• 沒有找到結果。

Voltage (mV)

在文檔中 中 華 大 學 碩 士 論 文 (頁 58-64)

STD Cell

Laser power density:117w/cm2&acid 2min Cell

圖 4-16 IV 效率圖

表 4-1 IV 參數比較

Isc(mA) Jsc(mA/cm2) Voc(mV) F.F Eff(%) Rs(mohm)

雷射 結構 電池

150 37.6 555 0.668 13.9 0.347

標準 結構 電池

149 37.4 611 0.695 15.9 0.269

49

由圖 4-16、表 4-1 可看出雷射電池之 Voc=555mV、Jsc = 37.6 mA/cm2,與標準電池 的 Voc = 611mV、Jsc = 37.4 mA/cm2比較,Voc 降低了 56mV,Jsc 提升了 0.1mA/cm2, 由於雷射形成之的蜂巢結構有很大的高低差表面,此表面在覆蓋抗反射層(氮化矽) 時會造成覆蓋不均勻之情況,可能洞口之氮化矽比較厚,側壁及洞的底部只有少量的 氮化矽,此抗反射層的反射率雖然也會下降,但是氮化矽之鈍化效果卻大大的下降,

使得表面的缺陷沒有得到修補,在電子電洞對傳導時增加復合之機會,使得 Voc 與 Jsc 都下降導致效率無法有效的提升。在表面復合增加的情況下,蜂巢式結構的電池,

Jsc 還是有 37.6mA/cm2,代表此結構還是有提升電流之效果,如果再嘗詴不同的鈍化 結構,去改善表面的傷害,降低缺陷,再搭配蜂巢詴之結構,就能提高太陽能電池之 效率。

50

第五章

結論與未來展望

結論

雷射表面粗糙化之太陽能電池 Jsc 可達到 37.6 mA/cm2、Voc 達到 555mV、F.F 達到 0.668、效率可達到 13.9%。但是與標準電池之效率相比還是有些落差,因為要 做到高效能的太陽電池,必須兼顧到好的表面粗糙化,減少太陽光之反射,增加入射 光的吸收,達到提升 Jsc 的效果,並且要有良好的鈍化效果,減少表面缺陷,減少電 子電洞對被複合,提升 Voc,這樣才能有效的提升太陽能電池之轉換效率,現在蜂巢 式表面結構有良好的反射率,Jsc 也提升了 0.1mA/cm2,相信只要解決鈍化的問題,

電流與效率都能在進一步的提升。

未來方向:

以實驗提供幾個未來的方向:

1. 使用綠光雷射,降低孔洞之大小,達到良好之深寬比,藉此提升短路電流,也降 低對開路電壓之影響,維持較好之 Voc。

2. 留金屬電極線寬,降低接觸電阻,藉此提升短路電流。

51

參考文獻

[1] KRI Report No.8:Solar Cell , February 2005.

[2] Japan Photovoltaic Energy Association, JPEA Web:http:// www.jpea.gr.jp

[3] S. R. Wenham and M. A. Green, “Silicon Solar Cells,” PROGRESS INPHOTOVOLTAICS: RESEARCH AND APPLICATIONS, VOL 4, 3-33, 1996.

[4] M. A. Green, “Solar Cells: Operating Principles, Technology and System Applications,” Prentice-Hall, New Jersey, 1982.

[5] Energy Efficiency & Renewable Energy, “2008 SOLAR TECHNOLOGIES MARKET REPORT”,U.S. DEPARTMENT OF ENERGY.

[6] Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, “Solar cell efficiency tables (version 37),” PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl.;19:84–92, 2011.

[7] Malcolm Abbott, and Jeffrey Cotter, “Optical and Electrical Properties of Laser Texturing for High-efficiency Solar Cells,” PROGRESS IN PHOTOVOLTAICS:

RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl.; 14:225–235, 2006.

[8] S. S. Chen, “Effects of antireflection coating and prismatic cover on Ⅲ-Ⅴ solar cell’s performance,” M. S. Thesis, CYCU, Taiwan, R.O.C., 2005.

[9] PVCDRON: www.pveducation.org/pvcdrom

[10] 黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳,

“太陽能電池” ,五南圖書出版股份有限公司。

[11] Green, M. A., “Solar cell fill factors: General graph and empirical expressions,”

Solid-State Electronics, vol. 24, issue 8, pp. 788 - 789, 1981.

[12] T. Markvart and L. Castaner, “Solar Cells: Materials, Manufacture and Operation, Elsevier,” Amsterdam, 2006.

[13] Martin A. Green, K. Emery, Y. Hishikawa and W. Warta, “Solar cell efficiency tables

52

(Version 33),” Progress in Photovoltaic: Research and Applications, vol.17, pp. 85-94, 2009.

[14] George W. Crabtree and Nathan S. Lewis, “Solar energy conversion,” Physics Today, American Institute of Physics, pp. 37-42, 2007.

[15] E. Vazsonyi, K. De Clercq, “Improved anisotropic etching process for industrial texturing of silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 57, issue 2, pp. 179-188, 1999.

[16] H. Chen, W. Fan, C. Cheng, C. Lin, and K. Huang, “Fabrication of texturing antireflection structures in solar cells by using the defocusing exposure in optical lithography,” Journal of the Electrochemical Society, vol. 153, no. 9, pp. G802-G806, 2006.

[17] K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication,” Solar Energy Materials and Solar Cells, vol. 92, issue 8, pp. 960-968, 2008.

[18] H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Solar Energy Materials and Solar Cells, vol. 93, issue 10, pp.

1773-1778, 2009.

[19] E. Manea, E. Budianu, “Optimization of front surface texturing processes for high-efficiency silicon solar cells,” Solar Energy Materials & Solar Cells 87 ,423–431, 2005

[20] L.A. Dobrzan´ ski, “Laser surface treatment of multicrystalline silicon for enhancing optical properties,” journal of materials processing technology 2 0 1, 291–296, 2008.

[21] O. Schultz, S. W. Glunz and G. P. Willeke, “Multicrystalline Silicon Solar Cells

53

Exceeding 20% Efficiency,” PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl.; 12:553–558, 2004.

[22] 蔡進譯, “超高效率太陽電池,” 物理雙月刊(廿七卷五期)

[23] Jiun-Hua, Guo and Jeffrey E. Cotter, “Laser-Grooved Backside Contact Solar Cells With 680-mV Open-Circuit Voltage,” IEEE Tran. Electronic Devices, Vol. 51, No.12, Dec. 2004.

[24] S. Narayanan, J. Zolper, F. Yun, S.R. Wenham, A.B. Sproul, C.M.Chong and M.A.

Green, ”18% Efficient Polycrystalline-silicon Solar Cells,” IEEE Solar Photovoltaic Laboratory, 1990.

[25] P. Campbell, “Enhancement of light absorption from randomizing and geometric textures ,” Optical Society of America, Vol. 10, No. 12, December 1993.

[26] D.Kray, M. Aleman , A. Fell , S. Hopman , K.Mayer , M.Mesec , R.Muller, G.P.

Willeke , S.W. Glunz , B.Bitnar ,D.-H. Neuhaus , R. Ludemann , T. Schlenker , D.Manz, “Laser-doped Silicon solar cells by Laser Chemical Processing(LCP)exceeding 20% Efficiency,” IEEE Fraunhofer Institute for Solar Energy Systems, 2008 .

[27] L.A. Dobrzanski, A. Drygala, P.Panek, M. Lipinski, P.Zieba, “Application of laser in multi-crystalline silicon surface processing,” Materials and Manufacturing Engineering, 2007.

[28] Chao-Chia Cheng, “Thermal effect insensitive resonator designed for rod-type high power Nd:YAG laser,” National Central University, p.126, 2000.

[29] Lung-Fa Wu, Yu-Hung Lin, Jyh-Jier Ho, Yuang-Tung Cheng, Chien-Kun Wang and Daw-Shang Huang, “Effect of Laser Texturing on Opto-electrical Parameters of Single Crystalline Si Solar Cells,” Proceedings of CSCT (International Thin Films Conference) 2009, Taipei, Taiwan, A-074-P, p.159, 14-16 , Dec. 2009.

在文檔中 中 華 大 學 碩 士 論 文 (頁 58-64)

相關文件