• 沒有找到結果。

Figure S3. Amino acid substitution of L-FABP in present studies

The position of substituted amino acids in mutant L-FABP were presented in secondary and tertiary structure. We substituted four different amino acids including F3 to W (β sheet A, N-terminal), K20 to E (α-helix I), K30 to E (α-helix II), T94 to A (β sheet G, C-terminal) to examine the mechanisms of L-FABP in its oncogenic role.

110

References:

1. Kaseb AO, Hanbali A, Cotant M, Hassan MM, Wollner I and Philip PA. Vascular endothelial growth factor in the management of hepatocellular carcinoma: a review of literature. Cancer. 2009; 115(21):4895-4906.

2. Moeini A, Cornellà H and Villanueva A. Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer. 2012; 1(2):83-93.

3. Olsen SK, Jr RSB and Siegel AB. Hepatocellular carcinoma: review of current treatment with a focus on targeted molecular therapies. Therap Adv Gastroenterol.

2010; 3(1):55-66.

4. Semela D and Dufour J-Fo. Angiogenesis and hepatocellular carcinoma. J Hepatol.

2004; 41(5):864-880.

5. Villanueva A, Hernandez-Gea V and Llovet JM. Medical therapies for

hepatocellular carcinoma: a critical view of the evidence. Nat Rev Gastroenterol Hepatol. 2013; 10(1):34-42.

6. Romanque P, Piguet AC and Dufour JF. Targeting vessels to treat hepatocellular carcinoma. Clin Sci (Lond). 2008; 114(7):467-477.

7. Aucejo F, Kim R, Zein N, Quintini C, Uso TD, Lopez R, Eghtesad B, Fung J, Miller C and Yerian L. Vascular endothelial growth factor receptor 2 expression in non-tumorous cirrhotic liver is higher when hepatoma is beyond Milan criteria.

111

Liver Transpl. 2009; 15(2):169-176.

8. Huang J, Zhang X, Tang Q, Zhang F, Li Y, Feng Z and Zhu J. Prognostic significance and potential therapeutic target of VEGFR2 in hepatocellular carcinoma. J Clin Pathol. 2011; 64(4):343-348.

9. Zhu AX, Duda DG, Sahani DV and Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011; 8(5):292-301.

10. Storch J and McDermott L. Structural and functional analysis of fatty acid-binding proteins. J Lipid Res. 2009; 50(Suppl):S126-131.

11. Woodford JK, Behnke WD and Schroeder F. Liver fatty acid binding protein enhances sterol transfer by membrane interaction. Mol Cell Biochem. 1995;

152(1):51-56.

12. Dong LH, Li H, Wang F, Li FQ, Zhou HY and Yang HJ. Expression of liver-type fatty acid-binding protein and vascular endothelial growth factor and their

correlation in human hepatocellular carcinoma. Nan Fang Yi Ke Da Xue Xue Bao.

2007; 27(3):318-321.

13. Kawamura T, Kanno R, Fujii H and Suzuki T. Expression of liver-type

fatty-acid-binding protein, fatty acid synthase and vascular endothelial growth factor in human lung carcinoma. Pathobiology. 2005; 72(5):233-240.

14. Hashimoto T, Kusakabe T, Watanabe K, Sugino T, Fukuda T, Nashimoto A, Honma

112

K, Sato Y, Kimura H, Fujii H and Suzuki T. Liver-type fatty acid-binding protein is highly expressed in intestinal metaplasia and in a subset of carcinomas of the stomach without association with the fatty acid synthase status in the carcinoma.

Pathobiology. 2004; 71(3):115-122.

15. Sharaf RN, Butte AJ, Montgomery KD, Pai R, Dudley JT and Pasricha PJ.

Computational prediction and experimental validation associating FABP-1 and pancreatic adenocarcinoma with diabetes. BMC Gastroenterol. 2011; 11:5.

16. Li H, Lu Q, Dong LH, Xue H, Zhou HY and Yang HJ. Expression of fatty acid binding protein in human breast cancer tissues. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2007; 23(4):312-316.

17. Hammamieh R, Chakraborty N, Barmada M, Das R and Jett M. Expression patterns of fatty acid binding proteins in breast cancer cells. J Exp Ther Oncol. 2005;

5(2):133-143.

18. Wang B, Tao X, Huang CZ, Liu JF, Ye YB and Huang AM. Decreased expression of liver-type fatty acid-binding protein is associated with poor prognosis in hepatocellular carcinoma. Hepatogastroenterology. 2014; 61(133):1321-1326.

19. Li J, Dong L, Wei D, Wang X, Zhang S and Li H. Fatty acid synthase mediates the epithelial-mesenchymal transition of breast cancer cells. Int J Biol Sci. 2014;

10(2):171-180.

113

20. Sonnino S and Prinetti A. Membrane domains and the "lipid raft" concept. Curr Med Chem. 2013; 20(1):4-21.

21. Lingwood D and Simons K. Lipid rafts as a membrane-organizing principle.

Science. 2010; 327(5961):46-50.

22. Pike LJ. Growth factor receptors, lipid rafts and caveolae: an evolving story.

Biochim Biophys Acta. 2005; 1746(3):260-273.

23. Arcaro A, Aubert M, Hierro MEEd, Khanzada UK, Angelidou S, Tetley TD, Bittermann AG, Frame MC and Seckl MJ. Critical role for lipid raft-associated Src kinases in activation of PI3K-Akt signalling. Cell Signal. 2007; 19(5):1081-1092.

24. Chen X and Resh MD. Cholesterol depletion from the plasma membrane triggers ligand-independent activation of the epidermal growth factor receptor. J Biol Chem.

2002; 277(51):49631-49637.

25. Patwardhan P and Resh MD. Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol. 2010; 30(17):4094-4107.

26. Jiang M, Yang J, Zhang C, Liu B, Chan K, Cao H and Lu A. Clinical studies with traditional Chinese medicine in the past decade and future research and

development. Planta Med. 2010; 76(17):2048-2064.

27. Youns M, Hoheisel JD and Efferth T. Traditional Chinese medicines (TCMs) for molecular targeted therapies of tumours. Curr Drug Discov Technol. 2010;

114

7(1):37-45.

28. Zuo LL, Wang ZY, Fan ZL, Tian SQ and Liu JR. Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. Int J Mol Sci. 2012; 13(5):5506-5518.

29. Zhu WJ, Yu DH, Zhao M, Lin MG, Lu Q, Wang QW, Guan YY, Li GX, Luan X, Yang YF, Qin XM, Fang C, Yang GH and Chen HZ. Antiangiogenic triterpenes isolated from Chinese herbal medicine Actinidia chinensis planch. Anticancer Agents Med Chem. 2013; 13(2):195-198.

30. Fujiwara Y, Takeya M and Komohara Y. A novel strategy for inducing the antitumor effects of triterpenoid compounds: blocking the protumoral functions of

tumor-associated macrophages via STAT3 inhibition. Biomed Res Int. 2014;

2014:348539.

31. Fujiwara Y, Takaishi K, Nakao J, Ikeda T, Katabuchi H, Takeya M and Komohara Y.

Corosolic acid enhances the antitumor effects of chemotherapy on epithelial ovarian cancer by inhibiting signal transducer and activator of transcription 3 signaling. Oncol Lett. 2013; 6(6):1619-1623.

32. Fujiwara Y, Komohara Y, Ikeda T and Takeya M. Corosolic acid inhibits

glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and

115

tumor-associated macrophages. Cancer Sci. 2011; 102(1):206-211.

33. Horlad H, Fujiwara Y, Takemura K, Ohnishi K, Ikeda T, Tsukamoto H, Mizuta H, Nishimura Y, Takeya M and Komohara Y. Corosolic acid impairs tumor

development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Mol Nutr Food Res. 2013; 57(6):1046-1054.

34. Aranda E and Owen GI. A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res. 2009; 42(3):377-389.

35. Wang D, Stockard CR, Harkins L, Lott P, Salih C, Yuan K, Buchsbaum D, Hashim A, Zayzafoon M, Hardy R, Hameed O, Grizzle W and Siegal GP.

Immunohistochemistry in the evaluation of neovascularization in tumor xenografts.

Biotech Histochem. 2008; 83(3-4):179-189.

36. Rosner M, Siegel N, Fuchs C, Slabina N, Dolznig H and Hengstschläger M.

Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc. 2010; 5(6):1081-1095.

37. Kim KB, Lee JS and Ko YG. The isolation of detergent resistant lipid rafts for two dimensional electrophoresis. Methods Mol Biol. 2008; 424:413-422.

38. Chang YC, Tien SC, Tien HF, Zhang H, Bokoch GM and Chang ZF. p210Bcr-Abl desensitizes Cdc42 GTPase signaling for SDF-1a-directed migration in chromic

116

myeloid leukemia cells. Oncogene. 2009; 28(46):4105-4115.

39. Tang SW, Yang TC, Lin WC, Chang WH, Wang CC, Lai MK and Lin JY.

Nicotinamide N-methyltransferase induces cellular invasion through activating matrix metalloproteinase-2 expression in clear cell renal cell carcinoma cells.

Carcinogenesis. 2011; 32(2):138-145.

40. Wang SC, Tang SW, Lam SH, Wang CC, Liu YH, Lin HY, Lee SS and Lin JY.

Aqueous extract of Paeonia suffruticosa inhibits migration and metastasis of renal cell carcinoma cells via suppressing VEGFR-3 pathway. Evid Based Complement Alternat Med. 2012; 2012:409823.

41. Sackton KL, Dimova N, Zeng X, Tian W, Zhang M, Sackton TB, Meaders J, Pfaff KL, Sigoillot F, Yu H, Luo X and King RW. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature. 2014; 514:646-649.

42. Asnaghi L, Vass WC, Quadri R, Day PM, Qian X, Braverman R, Papageorge AG and Lowy DR. E-cadherin negatively regulates neoplastic growth in non-small cell lung cancer: role of Rho GTPases. Oncogene. 2010; 29(19):2760-2771.

43. Shum WW, Silva ND, Belleannée C, McKee M, Brown D and Breton S. Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells. Am J Physiol Cell Physiol. 2011; 301(1):C31-43.

44. Tsubouchi T, Soza-Ried J, Brown K, Piccolo FM, Cantone I, Landeira D, Bagci H,

117

Hochegger H, Merkenschlager M and Fisher AG. DNA synthesis is required for reprogramming mediated by stem cell fusion. Cell. 2013; 152(4):873-883.

45. Bennett SM, Jiang M and Imperiale MJ. Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking. J Virol. 2013;

87(16):8843-8852.

46. Gottwein JM, Jensen SB, Li Y-P, Ghanem L, Scheel TKH, Serre SBN, Mikkelsen L and Bukh J. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a Viruses.

Antimicrob Agents Chemother. 2013; 57(3):1291-1303.

47. Nevo J, Mai A, Tuomi S, Pellinen T, Pentikäinen OT, Heikkilä P, Lundin J, Joensuu

H, Bono P and Ivaska J. Mammary-derived growth inhibitor (MDGI) interacts with integrin α-subunits and suppresses integrin activity and invasion. Oncogene. 2010;

29(49):6452-6463.

48. Takeuchi Y and Fukunaga K. Differential subcellular localization of two dopamine D2 receptor isoforms in transfected NG108-15 cells. J Neurochem. 2003;

85(4):1064-1074.

49. Shioda N, Takeuchi Y and Fukunaga K. Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: proteins interacting with the third cytoplasmic loop of dopamine D2 and D3 receptors. J Pharmacol Sci. 2010;

118

114(1):25-31.

50. Storch J and Thumser AE. Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem. 2010; 285(43):32679-32683.

51. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J and Huot J.

Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase.

J Biol Chem. 2000; 275(14):10661-10672.

52. Koch S, Tugues S, Li X, Gualandi L and Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem J. 2011; 437(2):169-183.

53. Claesson-Welsh L and Welsh M. VEGFA and tumour angiogenesis. J Intern Med.

2013; 273(2):114-127.

54. Dodd KM, Yang J, Shen MH, Sampson JR and Tee AR. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene. 2015; 34(17):2239-2250.

55. Chatterjee S, Heukamp LC, Siobal M, Schöttle J, Wieczorek C, Peifer M, Frasca D, Koker M, König K, Meder L, Rauh D, Buettner R, Wolf J, Brekken RA, Neumaier B, Christofori G, et al. Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest. 2013; 123(4):1732-1740.

119

56. Segrelles C, Ruiz S, Santos M, Martínez-Palacio J, Lara MF and Paramio JM. Akt mediates an angiogenic switch in transformed keratinocytes. Carcinogenesis. 2004;

25(7):1137-1147.

57. Davies JK, Thumser AEA and Wilton DC. Binding of recombinant rat liver fatty acid-binding protein to small anionic phospholipid vesicles results in ligand release:

a model for interfacial binding and fatty acid targeting. Biochemistry. 1999;

38(51):16932-16940.

58. Davies JK, Hagan RM and Wilton DC. Effect of charge reversal mutations on the ligand- and membrane-binding properties of liver fatty acid-binding protein. J Biol Chem. 2002; 277(50):48395-48402.

59. Huang H, McIntosh AL, Martin GG, Landrock KK, Landrock D, Gupta S, Atshaves BP, Kier AB and Schroeder F. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant. FEBS J. 2014;

281(9):2266-2283.

60. Martin GG, McIntosh AL, Huang H, Gupta S, Atshaves BP, Landrock KK,

Landrock D, Kier AB and Schroeder F. The human liver fatty acid binding protein T94A variant alters the structure, stability, and interaction with fibrates.

Biochemistry. 2013; 52(51):9347-9357.

61. Gao N, Qu X, Yan J, Huang Q, Yuan HY and Ouyang DS. L-FABP T94A decreased

120

fatty acid uptake and altered hepatic triglyceride and cholesterol accumulation in Chang liver cells stably transfected with L-FABP. Mol Cell Biochem. 2010;

345(1-2):207-214.

62. Chiang AC and Joan Massagué. Molecular Basis of Metastasis. N Engl J Med.

2008; 359(26):2814-2823.

63. Zhang L, Wang JN, Tang JM, Kong X, Yang JY, Zheng F, Guo LY, Huang YZ, Zhang L, Tian L, Cao SF, Tuo CH, Guo HL and Chen SY. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells. Mol Biol Rep. 2012;

39(5):5085-5093.

64. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, Oliveira ACd, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med.

2008; 359(4):378-390.

65. Kim JH, Kim YH, Song GY, Kim DE, Jeong YJ, Liu KH, Chung YH and Oh S.

Ursolic acid and its natural derivative corosolic acid suppress the proliferation of APC-mutated colon cancer cells through promotion of β-catenin degradation. Food Chem Toxicol. 2014; 67:87-95.

66. Lee K, Jeong KW, Lee Y, Song JY, Kim MS, Lee GS and Kim Y. Pharmacophore modeling and virtual screening studies for new VEGFR-2 kinase inhibitors. Eur J

121

Med Chem. 2010; 45(11):5420-5427.

67. Ogasawara S, Yano H, Momosaki S, Nishida N, Takemoto Y, Kojiro S and Kojiro M. Expression of matrix metalloproteinases (MMPs) in cultured hepatocellular carcinoma (HCC) cells and surgically resected HCC tissues. Oncol Rep. 2005;

13(6):1043-1048.

68. Wang G, Gong Y, Anderson J, Sun D, Minuk G, Roberts MS and Burczynski FJ.

Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells.

Hepatology. 2005; 42(4):871-879.

69. Yan J, Gong Y, She YM, Wang G, Roberts MS and Burczynski FJ. Molecular mechanism of recombinant liver fatty acid binding protein's antioxidant activity. J Lipid Res. 2009; 50(12):2445-2454.

70. Furuhashi M and Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008; 7(6):489-503.

71. Simons K and Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000; 1(1):31-39.

72. Laurentiis Ad, Donovan L and Arcaro A. Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochem J. 2007; 1:12-32.

73. Staubach S and Hanisch FG. Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics. 2011; 8(2):263-277.

122

74. Besnard P, Niot I, Poirier H, Clément L and Bernard A. New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol Cell Biochem. 2002;

239(1-2):139-147.

75. Hostetler HA, McIntosh AL, Atshaves BP, Storey SM, Payne HR, Kier AB and Schroeder F. L-FABP directly interacts with PPARalpha in cultured primary hepatocytes. J Lipid Res. 2009; 50(8):1663-1675.

76. Atshaves BP, Martin GG, Hostetler HA, McIntosh AL, Kier AB and Schroeder F.

Liver fatty acid-binding protein and obesity. J Nutr Biochem. 2010;

21(11):1015-1032.

77. Cohen AW, Combs TP, Scherer PE and Lisanti MP. Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab. 2003;

285(6):E1151-1160.

78. Chen A, Tang Y, Davis V, Hsu FF, Kennedy SM, Song H, Turk J, Brunt EM, Newberry EP and Davidson NO. Liver fatty acid binding protein (L-Fabp)

modulates murine stellate cell activation and diet-induced nonalcoholic fatty liver disease. Hepatology. 2013; 57(6):2202-2212.

79. Brodsky SV, Mendelev N, Melamed M and Ramaswamy G. Vascular density and VEGF expression in hepatic lesions. J Gastrointestin Liver Dis. 2007;

16(4):373-377.

123

80. Heindryckx F and Gerwins P. Targeting the tumor stroma in hepatocellular carcinoma. World J Hepatol 2015 Feb 27;7(2):165-76. 2015; 7(2):165-176.

81. Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy.

Oncologist. 2004; 9 Suppl 1:2-10.

82. Alkozai EM, Porte RJ, Adelmeijer J, Zanetto A, Simioni P, Senzolo M and Lisman T. Levels of angiogenic proteins in plasma and platelets are not different between patients with hepatitis B/C-related cirrhosis and patients with cirrhosis and hepatocellular carcinoma. Platelets. 2014:1-6.

相關文件