• 沒有找到結果。

S-system model has been considered suitable to characterize biochemical network systems and capable to analyze the regulatory system dynamics. Essentially, the inference of S-system models of genetic networks is a large-scale optimization problem consisting of 2N (N + 1) parameters to be optimized where N is the number of genes in the genetic network. This thesis proposes an intelligent two-stage evolutionary algorithm (iTEA) to solve the optimization problem using a divide-and-conquer strategy in each of two stages. The original problem can be decomposed into N individual 2(N + 1) dimensional subproblems if the measurement noise is small. In stage 1, an intelligent genetic algorithm is used to solve the individual subproblems independently without further estimating gene expression levels of other genes. Our simulations demonstrated that the proposed IGA-based method is effective in solving the subproblem of inferring S-system models of genetic networks. In stage 2, OSA can refine the combined solution quality in terms of fitness value where 3% and 5% Gaussian noises were added. From simulation results, it has shown that the proposed algorithm iTEA performs well from noise-free and small-noise gene expression profiles. Our future work is to use iTEA to identify the dynamic pathway

from actual gene expression profiles with measurement noise where biological knowledge is incorporated to improve solution quality.

Bibliography

[1] C. Creighton and S. Hanash, “Mining gene expression databases for association rules,” Bioinformatics, vol. 19, no. 1, pp. 79–86, 2003.

[2] H. Ressom, R. Reynolds, and R. S. Varghese, “Increasing the efficiency of fuzzy logic-based gene expression data analysis,” Physiological Genomics, vol. 13, no. 2, pp. 107–117, 2003.

[3] P. J. Woolf and Y. X. Wang, “A fuzzy logic approach to analyzing gene expression data,” Physiological Genomics, vol. 3, no. 1, pp. 9–15, 2000.

[4] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein, “Random boolean network models and the yeast transcriptional network,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 14 796–14 799, 2003.

[5] M. Wahde and J. Hertz, “Coarse-grained reverse engineering of genetic regulatory networks,” Biosystems, vol. 55, no. 1-3, pp. 129–136, 2000.

[6] Z. Bar-Joseph, “Analyzing time series gene expression data,” Bioinformatics, vol. 20, no. 16, pp. 2493–2503, 2004.

[7] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14 863–14 868, 1998.

[8] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O.

Brown, D. Botstein, and B. Futcher, “Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization,”

Molecular Biology of the Cell, vol. 9, no. 12, pp. 3273–3297, 1998.

[9] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine,

“Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 6745–6750, 1999.

[10] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene expression patterns,” Jour-nal of ComputatioJour-nal Biology, vol. 6, no. 3-4, pp. 281–297, 1999.

[11] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lan-der, and T. R. Golub, “Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp.

2907–2912, 1999.

[12] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A comprehen-sive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis,” Bioinformatics, vol. 21, no. 5, pp. 631–643, 2005.

[13] S. A. Vinterbo, E. Y. Kim, and L. Ohno-Machado, “Small, fuzzy and interpretable gene expression based classifiers,” Bioinformatics, vol. 21, no. 9, pp. 1964–1970, 2005.

[14] C. H. Q. Ding, “Unsupervised feature selection via two-way ordering in gene expres-sion analysis,” Bioinformatics, vol. 19, no. 10, pp. 1259–1266, 2003.

[15] B. Liu, Q. H. Cui, T. Z. Jiang, and S. D. Ma, “A combinational feature selection and ensemble neural network method for classification of gene expression data,” BMC Bioinformatics, vol. 5, 2004, 136.

[16] X. Zhou and K. Z. Mao, “Ls bound based gene selection for dna microarray data,”

Bioinformatics, vol. 21, no. 8, pp. 1559–1564, 2005.

[17] X. X. Liu, A. Krishnan, and A. Mondry, “An entropy-based gene selection method for cancer classification using microarray data,” BMC Bioinformatics, vol. 6, 2005, 76.

[18] L. P. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen, “Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the ga/knn method,” Bioinformatics, vol. 17, no. 12, pp. 1131–1142, 2001.

[19] C. H. Ooi and P. Tan, “Genetic algorithms applied to multi-class prediction for the analysis of gene expression data,” Bioinformatics, vol. 19, no. 1, pp. 37–44, 2003.

[20] J. Y. Li, H. Q. Liu, J. R. Downing, A. E. J. Yeoh, and L. S. Wong, “Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (all) patients,” Bioinformatics, vol. 19, no. 1, pp. 71–78, 2003.

[21] T. R. Hvidsten, A. Laegreid, and J. Komorowski, “Learning rule-based models of biological process from gene expression time profiles using gene ontology,” Bioinfor-matics, vol. 19, no. 9, pp. 1116–1123, 2003.

[22] P. Brazhnik, A. de la Fuente, and P. Mendes, “Gene networks: how to put the function in genomics,” Trends in Biotechnology, vol. 20, no. 11, pp. 467–472, 2002.

[23] P. D’Haeseleer, S. D. Liang, and R. Somogyi, “Genetic network inference: from co-expression clustering to reverse engineering,” Bioinformatics, vol. 16, no. 8, pp.

707–726, 2000.

[24] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using bayesian networks to analyze expression data,” Journal of Computational Biology, vol. 7, no. 3-4, pp. 601–

620, 2000.

[25] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis, “Advances to bayesian network inference for generating causal networks from observational biolog-ical data,” Bioinformatics, vol. 20, no. 18, pp. 3594–3603, 2004.

[26] E. O. Voit and J. Almeida, “Decoupling dynamical systems for pathway identification from metabolic profiles,” Bioinformatics, vol. 20, no. 11, pp. 1670–1681, 2004.

[27] D. Husmeier, “Sensitivity and specificity of inferring genetic regulatory interac-tions from microarray experiments with dynamic bayesian networks,” Bioinformatics, vol. 19, no. 17, pp. 2271–2282, 2003.

[28] M. Zou and S. D. Conzen, “A new dynamic bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data,” Bioinfor-matics, vol. 21, no. 1, pp. 71–79, 2005.

[29] S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi, and M. Tomita, “Dynamic mod-eling of genetic networks using genetic algorithm and s-system,” Bioinformatics, vol. 19, no. 5, pp. 643–650, 2003.

[30] S. Kimura, M. Hatakeyama, and A. Konagaya, “Inference of s-system models of genetic networks from noisy time-series data,” Chem-Bio Informatics Journal, vol. 4, no. 1, pp. 1–14, 2004.

[31] S. Kimura, K. Ide, A. Kashihara, M. Kano, M. Hatakeyama, R. Masui, N. Naka-gawa, S. Yokoyama, S. Kuramitsu, and A. Konagaya, “Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm,” Bioinformatics, vol. 21, no. 7, pp. 1154–1163, 2005.

[32] Y. Maki, T. Ueda, M. Okamoto, N. Uematsu, K. Inamura, K. Uchida, Y. Takahashi, and Y. Eguchi, “Inference of genetic network using the expression profile time course data of mouse p19 cells,” Genome Informatics, vol. 13, pp. 382–383, 2002.

[33] R. Morishita, H. Imade, I. Ono, N. Ono, and M. Okamoto, “Finding multiple so-lutions based on an evolutionary algorithm for inference of genetic networks by s-system,” in The Congress on Evolutionary Computation, CEC, vol. 1, Canberra, Australia, 2003, pp. 615–622.

[34] R. Thomas, S. Mehrotra, E. T. Papoutsakis, and V. Hatzimanikatis, “A model-based optimization framework for the inference on gene regulatory networks from dna array data,” Bioinformatics, vol. 20, no. 17, pp. 3221–3235, 2004.

[35] D. Tominaga, N. Koga, and M. Okamoto, “Efficient numerical optimization algo-rithm based on genetic algoalgo-rithm for inverse problem,” in Genetic and Evolutionary Computation Conference, GECCO, Las Vegas, Nevada, USA, 2000, pp. 251–258.

[36] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.

Addison Wesley Publishing Company, 1989.

[37] S. Y. Ho, H. M. Chen, S. J. Ho, and T. K. Chen, “Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space,”

IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 34, no. 2, pp. 1031–1044, 2004.

[38] S. Y. Ho, L. S. Shu, and J. H. Chen, “Intelligent evolutionary algorithms for large pa-rameter optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 6, pp. 522–541, 2004.

[39] S. B. Cho, “Exploring features and classifiers to classify gene expression profiles of acute leukemia,” International Journal of Pattern Recognition and Artificial Intelli-gence, vol. 16, no. 7, pp. 831–844, 2002.

[40] P. D. Wasserman, Advanced Methods in Neural Computing. New York: Van Nos-trand Reinhold, 1993.

[41] G. M. Sun, X. Y. Dong, and G. D. Xu, “Tumor tissue identification based on gene expression data using dwt feature extraction and pnn classifier,” Neurocomputing, vol. 69, no. 4-6, pp. 387–402, 2006.

[42] C. J. Huang and W. C. Liao, “Application of probabilistic neural networks to the class prediction of leukemia and embryonal tumor of central nervous system,” Neural Processing Letters, vol. 19, no. 3, pp. 211–226, 2004.

[43] C. J. Huang, “Class prediction of cancer using probabilistic neural networks and relative correlation metric,” Applied Artificial Intelligence, vol. 18, no. 2, pp. 117–

128, 2004.

[44] J. Sim, S. Y. Kim, and J. Lee, “Prediction of protein solvent accessibility using fuzzy k-nearest neighbor method,” Bioinformatics, vol. 21, no. 12, pp. 2844–2849, 2005.

[45] T. Li, C. L. Zhang, and M. Ogihara, “A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression,”

Bioinformatics, vol. 20, no. 15, pp. 2429–2437, 2004.

[46] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.

[47] T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haus-sler, “Support vector machine classification and validation of cancer tissue samples using microarray expression data,” Bioinformatics, vol. 16, no. 10, pp. 906–914, 2000.

[48] Y. Lee and C. K. Lee, “Classification of multiple cancer types by tip multicategory support vector machines using gene expression data,” Bioinformatics, vol. 19, no. 9, pp. 1132–1139, 2003.

[49] Y. H. Wang, F. S. Makedon, J. C. Ford, and J. Pearlman, “Hykgene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data,” Bioinformatics, vol. 21, no. 8, pp. 1530–1537, 2005.

[50] J. Yen, “Fuzzy logic - a modern perspective,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, no. 1, pp. 153–165, 1999.

[51] H. Ishibuchi, T. Nakashima, and T. Murata, “Three-objective genetics-based machine learning for linguistic rule extraction,” Information Sciences, vol. 136, no. 1-4, pp.

109–133, 2001, sp. Iss. SI.

[52] C. C. Wu, H. C. Huang, H. F. Juan, and S. T. Chen, “Genenetwork: an interactive tool for reconstruction of genetic networks using microarray data,” Bioinformatics, vol. 20, no. 18, pp. 3691–3693, 2004.

[53] S. Kauffman, The Origin of Order, Self-Organization and Selection in Evolution.

New York: Oxford University Press, 1993.

[54] S. Liang, S. Fuhrman, and R. Somogyi, “Reveal, a general reverse engineering algo-rithm for inference of genetic network architectures,” in Proc. of the Pacific Sympo-sium on Biocomputing, vol. 3, Hawaii, 1998, pp. 18–29.

[55] T. Akutsu, S. Miyano, and S. Kuhura, “Identification of genetic networks from a small number of gene expression patterns under the boolean network model,” in Proc. of the Pacific Symposium on Biocomputing, vol. 4, Hawaii, 1999, pp. 17–28.

[56] T. Akutsu, S. Miyano, and S. Kuhara, “Algorithms for identifying boolean networks and related biological networks based on matrix multiplication and fingerprint func-tion,” Journal of Computational Biology, vol. 7, no. 3-4, pp. 331–343, 2000.

[57] P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “Linear modeling of mrna ex-pression levels during cns development and injury,” in Proc. of the Pacific Symposium on Biocomputing, vol. 4, Hawaii, 1999, pp. 41–52.

[58] P. D’Haeseleer, “Reconstructing gene networks from large scale gene expression data,” Ph.D. dissertation, University of New Mexico, 2000.

[59] H. Szu and R. Hartley, “Fast simulated annealing,” Physics Letters, vol. 122, pp.

157–162, 1987.

[60] A. Dey, Orthogonal Fractional Factorial Designs. New York: Wiley, 1985.

[61] A. Hedayat, N. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications.

New York: Springer-Verlag, 1999.

[62] T. Bagchi, Taguchi Methods Explained: Practical Steps to Robust Design. Prentice-Hall India Ltd, 1993.

[63] S. J. Ho, S. Y. Ho, and L. S. Shu, “Osa: Orthogonal simulated annealing algo-rithm and its application to designing mixed h-2/h-infinity optimal controllers,”

IEEE Transactions on Systems Man and Cybernetics Part a-Systems and Humans, vol. 34, no. 5, pp. 588–600, 2004.

[64] Z. Michalewicz, D. Dasgupta, R. G. Leriche, and M. Schoenauer, “Evolutionary algo-rithms for constrained engineering problems,” Computers and Industrial Engineering, vol. 30, no. 4, pp. 851–870, 1996.

[65] S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E. McLaugh-lin, J. Y. H. Kim, L. C. Goumnerova, P. M. Black, C. Lau, J. C. Allen, D. Zagzag, J. M. Olson, T. Curran, C. Wetmore, J. A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D. N. Louis, J. P. Mesirov, E. S. Lander, and T. R.

Golub, “Prediction of central nervous system embryonal tumour outcome based on gene expression,” Nature, vol. 415, no. 6870, pp. 436–442, 2002.

[66] C. L. Nutt, D. R. Mani, R. A. Betensky, P. Tamayo, J. G. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M. E. McLaughlin, T. T. Batchelor, P. M. Black, A. von Deimling, S. L. Pomeroy, T. R. Golub, and D. N. Louis, “Gene expression-based classification of malignant gliomas correlates better with survival than histological classification,” Cancer Research, vol. 63, no. 7, pp. 1602–1607, 2003.

[67] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. T. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray, M. A. Koval, K. W.

Last, A. Norton, T. A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander, J. C.

Aster, and T. R. Golub, “Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning,” Nature Medicine, vol. 8, no. 1, pp. 68–74, 2002.

[68] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.

Lander, “Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring,” Science, vol. 286, no. 5439, pp. 531–537, 1999.

[69] S. A. Armstrong, J. E. Staunton, L. B. Silverman, R. Pieters, M. L. de Boer, M. D.

Minden, S. E. Sallan, E. S. Lander, T. R. Golub, and S. J. Korsmeyer, “Mll transloca-tions specify a distinct gene expression profile that distinguishes a unique leukemia,”

Nature Genetics, vol. 30, no. 1, pp. 41–47, 2002.

[70] A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson, T. R. Golub, D. J. Sugarbaker, and M. Meyerson, “Clas-sification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13 790–13 795, 2001.

[71] D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A.

Renshaw, A. V. D’Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R.

Golub, and W. R. Sellers, “Gene expression correlates of clinical prostate cancer behavior,” Cancer Cell, vol. 1, no. 2, pp. 203–209, 2002.

[72] J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, and P. S. Meltzer, “Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks,” Nature Medicine, vol. 7, no. 6, pp. 673–679, 2001.

[73] A. Brazma, H. Parkinson, U. Sarkans, M. Shojatalab, J. Vilo, N. Abeygunawardena, E. Holloway, M. Kapushesky, P. Kemmeren, G. G. Lara, A. Oezcimen, P. Rocca-Serra, and S. A. Sansone, “Arrayexpress - a public repository for microarray gene expression data at the ebi,” Nucleic Acids Research, vol. 31, no. 1, pp. 68–71, 2003.

[74] M. Friberg, P. von Rohr, and G. Gonnet, “Scoring functions for transcription factor binding site prediction,” BMC Bioinformatics, vol. 6, 2005, 84.

[75] X. S. Liu, D. L. Brutlag, and J. S. Liu, “An algorithm for finding protein-dna binding sites with applications to chromatin-immunoprecipitation microarray experiments,”

Nature Biotechnology, vol. 20, no. 8, pp. 835–839, 2002.

[76] J. Murvai, K. Vlahovicek, and S. Pongor, “A simple probabilistic scoring method for protein domain identification,” Bioinformatics, vol. 16, no. 12, pp. 1155–1156, 2000.

[77] S. T. Jensen and J. S. Liu, “Biooptimizer: a bayesian scoring function approach to motif discovery,” Bioinformatics, vol. 20, no. 10, pp. 1557–1564, 2004.

[78] S.-Y. Ho, C.-H. Hsieh, K.-W. Chen, H.-L. Huang, H.-M. Chen, and S.-J. Ho, “Scor-ing method for tumor prediction from microarray data us“Scor-ing an evolutionary fuzzy classifier,” in Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, Singapore, 2006.

[79] D. Thieffry, A. Huerta, E. Perez-Rueda, and J. Collado-Vides, “From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in escherichia coli,” BioEssays, vol. 20, no. 5, pp. 433–440, 1998.

[80] S. Wei, T. Sun, and R. Wesel, “Quasi-convexity and optimal binary fusion for dis-tributed detection with identical sensors in generalized gaussian noise,” IEEE Trans.

Information Theory, vol. 47, no. 1, pp. 446–450, 2001.

相關文件