 3-14 Transfer characteristics of a-Si TFTs before and after H2O passivation for 2 hours at 150

(was measured at sat. region, T=30

)

Vd

Fig. 3-15 Output characteristics of a-Si TFTs before and after H2O passivation for 2 hours at 150

(was measured at T=30

)

Fig. 3-16 Transfer characteristics of a-Si TFTs before and after SCCO2 passivation for 2 hours at 150

. (was measured at Vd=0.1V and T=30

)

Vg

-10 0 10 20

Log(NId)

0.0 2.0e-9 4.0e-9 6.0e-9 8.0e-9 1.0e-8 1.2e-8 1.4e-8 1.6e-8 1.8e-8

Before After

Fig. 3-17 Transfer characteristics of a-Si TFTs before and after SCCO2 passivation for 2 hours at 150

. (was measured at Vd=0.1V and T=30

)

Device name W/L=20/10 Mobility (cm2/VS)

S.S.

(V/dec.)

Vth

(V)

Sample 1 Before 0.4265 2.0447 2.8018 After 0.4375 1.3272 0.4224 Sample 2 Before 0.4249 1.9111 1.6530 After 0.4358 1.6278 0.2700 Sample 3 Before 0.4230 1.8460 1.1170

After 0.4390 1.4542 0.2673

Table 3-3 Parameters of a-Si TFTs before and after SCCO2 passivation for 2 hours at 150

(was measured at Vd=0.1V and T=30

)

Vg

Fig. 3-18 Transfer characteristics of a-Si TFTs before and after SCCO2 passivation for 2 hours at 150

. (was measured at Vd=10V and T=30

)

Fig. 3-19 Output characteristics of a-Si TFTs before and after SCCO2 passivation for 2 hours at 150

(was measured at T=30

)

Vg

Fig. 3-20 Transfer characteristics of a-Si TFTs before SCCO2 passivation for 2 hours at 150

(measured at Vd=0.1V, T=30

~60

)

Fig. 3-21 Transfer characteristics of a-Si TFTs after SCCO2 passivation for 2 hours at 150

(measured at Vd=0.1V, T=30

~60

)

Vg

Fig. 3-22 Transfer characteristics of a-Si TFTs before SCCO2 passivation for 2 hours at 150

(measured at Vd=10V, T=30

~60

)

Fig. 3-23 Transfer characteristics of a-Si TFTs after SCCO2 passivation for 2 hours at 150

(measured at Vd=10V, T=30

~60

)

Vg

-6 -4 -2 0 2 4 6

Ea

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Before After

Fig. 3-24 Activation energy vs. gate voltage for the samples before and after SCCO2 fluid interfuse H2O passivation (2 hours, 150

)

Et

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Density of states

1e+16 1e+17 1e+18 1e+19

Before After

Fig. 3-25 Density of states (DOS) vs. Et for the samples before and after SCCO2 fluid interfuse H2O passivation (2 hours, 150

)

Wavenumber

500 1000 1500 2000 2500

Intensity

-0.02 0.00 0.02 0.04

Anneal H2O

SCCO2 / Propyl alcohol+H2O

Fig. 3-26 Infrared absorption spectra after passivation 2 hours

Wavenumber

500 1000 1500 2000 2500

Intensity

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

Anneal H2O

SCCO2 / Propyl alcohol+H2O

Fig. 3-27 Infrared absorption spectra after passivation 2 hours and

Temperature

80 100 120 140 160 180 200

Intensity

2e-8 3e-8 4e-8 5e-8

6e-8 Annealing

H2O

SCCO2/H2O+Propyl alcohol

Fig. 3-28 Thermal desorption spectroscopy after passivation 2 hours

Temperature

80 100 120 140 160 180 200

Intensity

2e-8 3e-8 4e-8 5e-8

6e-8 Annealing

H2O

SCCO2/H2O+Propyl alcohol

Fig. 3-29 Thermal desorption spectroscopy after passivation 2 hours and then hot plate baking 1 hour at 200

Substrates α

Fig. 3-30 Contact angle measurement

Poly - Si (without any

treatment)

Annealing H2O

SCCO2 / H2O +Propyl

alcohol Before (hot plate)

Baking 48.1 38 5 17.4

After (hot plate)

Baking 40.9 40.7 7.5 20.9

Table 3-4 Contact angle after passivation

Fig. 3-31 Density of states (DOS) in the amorphous silicon

Fig. 3-32 Schematic illustration of the basic operation of the a-Si TFT

-20 -15 -10 -5 0 5 10 15

emission Sub-threshold Above Threshold

Fig. 3-33 Drain-source current vs. gate-source voltage of the a-Si TFT

Fig. 3-34 Band diagram for a cross section in the channel area of the

E

FS

Chapter 4 Conclusion

Amorphous silicon thin film transistors (a-Si TFTs) have been widely applied to fabrication of liquid crystal flat-panel display. Plasma enhancement chemical vapor deposition (PECVD) has been used for fabrication of a-Si TFTs at low temperatures.

Inevitable amorphous silicon films among deposition can have electrically active defect states due to dangling bonds and lattice disorder. The defects reduce electrical current due to trapping carriers. One of most important problems on fabrication of a-Si TFTs is the reduction of densities of those defect states.

In this thesis, we report fabrication of a-Si TFTs using defect reduction of supercritical fluid passivation interfuse H2O. This method of the defect reduction treatments is essential for the higher on-current, the lower off-current and threshold voltage as well as the subthreshold swing, and also better filed effect mobility. In addition, back channel is also repaired by supercritical fluid passivation. These improvements are attributed to the oxygen atoms passivation of the dangling bonds and it is observed by material analysis (i.e. FTIR, TDS and Contact angle). These mean that density of defect states in the channel region (amorphous silicon) are decreased after supercritical fluid passivation interfuse H2O. Incidentally, it is first confirmed that the a-Si TFTs after the supercritical fluid passivation could achieve better device performances. In order to compare with the result of supercritical fluid passivation, we have also reported that the only annealing and the use of H2O passivation at temperature of 150℃.

Additionally, supercritical fluids technology will have advantage for integrating the fabrication of TFT-LCD’s, because of the low cost and the process easily.

References

[1] P. G. LeComber, W. E. Spear, and A. Ghaith, Electron Lett. 15, pp. 179, 1979.

[2] K. Kasahara, T. Yanagisawa, K. Sakai, T. Adachi, K. Inoue, T. Tsutsumi, and H.

Hori, IEEE. Trans. Electron Devices, vol. 28, pp.744, 1981.

[3] M. Matsui, J. Owada, Y. Shirki, E. Maruyama, and H. Kawakami, Proc. of 14th Conf. On Solid State Devices, 22, pp. 497, 1982.

[4] T. P. Brody, G. A. Asars, and G. D. Dixon, IEEE. Trans. Electron Devices, vol.

20, pp. 995, 1973.

[5] M. Matsuura, Y. Takafuji, F. fukuda, and T Wada, SID-82, pp. 186, 1982.

[6] H. Yamamoto, H. Matsumaru, K. Shirahashi, M. Nakatani, A. Sasano, N.

Konishi, K. Tsutsui, and T. Tsukada, IEDM Tech. Dig., pp. 851, 1990

[7] G. Kawachi, E. Kimura, Y. Wakui, N. Konishi, H. Yamamoto, Y. Matsukawa, and A. Sasano, IEEE Trans. Elec. Devices, vol.41, pp. 1120, 1994

[8] D. B. Thomason, T. N. Jackson, IEEE Electron Device Lettrers, vol. 18, pp. 8, 1997

[9] R. M. A. Dawson, M. G. Kane, SID Tech. Dig., pp.372, 2001

[10] T. Tsujimura, Y. Kobayashi, K. Murayama, A. Tanaka, M. Morooka, E.

Fukumoto, H. Fujimoto, J. Sekine, K. Kanoh, K. Takeda, K. Miwa, M. Asano, N.

Ikeda, S. Kohara, and S. Ono, SID Tech. Dig., pp. 6, 2003

[11] Y. He, R. Hattori, J. Kanicki, IEEE Transactions on Electron Device, vol. 48, pp.

7, 2001

[12] A. Nathan, D. Striakhilev, Pervati, K. akariya, A. Kumar, K. S. Karim, A.

Sazonov, Materials and Devices Technology as held at the 2003 MRS Spring Meeting, pp. 29, 2003

[13] K. Zosel, Angew. Chem. Int. Ed. Engl, vol. 17, pp. 702, 1978.

[14] P. M. F. Paul, W. S. Wise, Mills&Boon, Ltd,1971

[15] S. Poliakoff, “Web at http://www.nottingham.ac.uk/supercritical”, 2001.

[16] Y. Adachi, Fluid phase Equilibria, vol. 14, pp. 147-156, 1983.

[17] M. Rodder and S. Aur, IEEE Electron Device Lett., vol. 12, pp. 233, 1991.

[18] R. A. Ditizio, G. Liu, S. J. Fonash, B.-C. Hseih and D.W. Greve, Appl. Phys.

Lett., vol. 56, pp. 1140, 1990

[19] I.-W. Wu, A. G. Lewis, T.-Y. Huang and A. Chiang, Electron Devices Lett., vol.

10, pp. 123, 1989

[20] K. Baert, H. Murai, K. Kobayashi, H. Namizaki and M. Nunoshita, Jpn. J. Appl.

Phys., vol. 32, pp.2601, 1993

[21] T. C. Lee and G. W. Neudeck, J. Appl. Phys., vol. 54, pp. 199, 1983

[22] U. Mitra, B. Rossi and B. Khan, J. Electrochem. Soc., vol. 138, pp. 3420, 1991 [23] T. Sameshima and M. Satoh, Jpn. J. Appl. Phys., vol. 36, pp. L687., 1997

[24] T. Sameshima, M. Satoh, K. Sakamoto, K. Ozaki and K. Saitoh, Jpn. J. Appl.

Phys., vol. 37, pp. L1030, 1998

[25] K. Sakamoto and T. Samaehima, Jpn. J. Appl. Phys., vol. 39, pp. 2492, 2000 [26] K. Asada, K. Sakamoto, T. Watanabe, T. Sameshima and S. Higashi, Jpn. J.

Appl. Phys., vol.39, pp.3883, 2000

[27] T. Sameshima, M. Hara and S. Usui, Mater. Res. Soc. Symp. Proc., vol. 158, pp.255, 1990

[28] Hajime Watakabe and Toshiyuki Sameshima, Jpn. J. Appl. Phys., vol. 41, pp.

L974-L977, 2002

[29] H. Watakabe and T. Sameshima, IEEE Trans. Electron Devices, vol. 49, pp.

2217, 2002

[30] Dosi Dosev, Characterization and Modelling of Nanocrystalline Silicon Thin-Film Transistors Obtained by Hot-Wire Chemical Vapor Deposition, Ph.D.

Thesis for University of Barcelona, 2003.

[31] R. E. I. Schropp, J. Snijder, and J. F. Verwey, A self-consistent analysis of temperature-dependent field-effect measurements in hydrogenated amorphous silicon thin-film transistors, J. Appl. Phys., vol. 60, pp. 643-9, 1986

[32] R. Schumacher, P. Thomas, K. Weber, W. Fuhs, F. Djamdji, P. G. Le Comber,

and R. E. I. Schropp, Temperature-dependent effects in field-effect measurements on hydrogenated amorphous silicon thin-film transistors , Phil.

Mag. B, vol. 58, pp. 389-410, 1988

[33] G. Fortunato, D. B. Meakin, P. Migliorato, and P. G. Le Comber, Field-effect analysis for the determination of the gap-state density and Fermi-level temperature dependence in polycrystalline silicon , Phil. Mag. B, vol. 57, pp.

573-86, 1998

[34] T. Globus, H. C. Slade, M. S. Shur, and M. Hack, Density of deep bandgap states in amorphous silicon from the temperature dependence of thin film transistor current, Mat. Res. Soc. Proc., vol. 336, pp. 823, 1994

[35] Yue Kuo, Thin film transistors materials and processes, volume 1

[36] Martin J. Powell, IEEE Transactions on Electron Device, vol. 36, pp. 2753, 1989 [37] Peyman Servati, and Arokia Nathan, IEEE Transactions on Electron Device, vol.

49, pp. 812, 2002

簡 歷

姓 名:王 建 文 ( Chen-Wen Wang )

性 別:男

出生年月日:民國

69

8

16

住 址:台北縣樹林市名園街54號3樓

學 歷:

國立台北科技大學電機學系學士

(89.9-91.6)

國立交通大學光電工程學系顯示科技研究所碩士

(93.9-95.6)

碩士論文題目

:

超臨界流體技術應用於非晶矽薄膜電晶體之研究

Application of Supercritical Fluids Technology for Amorphous Thin Film Transistors

相關文件