• 沒有找到結果。

2.5 YAG

3.6.1 X-ray

٬ҔX-Ray ણ҃ᙅ৔ሺ(Model M18XHF, Mac Science, Japan)௖

૸Ƕႝᓸ೛ۓ50 kVǴႝࢬ 200 mAǴаልႢϐ CukĮ(Ȝ = 1.5406 Å)ౢ

ғϐ X Ӏ৔ጕ࿶ Ni-filter ᘠݢࡕǴӧ၂Т߄य़຾Չ 5°–90±ϐ șș ኳ Ԅ௟ඔǴ௟ᅲೲࡋ 2°/minǴ؂ ș = 0.01°(Sampling = 0.01°)Ծ୏૶ᒵ X-ray மࡋǶჹ Al2O3/ Y2O3/ ZrO2ഏౠ၂Тբᙅ৔ϩ݋а᠘ۓ่඲࣬Ǵ ஒ௟ඔрٰޑpeak ӆᆶ JCPDs ь࣬ϕКჹǴаղۓ࣬ձǶ

3.6.2 ௟ඔԄႝηᡉ༾᜔(SEM/EDS)

٬Ҕ዗൑ว௟ඔԄႝηᡉ༾᜔(FESEM, JSM-6500F, JEOL Ltd., Tokyo, Japan)ϐङӛණ৔ႝηԋႽ(BEI)ᆶΒԛႝηԋႽ(SEI)Ǵаᏹբ

ႝᓸࣁ20 kV ᢀჸ Al2O3/ Y2O3/ ZrO2၂Тᆶ⑲ߎឦϸᔈϟय़༾ᢀಔᙃǴ ٠аEDS Ϸ X-ray mapping ᠘ۓ၂ТύӚ࣬ಔԋϡનکъۓໆϩ݋Ƕ Ӣࣁௗӝ၂Тύޑഏౠ೽ϩόᏤႝǴࣁΑᗉխӧ๚ᡏϣᢀჸ၂Тਔౢ

ғႝ಻ಕᑈܫႝ(charging)ǴᏤठ၂Т೏ઇᚯǴ໪٬Ҕ Ion coater ӧ၂ Т߄य़΢ᗓ΢΋ቫႌǴႝࢬ೛ۓࣁ20 mAǴᘢᗓਔ໔ 120 ࣾǴ੿ޜࡋ ࣁ5 PaǶ

!'"

3.6.3 ऀ೸Ԅႝηᡉ༾᜔(TEM/EDS)

аऀ೸Ԅႝηᡉ༾᜔(Philips TECAI 20)ϩ݋ϸᔈࡕޑ၂ТǴаܴ

ഁႽ(Bright Field Image, BFI)ᢀჸϟय़ಔᙃǹ᏷୔ᙅ৔კ׎(Selected Area Diffraction Pattern, SADP)բࣁᒣۓ࣬ձޑ٩ᏵǴ٠ᢀჸࢂցԖБ Տᜢ߯ǹૈໆϩණӀ᛼ሺ(Eenrgy Dispersive Spectrometer, EDS)ϐۓ܄

Ϸъۓໆϩ݋а᠘ۓӚঁ࣬ޑಔԋϡનϷКٯǶ

!("

ಃѤക ่݀ᆶ૸ፕ

ҁࣴزаᘏڗङӛණ৔ႝηቹႽϩ݋ϟय़ϸᔈ༾ᢀ่ᄬǴቹႽ ၨ ߝ ޑ ࣁ চ η ׇ ၨ ε ޑ ϡ ન Ǵ ٠ ٬ Ҕ TEM/EDS ଺ ຾΋ ؁ϩ݋ Ƕ 10A/90YZǵ20A/80YZ Ϸ 30A/70YZ ϐᅙᑼᘉණϸᔈܴᡉόӕܭ 40A/60YZǴѤಔ࣬ӕϐೀࣁ YAG ӧᘉණϸᔈ܌תᄽޑفՅǹӢԜΨ ஒ௖૸YAG ൂᐱᆶ Ti ଺ᅙᑼᘉණϸᔈǴϸᔈࡕᢀჸځϟय़༾ᢀ่ᄬǹ Ӛಔޑғԋᐒᄬ܌೷ԋόӕ׎ᇮஒӧΠЎ௖૸ځচӢǶ

4.1 ҂ᆶ⑲ϸᔈϐપഏౠ XRD ϩ݋

Fig. 4-1 ࣁӚᅿόӕԋϩޑᐨ่၂Т(10A/90YZǵ20A/80YZǵ 30A/70YZǵ40A/60YZ)Ǵӧۘ҂ᆶ⑲ଯྕᘉණϸᔈ߻ޑ X Ӏᙅ৔კ

׎ǴᡉҢૻဦനଯޑΟঁঢ়ॶࣁ2ș ࣁ 30.6ǵ50.7ǵ60.5 Տ࿼Ǵа JCPDs ьᡉҢ಄ӝ c-ZrO2ǹYAG ࣁ cubic ่ᄬǹԶ Al2O3ࣁrhombohedral ่ ᄬ(Į-Al2O3

Ѥಔ၂Т܌ϩ݋рޑঢ়ॶՏ࿼࣬ৡค౦ǴৡձനεѝࢂAl2O3ঢ় ॶޑӭჲǴவΟϡ࣬კᡉҢ[Fig. 3-2]ǴրΓஒ 40A/60YZ ೭ԋϩ኱Ң ࣁಃ 4 ᗺǴ࿶җीᆉ਼ϯ᎑֖ໆࣁ 40 vol%ǴࣁѤಔϐനǴࡺ XRD

ෳрޑ Al2O3ঢ়ॶኧໆ࣬ჹၨӭǹϸϐӧ 10A/90YZ ΠǴ਼ϯ᎑ѝԖ 10 vol %Ǵ܌аளډ࣬ჹϿໆঢ়ॶǶ

!)"

Ѥಔԋϩ(10A/90YZ – 40A/60YZ)ӧ ZrO2-Y2O3-Al2O3Οϡ࣬კϣ Տӧӕ΋ঁ Gibbs triangleǴҗ࣬კளޕࣁ c-ZrO2ǵYAGǵAl2O3ಔԋǴ ٠வ XRD ᙅ৔კᡉҢѤಔ၂ТࣣԖԜΟ࣬Ǵࡺᙅ৔კ׎ঢ়ॶՏ࿼࣬

ӕǹҗЎ᝘ӣ਼៝ϯ⯗ϐ࣬ᡂϯၸำ[Fig. 2-5]ளޕǴZrO2 ӧଯྕࣁ cubic ่ᄬǴհࠅԿதྕᔈ཮࣬ᡂϯԋ monoclinic ่ᄬǴՠӧᙅ৔კ

׎ޑpeaks ࠅӧ c-ZrO2р౜ǴᡉҢ೭Ѥಔ၂ТԖӼۓϯޑਏ݀Ƕ

Fig. 4-2 ࣁ҂ᆶ Ti ᘉණϸᔈ߻Ǵ10A/90YZǵ20A/80YZǵ30A/70YZǵ 40A/60YZ ᐨ่ഏౠ၂Т࿶ thermal etching(1300ʚ/2 hr)ϐङӛණ৔ႝ

ηቹႽ(BEI)༾ᢀ่ᄬკǶߝՅ୔ୱ࿶ SEM/EDS ۓໆϩ݋ёளޕ Y2O3 ڰྋӧZrO2ޑКٯ(OǺ62 at%ǵAlǺ2 at%ǵYǺ10 at%ǵZrǺ26 at%)Ǵ ς࿶ၲډӄӼۓ਼ϯ⯗ޑጄᛑǴӆଛӝ΢ॊϐ XRD ϩ݋Ԝࣁ cubic ZrO2ǹԶས୔࿶ SEM/EDS ۓໆϩ݋(OǺ60 at%ǵAlǺ33 at%ǵYǺ1 at%ǵ ZrǺ6 at%)Ǵӆଛӝ XRD ޑ่݀КჹǴёղᘐࣁ Į-Al2O3ǹԪ୔࿶

SEM/EDS ۓໆϩ݋(OǺ62 at%ǵAlǺ23 at%ǵYǺ13 at%ǵZrǺ2 at%) ᆶXRD ޑ่݀ᡉҢǴёᘐۓࣁ YAG(Y3Al5O12

ҔXRD Ϸ SEM/EDS ޑϩ݋ࡕǴਥᏵ࣬კᡉҢϷ Fig. 4-2Ǵҗ࣬

კளޕ YAG ޑԋϩКٯ࿶җ level rule ीᆉ่݀Ǵӧ 10A/90YZ ࣁ 9 mol%ǵӧ 20A/80YZ ࣁ 10 mol%ǵӧ 30A/70YZ ࣁ 11 mol%ǴԶӧ

!*"

40A/60YZ ࣁ 11.5 mol%ǴѤಔ YAG Кٯৡ౦നӭѝԖ 2.5 mol%Ǵৡ ౦ࢂߚதλޑǶ

10A/90YZ ӧ࣬კ΢ё࣮ډޑࣁ਼ϯ⯗(85 mol%)Ǵ਼ϯ᎑ѝ཮Ԗ Ͽໆ(6 mol%)Ǵа Fig. 4-2(a)ёᢀෳډས୔(Al2O3)ѝԖϿໆǴ಄ӝ࣬

კޑ߃՗ǹҗFig. 4-2(b)SEM/BEI ٰᢀჸ 20A/80YZ ϐ዗ᆭᇑ၂ТǴ ёаว౜ځߝ୔य़ᑈၟ10A/90YZ ٰКၨǴ࣬ჹၨϿǴϸϐས୔೽ϩ К10A/90YZ ܌࣮ډޑᗋӭǴவΟϡ࣬კᡉҢǴҔ level rule ीᆉ࣬ԋ ϩޑКٯࣁ ZrO2 76 mol%ǵAl2O3 14 mol%Ǵૈᇥܴ Fig. 4-2(b)ས୔ໆ КٯቚуচࡺǶ

ฅԶ30A/70YZǴҭҔ level rule ीᆉ่݀Ǵ่݀ᡉҢ Al2O3ࣁ26 mol %Ǵ֖ໆӭܭ߻ॊٿԋϩǴϸϐ ZrO2ࣁ63 mol%Ǵჹྣ Fig. 4-2(c) ޑ่݀ǴႣෳډསՅ୔ໆቚуࢂ֍ӝޑǹനࡕ 40A/60YZ ӧ࣬კ΢Ǵ வlevel rule ளޕ਼ϯ⯗ࣁ 50.5 mol%Ǵ਼ϯ᎑ޑКٯࣁᆶ߻ॊΟಔК

ၨǴ֖ໆࣁ38 mol%ǴࣁѤಔϐനǴӆҗ Fig. 4-2(d)ٰᢀჸځས୔ໆ ҭࢂӭܭځдΟಔǴჴᡍ่݀಄ӝ࣬კϐႣෳǶ

4.2 ഏౠᆶ⑲ϸᔈࡕϐӄඳ༾ᢀ่ᄬ

ᅙᑼᘉණϸᔈ܌௦ҔޑୖኧǴྕࡋᆶ࡭ྕਔ໔ϩձࣁ1700ʚϷ 2 hrǴϸᔈྕࡋߚதଯǴىаஒڰᄊ Į-Ti( Tm = 1668ʚ)ᅙϯǴ྽నᄊ⑲

#+"

ᕇளى୼ૈໆߟᇑӚಔഏౠ၂ТǴЪϸᔈਔ໔ߏǴӢԜҗFig. 4-3 ё ᢀჸډϸᔈቫࠆࡋࣣԖ 500 ȝP а΢Ǵځύа 10A/90YZ[Fig. 4-3(a)]

ᆶ YAG[Fig. 4-3(e)]ӧଯྕᅙᑼᘉණޑϸᔈቫࠆࡋౣեǴځࣁচӢࣁ

׭ڋ⑲ᘉණਏ݀ԋਏ࣬ჹၨӳǹϸϐ40A/60YZ[Fig. 4-3(d)]җܭ਼ϯ

᎑ޑ֖ໆςᡂࡐଯǴࡺӧଯྕਔϸᔈၨࣁቃਗ਼ǴؒԖ׭ڋ⑲ޑਏ݀Ǵ

ࡺϸᔈቫࠆࡋ൩εǶ

Fig. 4-3(a)ࣁ Ti ᆶ 10A/90YZ ϟय़ᘉණϸᔈǴङӛණ৔ႝηቹႽ

༾ᢀ่ᄬკǶҗե७౗࣬ޑ׎ᇮٰϩᒣǴ⑲ୁԿഏౠୁӅϩࣁ3 ቫǴ ϸᔈቫI ᎞߈⑲ୁǴԶ⑲ୁ୔ୱࣁ᏾ঁས୔Ǵߎឦୁᇻᚆϟय़ೀϝԖ ᢀჸډĮ-TiǴᆶ Chang and Lin[5]Ў᝘КၨǴ٠ؒԖᢀჸډଞރĮ-Tiǵ Ti2ZrO ฻ғԋނǴԶࢂ᏾ঁ׎ԋ Ti3Al ӝߎǹϸᔈቫ II ӧե७౗Π࣮

ډ೚ӭᐍ༝׎ޑ׎ᇮǴ٠ЪԖ٤ϣ೽ᗋԖ٤ϸᔈǴ୷׷೽ϩёа࣮ډ ས୔׎ᇮౢғǹϸᔈቫIII ܌ᢀჸډޑᆶϸᔈቫ II ৡ౦ѝӧܭ࣮ؒډ

߻ॊས୔׎ᇮϐ༾λ݋рނǹচۈϟय़ӧϸᔈI ޑՏ࿼Ǵ၁ಒޑ׎ᇮ ᆶғԋᐒᄬஒ཮ӧϐࡕ૸ፕǶ

Fig. 4-3 (b)ࣁ Ti ᆶ 20A/80YZ ϟय़ᘉණϸᔈङӛණ৔ႝηቹႽ༾

ᢀ่ᄬკǶҗե७౗࣬ޑ׎ᇮٰϩᒣǴ⑲ୁԿഏౠୁӅҭϩࣁ3 ቫǴ ӧ⑲ୁ୔׎ԋTi3Al ӝߎǴϸᔈቫ I ᎞߈ ⑲ୁǴԖ Ti3AlǵZrO2ǵTi2ZrAl

#!"

ғԋނౢғǴߎឦୁᇻᚆϟय़ೀϝԖᢀჸډĮ-TiǴЪচۈϟय़ҭӧԜ

୔ୱǴҔጂᓐ኱ҢϐǹϸᔈቫIIǵIII ᆶ Fig. 4-4 (a)ႜӕǴ࣬౦໻ࢂӧ

᎞߈ഏౠୁ୔ୱǴၨቃਗ਼ܭ10A/90YZǶ

Fig. 4-3 (c)ࣁ Ti ᆶ 30A/70YZ ϟय़ᘉණϸᔈङӛණ৔ႝηቹႽ༾

ᢀ่ᄬკǶҗ BEI კ࣬ޑ׎ᇮϩ݋ࡕҭϩࣁ 3 ቫǴӧϟय़ೀས୔ೀϝ ࣁ Ti3Al ӝߎǴߎឦୁᇻᚆϟय़ೀԖᢀჸډ Į-TiǴӧচۈϟय़܌ӧޑ ϸᔈቫI ᎞߈⑲ୁǴᢀჸډ Ti3AlǵZrO2ǵTi2ZrAl ғԋނǹϸᔈቫ IIǵ III ᗨӧե७౗Πᢀჸډᆶ߻ॊٿಔ࣬߈Ǵՠ຾΋؁ࠅว౜όᅰฅ࣬

ӕǴᐍ༝׎ ϣ೽ϸᔈ౜ຝ׎ϐᇮς࿶ၨϿ೏ᢀჸډǴ࣬ჹᛙۓᘉණϸ ᔈӧԜԋϩς࿶ၲډᖏࣚॶǶ

Fig. 4-3 (d)ࣁ Ti ᆶ 40A/60YZ ϟय़ᘉණϸᔈǴङӛණ৔ႝηቹႽ

༾ᢀ่ᄬკǶҗѰୁԿѓୁϸᔈቫ٩ׇࣁIǵIIǴϸᔈቫ I ᎞߈⑲ୁǴ ϸᔈቫ II ௗ߈ഏౠୁǴӧϟय़ೀ⑲ୁޑՏ࿼ໆෳډޑࣁ TiAlǴߎឦ

ୁᇻᚆϟय़ೀϝԖᢀჸډĮ-TiǴচۈϟय़ӧϸᔈቫ I ޑՏ࿼Ǵӵጂᓐ

܌ҢǶ

Fig. 4-3(a)–(d)ࢂਥᏵ਼ϯ᎑ԋϩӭჲԶ௨ӈǴ਼ϯ᎑ԋϩຫӭ

߾ϸᔈຫቃਗ਼Ǵځύа Ti ᆶ 40A/60YZ ϸᔈࣁനᝄख़Ǵ᏾ঁϸᔈቫ ޑ׎ᇮς࿶όӕܭځдΟಔǴࢂӢࣁనᄊ⑲ᘉණډߚதϣ೽Ꮴठǹฅ

##"

Զ 10A/90YZ Կ 30A/70YZǴ୷ҁޑ༾ᢀ่ᄬკৡ౦όεǴЬाৡ౦ ࣁϟय़ೀϸᔈቫǴவΟϡ࣬კ[Fig. 3-1]ٰ࣮ point 1–5 ϩձࣁځ҂ᆶ

⑲ϸᔈ߻ޑԋϩǴԶӧԜ Gibbs triangle ္܌ฝޑٗచጕࣁ Al2O3 30 vol%Տ࿼ǴԜεऊࣁ percolation threshold Տ࿼ Ǵᜢܭ percolation ౛ ፕҗΠӈ܌௶ॊǶ

٩Ᏽpercolation theory[28]ǴԜ౛ፕॊᇥǺ྽܄፦ߚதཱུᆄޑٿঁ

ނ፦ A ک BǴ྽ AB ֡ϬషӝࡕǴऩ A ϣୖΕ B ޑԋϩࣁ 30 vol%а

΢ਔǴ܌և౜ޑ੝܄ࣁௗ߈પ B ޑ܄፦ǹऩ A ϣୖΕ B ޑԋϩ҂ၲ

ډ 30 vol%ਔǴև౜ޑ܄፦ϝࢂа A ޑࣁЬǶځচӢࣁ B Кٯӧ 30 vol%а΢ਔǴς࿶ၠၸ percolation thresholdǴ٠Ъ཮ӧ A ϣ೽׎ԋϣ ೯ၡǴ٬ளᏤႝ܈ᘉණ฻Ǵ཮ᒿ๱Ԝϣ೯ၡ຾ՉǴࡺ܌և౜ޑ܄፦ࣣ

߈પBǹB Кٯ҂ၲ 30 vol%ߡคݤ׎ԋϣ೯ၡǴࡺ܄፦໺ሀڙډߔ ᏲǴ܌և౜рޑ܄፦ϝࢂа A ޑࣁЬǶԜ౛ፕ፾ҔܭᏤႝ܄ǵᘉණ

܄ǴࣗԿࢂϯᏢϸᔈ੝܄Ƕ

٩Ᏽpercolation theoryǴٰ࣮ࡑ 40A/60YZ ჹ Ti ޑϸᔈǴ਼ϯ᎑

ޑ֖ໆςຬၸpercolation thresholdǴߡ཮ӧഏౠ္׎ԋϣ೯ၡǴЪ⑲ ჹ਼ϯ᎑ޑϸᔈቃਗ਼Ǵࡺ⑲ߡёӧԜϣ೯ၡ຾ՉᘉණԿഏౠుೀǴӢ Ԝ᏾ᡏ׭ڋ⑲ᘉණޑਏ݀ߚதৡǹӧ 10A/90YZ Կ 30A/70YZǴҗܭ

#$"

਼ϯ᎑ޑໆคݤ׎ԋϣ೯ၡǴ⑲คݤݮԜ೯ၡᘉණ຾Εഏౠ္ǴӢԜ 10A/90YZ Կ 30A/70YZ ჹ⑲ޑᘉණϸᔈϝฅԖ׭ڋਏ݀Ǵ٬ள༾ᢀ

่ᄬৡ౦όᇻǶ

Fig. 4-3 (e)ࣁ Ti ᆶ YAG ϟय़ᘉණϸᔈǴङӛණ৔ႝηቹႽ༾ᢀ

่ᄬკǶϸᔈቫӅϩࣁ4 ቫǴനѰୁས୔ೀࣁ Į-Ti(Al, O)Ǵቫᆶቫϐ ໔ޑϩܴࣚᡉǴӧ BEI Πёᢀჸډచރ่ᄬǴϸᔈቫ IǵII চηׇന εǴຫ۳ഏౠୁচηׇຫλ(ၨས)ǴচӢࣁ᎞߈⑲ୁޑ YAG ϸᔈቃ ਗ਼Ǵ⑲཮ᆶഏౠϣޑ਼ϸᔈǴ྽਼֖ໆ೏ϸᔈԿ΋ۓਔǴᒿϐ᎑Ψ཮

ᆶ⑲຾ՉϸᔈǴฅԶ Y2O3ӧᅙᑼᘉණϸᔈ࣬ჹᛙۓǴࡺӧϟय़ೀё ᢀჸډԜ࣬ූ੮ǴԶనᄊ⑲຾Εഏౠ္ޑϸᔈำࡋǴᒿ๱ుΕഏౠϣ ࡕ೴ᅌѳ጗ǹচۈϟय़ӧϸᔈቫI ޑՏ࿼Ǵӵጂᓐ܌ҢǶ

4.3 Al2O3Ti ୁϸᔈቫޑቹៜ

⑲ୁޑϸᔈϐ௖૸ᆶϸᔈቫ I ׎ԋ࣬ᜢǴFig. 4-4 ࣁ Ti ᆶ 10A/90YZ ࿶(a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϟय़༾ᢀ่ᄬܫεკ (BEI)Ǵёᢀჸډϟय़ೀࣁόೕ߾ᒯᏁރ׎ᇮǴߝ୔ࣁ ZrO2ǵས୔೽

ϩࣁ Ti3AlǹFig. 4-4(b)–(f)ϩձࣁ Ti ǵYǵOǵAlǵZr ϡનϐ X-ray mappingǴTi ༾ໆᘉණ຾Εഏౠ୔ୱǴҗܭ Ti ᆶ Al2O3܌բҔǴεໆ ޑ Al Ѧӛᘉණ຾Ε⑲ୁǴӧϟय़ೀ׎ԋ⑲᎑ӝߎ Ti3Al ࣬Ǵ೭ঁբ

#%"

Ҕ׭ڋ Zr ܌ѦӛᘉණǴZr ൳Яόᆶ⑲຾ՉᘉණϸᔈǴԶ Zr ᆶ Y ૻ ဦᗺࣣӧ਼ϯ⯗୔ǴਥᏵFig. 4-5 Murray ගрϐ Ti-Y ࣬კǴளޕᵍ ӧ⑲ޑڰྋໆ༾Яځ༾Ǵࡺᵍޑϩթё଺ࣁղᘐ⑲ᆶഏౠচۈϟय़ޑ Տ࿼Ǵӵጂᓐ܌ҢǴځдΟಔ(20A/80YZǵ30A/70YZǴϷ 40A/60YZ)

܌ளډޑኧᏵᆶԜԖ๱࣬ӕޑ่݀ǴࡺրΓஒѝҔ10A/90YZ ೭ಔ྽

բж߄ٰᘐۓচۈϟय़ӧՖೀǶ

ਥᏵLin and Lin[25]ࣴزTi ᆶ ZrO2ᘉණଽа዗ᓸݤ࿶ 1550 ǑC ዗

ೀ౛Ǵว౜ௗ߈ϟय़ೀ⑲ୁڰྋεໆޑ Zr ϡન(ऊ 25-30.7 at%Zr)Ǵ հࠅࡕ٠҂ᙯᡂࣁ Į-TiǴԶࢂֹӄᙯᡂ orthorhombic ่ᄬޑ ȕғ-Ti(Zr, O)ǹLin and Lin[29]ࣴز Ti ᆶ ZrO2࿶ 1750 ǑC ࣚय़ϸᔈࡕǴҭӧϟय़

ೀว౜ଞރ݋р࣬Ǵ࿶TEM ᠘ۓࣁ Į-Ti(Zr, O)Ǵଞރ Į-Ti தว౜ܭ Įȕ ⑲ӝߎس಍ύǴӵ Ti-6Al-4V ܈ Ti-Cr س಍ύǶՠவ Fig. 4-4 ύǴ ٠ؒԖᢀჸډ⑲ୁڰྋεໆޑZr ϡનǴϟय़ೀҭؒว౜ଞރ Į-Ti ݋ р࣬ǴԜࣁҁჴᡍᆶ߻ΓЎ᝘നЬाޑৡ౦Ƕ

Fig. 4-6 ࣁ Ti ᆶ(a)10A/90YZǵ(b)20A/80YZǵ(c)30A/70YZǵ (d)40A/60YZ ࿶ 1700ʚ/2 hrǴᅙᑼᘉණϸᔈࡕǴϸᔈቫ I ༾ᢀ่ᄬკ (BEI)Ƕ4 ಔԋϩ܌ᢀჸډޑߝ୔ࣣࣁ ZrO2ǹ10A/90YZǵ20A/80YZǵ Ϸ 30A/70YZ ܌ᢀჸډޑས୔ࣁ Ti3AlǴԶ 40A/60YZ ས୔ࣁ TiAlǹ

#&"

Ԫ୔ϐ༾ᢀ่ᄬѝԖӧ 20A/80YZ Ϸ 30A/70YZ ౢғǴа TEM/EDS ϩ݋่݀ࣁ Ti2ZrAlǶ

а Fig. 4-7(a)10A/90YZ ϸᔈቫ I ғԋᐒᄬҢཀკᡉҢǴϸᔈቫ I ӧଯྕਔǴ྽ᅙᑼ⑲຾ΕഏౠਔǴ਼ϯ᎑৒ܰᆶ⑲ౢғϸᔈǴЪ O ᆶ Ti ϐᒃکΚεЪ O ӧ Į-Ti ύޑᘉණ߯ኧᇻεܭӧ ZrO2ύ[30]ǴӢ Ԝ਼ࡐ৒ܰᘉණԿ⑲ୁǶ

Al2O3ࣁᏊໆКϯӝނ(Stoichiometric compound)Ǵ྽Ԗ 3 ঁ਼ၟ

⑲բҔਔǴᒿϐ཮Ԗ2 ঁ᎑চη೏ញܫрǴਥᏵЎ᝘ࡰр[31-33]Ǵӧྕ

ࡋ 800KǴ᎑ӧ⑲ޑᘉණ߯ኧК਼ӧ⑲ޑᘉණ߯ኧεٿঁኧໆભǹՠ ӧଯྕ 1400K ਔǴ᎑ӧ⑲ޑᘉණ߯ኧК਼ӧ⑲ޑᘉණ߯ኧǴϝฅӭ Α΋ঁኧໆભǶ᎑ڰྋӧ⑲ύډၲ΋ۓКٯǴӧଯྕհࠅਔߡ཮׎ԋ

⑲᎑ӝߎǴ߈চۈϟय़ Al εໆᘉණԿ Ti ୁ׎ԋ Ti3AlǹЪਥᏵ߻ॊ

Ў ᝘ ග ډ[31-33]Ǵ ё а ှ ញ ࣁ ϙ ሶ ਼ Ѧ ӛ ᘉ ණ ޑ ໆ ၨ ᎑ Ͽ Ƕ ࿶ җ SEM/EDS ϩ݋ว౜ས୔ԋϩ(OǺ5 at%ǵAlǺ30 at%ǵTiǺ61 at%ǵ ZrǺ4 at%)ࣁ Ti3Alǹߝ୔೽ϩ࿶ SEM/EDS ϩ݋(OǺ63 at%ǵAlǺ1 at%ǵ TiǺ2 at%ǵYǺ10 at%ǵZrǺ24 at%)ࣁ ZrO2Ƕ

Fig. 4-7(b)(c)ࣁ 20A/80YZǵ30A/70YZ ϸᔈቫ I ғԋᐒᄬҢཀკ ᡉҢǴ׎ԋޑᐒڋᆶ߻य़௶ॊৡ౦όᇻǴਥᏵRavi et al.ޑࣴزࡰр[36]Ǵ

#'"

ӧ Ti3Al ੝ۓ඲਱௨ӈਔǴZr ཮ᆶ Ti ౢғ࿼ඤࠠԶ׎ԋ Ti2ZrAlǶᒿ

๱਼ϯ᎑ޑКٯቚуǴϸᔈ཮׳уቃਗ਼Ǵҗܭ Zr ک Ti ཮ౢғ࿼ඤࠠ

ڰྋᡏǴ௢ፕ᎞߈ϟय़ೀޑZrO2Ԗ٤⯗চη཮࿼ඤ຾ΕTiAl3Ǵౢғ (Ti1-xZrx)3Al[34]Ƕ࿶җ SEM/EDS ϩ݋ว౜ߝ୔ԋϩ(OǺ60 at%ǵYǺ 12 at%ǵZrǺ28 at%)ǵϷ(OǺ62 at%ǵYǺ11 at%ǵZrǺ27 at%)ࣣࣁ c-ZrO2ǹས୔ࣣࣁ Ti3AlǹԶԪՅ୔ୱࣁ(Ti1-xZrx)3Al ࿶ၸ຾΋؁᠘ۓ ࡕǴҗTEM/EDS аϷ SADP ϩ݋Ǵёаዴۓౢғғԋނ Ti2ZrAlǶ

Fig. 4-7(d)ϸᔈቫ I ғԋᐒᄬҢཀკᡉҢǴҗܭӧ 40A/60YZ ޑ Al2O3Кٯς࿶ຬၸ30 vol%Ǵ྽ Ti ᘉණ຾ΕഏౠਔǴϸᔈКႣයύ ᗋाቃਗ਼ǴTi ᏾ঁߟᇑԿഏౠుೀǴεໆ Al2O3ᆶ Ti ϸᔈԶӧഏౠ ϣ೽׎ԋᘉණϣ೯ၰǴ׳ӭ Al চηᘉණԿϟय़ೀ׎ԋ TiAlǶ࿶җ SEM/EDS ϩ݋ෳໆډߝ୔ࣁ ZrO2(OǺ62 at%ǵAlǺ2 at%ǵTiǺ3 at%ǵ YǺ11 at%ǵZrǺ22 at%)ǵས୔ࣁ TiAl(OǺ6 at%ǵAlǺ48 at%ǵTiǺ 38 at%ǵZrǺ8 at%)ǴTi ӧഏౠୁ܌ϸᔈϷϣӛᘉණၨזǴࡺ׎ԋΑ TiAl Զߚ Ti3Al(⑲ޑ֖ໆၨե)ǴЪ Ti ёᙖҗϣ೯ၡӛഏౠୁΕߟǴ ӢԜ Ti ӧϟय़ೀޑಕᑈໆၨϿǶ

ࣁుΕΑှ⑲ᆶ਼ϯ⯗ϐϸᔈቫǴFig. 4-8 ࣁ Ti ᆶ 10A/90YZ ࿶ (a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϟय़༾ᢀ่ᄬܫεკ(BFI)Ǵёаܴ

#("

ᡉ࣮ډϟय़ೀǴϩձԖٿঁ࣬ǴFig. 4-8(b)࿶җ SADP ᠘ۓ ZrO2่ᄬ ࣁcubicǴ࿶җीᆉϐ඲਱தኧࣁ 5.09 ÅǴzone axisǺ[111]ǴЪҗ Fig.

4-8(d)TEM/EDS ۓໆϩ݋่݀ࣁ OǺ62.01 at%ǵTiǺ12.02 at%ǵZrǺ 25.97 at%Ǵளޕ Y2O3ޑڰྋໆςၲډӄӼۓ਼ϯ⯗ޑጄൎǴࡺё׳

уዴۓࢂc-ZrO2Ƕ

Fig. 4-8 (c)࿶җ᏷୔ᙅ৔(SADP)᠘ۓ Ti3Al ่ᄬࣁ hexagonalǴी

ᆉрϐ඲਱தኧࣁ a = 5.775 Åǵc = 4.638 ÅǴc К a ॶࣁ 0.803 λܭ 1.633Ǵࡺࣁቨࡧϐ hcpǴzone axisǺ["ത102]ǹவ Murray ගр Ti-Al ࣬ კ[Fig. 4-9]ᡉҢǴளޕ Ti3Al ڰྋጄൎࣁ 20–50 at% AlǴҗ Fig.

4-8(e)TEM/EDS spectrum Ϸۓໆϩ݋่݀ࣁ AlǺ32.29 at%ǵTiǺ61.32 at%ǵZrǺ6.40 at%Ǵ০ပӧ Ti3Al ڰྋጄൎϣǴࡺ׳уܴዴϟय़ೀࣁ ϸᔈނTi3Al ඲рԶό໻ࢂ Al ڰྋӧ Ti ္Ƕ

ਥᏵϐ߻Ў᝘[25]ǴZrO2཮ᆶ Ti ౢғϸᔈǴଯྕਔεໆޑ Zr ᆶ O ڰྋӧܭprimary Į-TiǴ׎ԋϟᛙۓ(metastable)ၸႫکޑ Į-Ti(Zr,O)ڰ ྋᡏǴӧհࠅޑၸำύǴĮ-Ti ڰྋޑ Zr ک O ໆ೴ᅌफ़եǴTi2ZrO ཮

࿶җӅ݋(eutectoid)ϸᔈவၸႫک Į-Ti ύ݋рǶՠࢂҁჴᡍ࣮όډԜ

౜ຝǴЬाޑচӢӵΠǺᗨฅ ZrO2཮ၟ Ti ཮ϸᔈǴՠࢂ Ti ཮Ӄၟ

Al ϸᔈԶ׎ԋ Ti3Al ܈ TiAlǴჹ਼ޑྋှࡋ࣬ჹ෧ϿǴ೷ԋ ZrO2ѝ

#)"

཮Ԗᇸ༾લ਼Ǵ਼ޜϾό཮ډၲၸႫکރᄊǴӢԜόىᡣĮ-Zr ݋рǶ

Fig. 4-11 ࣁ Ti ᆶ 30A/70YZ ࿶(a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴ ϸᔈቫI ༾ᢀ่ᄬܫεკ(BFI)Ǵϩ݋კύѓᜐٿ࣬ǴFig. 4-11(b)࿶җ SADP ᠘ۓ Ti2ZrAl ่ᄬࣁ hexagonalǴ࿶ीᆉ඲਱தኧࣁ a = 5.961 Åǵ c = 4.793 ÅǴځ c К a ॶࣁ 0.804 λܭ 1.633ǴࡺԜ hcp ่ᄬၨቨࡧǴ c/a ॶᆶ Ti3Al ߚதௗ߈Ǵzone axisǺ[0001]ǹЪҗ(d)TEM/EDS ۓໆ ϩ݋่݀ࣁ OǺ4.70 at%ǵAlǺ23.21 at%ǵTiǺ40.56 at%ǵZrǺ31.53 at%Ǵвಒᢀჸ(Ti + Zr)ǺAl ޑԋϩௗ߈ 3Ǻ1Ǵ಄ӝ Spring Handbook[34]

܌ගрޑ(Ti1-xZrx)3AlǴЪ Y-ZrO2 + Ti ཮Ԗ Į-Zr ౢғǴՠҁࣴز٠ؒ

࣮ډԜ่݀ǴZr ྋΕ Ti3Al ڗж TiǴനࡕᡂԋΑ Ti2ZrAlǶϩ݋ޑ่

ፕࣣёҔЎ᝘[35]ٰှញϐǴЪԜϯӝނ਒ᜐѸۓԖ Ti3AlǴ⑲ᆶ਼ϯ

⯗ϣ⯗࿼ඤࡕǴߡёғԋTi2ZrAlǴӢԜᘐۓԜ่݀Ƕ

4-11(c)࿶җ᏷୔ᙅ৔(SADP)᠘ۓ Ti3Al ่ᄬࣁ hexagonalǴ࿶ीᆉ ࡕ඲਱தኧࣁa = 5.793 Åǵc = 4.639 ÅǴځ c К a ॶࣁ 0.800 λܭ౛

གྷॶ 1.633Ǵzone axisǺ["ത103]ǹவ Ti-Al ࣬კǴёளޕ Ti3Al ڰྋጄ ൎࣁ20–50 at% AlǴҗ Fig. 4-11(e)TEM/EDS spectrum Ϸۓໆϩ݋่

݀ࣁ OǺ5.73 at%ǵAlǺ36.56 at%ǵTiǺ46.88 at%ǵZrǺ10.83 at%Ǵ Al э(Al + Ti)Кٯࣁ 43 at%Ǵ০ပӧ Ti3Al ୔ୱϣǶ

#*"

Fig. 4-11 Ti ᆶ 30A/70YZ ࿶(a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϸᔈ ቫI ༾ᢀ่ᄬܫεკ(BEI)Ǵߝ୔ࣁ ZrO2ǵԪՅ୔ୱࣁTi2ZrAlǵԶས

୔೽ϩࣁ Ti3AlǴёаᢀჸډ Ti2ZrAl Ѹۓᎃ๱ Ti3Al ᆶ ZrO2ǹFig.

4-11(b)–(f)ϩձࣁ Ti ǵYǵOǵAlǵZr ϡનϐ X-ray mappingǴϡન Y ޑૻဦࣣӧკ(a)ߝ୔ೀǴԶ Ti ᘉණ຾Εϸᔈቫ I ϐૻဦᗺёӧས

୔ϷԪ୔ᢀჸډǴAl ϡનૻဦҭӧས୔ϷԪ୔р౜ǴКၨॶளݙཀ ޑࢂZr ૻဦόѝӧߝ୔ೀǴӧས୔ϷԪ୔ҭёᢀჸډϿໆޑૻဦᗺǴ Mapping ่݀ᆶ EDS ࣬಄ӝǴЪҗ Zr ޑϡનૻဦᗺӑຓΑ྽਼ϯ᎑

֖ໆ΢ϲ٬ϸᔈᡂቃਗ਼Ǵջ٬ࢂӄӼۓ਼ϯ⯗ҭ཮ୖᆶϸᔈǶ

4.4 Al2O3ჹഏౠϸᔈቫޑቹៜ 4.4.1 ϸᔈቫ II

Fig. 4-12 Ti ᆶ (a)10A/90YZǵ(b)20A/80YZǵ(c)30A/70YZǵ(d) 40A/60Y ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϸᔈቫ II ϐ༾ᢀ่ᄬკ (BEI)ǶFig 4-12(a)၂Т 10A/90YZ ёᢀჸډߝ୔ࣁ ZrO2ǹས୔చރ೽

ϩࣁ TiAlǴԪՅ୔ୱ Al3Zr ࣁచރ׎ᇮǴ٠཮Քᒿӧ TiAl ਒ǹԶས

୔ᐍ༝׎ᇮࣁ YAGǴᐍ༝׎ᇮ္ᗋԖ࣮ډϸᔈǴаᵍǵ᎑ǵ਼ϡન

܌ಔԋޑᐍ༝׎׎ᇮǴրΓᆀϐ Y-Al-O compounds(YAG, YAP, YAM

฻)ǴԜ׎ᇮёаᢀෳډόӕࠆࡋǵόӕޑၸ෠࣬Ǵ߄ҢԜ҂ၲѳᑽ ϸᔈǴ10A/90YZ ၂Тϣޑ Y-Al-O compounds ္Ǵനύ໔ߝ୔ޑࣁ

$+"

Y2O3ǵԛϐԪՅ୔ୱޑࣁYAP(YAlO3)ǵԶനѦቫས୔೽ϩ߾ࢂ YAGǶ

Fig 4-12(b)၂Т 20A/80YZ ܌ᢀჸډޑ࣬Ǵߝ୔ϝࢂ ZrO2ǹས୔

ᆶԪ୔చރ೽ϩϩձࣁ TiAlǵ Al3ZrǴAl3Zr ׎ᇮόӕܭ 10A/90YZ ၂ТǴନΑϿኧచރѦǴεӭ࣮ډࣁᙝރ׎ᇮǹԶས୔ᐍ༝׎ᇮࣁ YAGǴаϷᐍ༝ YAG ϣԖϸᔈޑ Y-Al-O compoundsǶ

Fig 4-12(c)၂Т 30A/70YZ ܌ᢀჸډޑ࣬Ǵ࣮ډޑЬाόӕܭ߻

ٿޣޑࢂǴځYAG ่ᄬόѝࣁᐍ༝ރǴᗋёа࣮ډᙝ׎చރޑ೽ϩǹ Զ Y-Al-O compounds ӧԜԋϩΠǴ೏ᢀჸډޑ೽ϩߡᅌᅌޑ෧ϿǶ Fig 4-12(d)ࣁ၂Т 40A/60YZ ϸᔈቫ IIǴ܌ᢀჸډޑߝ୔ࣁ ZrO2Ǵས

୔೽ϩࣁ᎑֖ໆၨӭޑTiAl ⑲᎑ӝߎǹᐍ༝׎ས୔೽ϩࣁ YAGǴԖ ϸᔈޑ YAGǴΨ൩ࢂ Y-Al-O compounds ӧ 40A/60YZ ԋϩΠǴ࣮ډ ޑᐒ౗༾Яځ༾Ƕ

а Fig. 4-13(a)ࣁ 10A/90YZ ϸᔈቫ II ғԋᐒᄬҢཀკᡉҢǴ྽

Ti ᘉණ຾Εϸᔈቫ II ਔǴᒿ๱਼ϯ᎑ύޑ਼ᆶ⑲ϸᔈࡕǴ߻ॊගډ Al2O3ࣁᏊໆКϯӝނǴ྽Ԗ 3 ঁ਼ၟ⑲բҔਔǴᒿϐ཮Ԗ 2 ঁ᎑চ η೏ញܫрǴ೏ញܫрޑ᎑চη཮ڰྋܭᘉණ຾Εޑ⑲ύǴҗܭ᎑ޑ

֖ໆ࣬ჹӭܭϸᔈቫIǴӧჴᡍྕࡋ 1700ʚਔ׎ԋᅙᑼనᄊǴᒿ๱ྕ

ࡋհࠅԶ඲рTiAlǶ

$!"

ฅԶԖ٤ញܫрޑ᎑ӧ 1700ʚࣁనᄊǴЪ཮ᆶ ZrO2ౢғϸᔈǴ Leverkoehne et al.ࡰр[36]Ǵ྽଺਼ϯ᎑ᆶ਼ϯ⯗ᐨ่ჴᡍǴуΕߎឦ

᎑ёߦ຾ጏஏ܄ǴԜЎ᝘ගډ Al ک ZrO2཮ౢғ ZrxAlyǴబу Al ֖ ໆၨϿਔǴ܌ளډޑᐨ่၂ТǴёа࣮ډ Al3Zr Ϸ Al2Zr ޑ׎ԋǶӧ ҁჴᡍϸᔈቫ IIǴ࿶җ SEM/EDS ϩ݋ࡕǴёᢀჸډ᎑⯗ޑϯӝނ Al3Zr(OǺ5 at%ǵAlǺ69 at%ǵZrǺ24 at%)ǴਥᏵ΢ॊЎ᝘ޑ௶ॊǴ ёаှញԜғԋނϐ׎ԋǶ

10A/90YZ ޑ Al2O3ѝԖ 10 vol%Ǵ྽ϸᔈቫޑ਼ϯ᎑ᆶ⑲ϸᔈԿ

΋ۓำࡋਔǴ⑲཮ᆶ YAG ຾ՉϯᏢϸᔈǴӧϐࡕ(4.6 ࿯)ගډ YAG ᆶ Ti ଯྕᅙᑼᘉණϸᔈǴTi ᆶ YAG ޑ਼ϯ᎑բҔࡕǴёᢀჸډ࣬ჹ ᛙۓޑ Y2O3੮ΠǴࡺ྽࣮ډપY2O3ౢғਔǴж߄ YAG ᆶ Ti ϸᔈǹ Զ YAP(YAlO3)܌эޑᡏᑈКǴߡёளޕϸᔈރݩǴԖ٤ࠆࡋКၨࠆ ޑ൩ୃӛϸᔈਔ໔ၨΦޑၸ෠࣬Ǵӧ೭္ᗨฅ YAG ୖᆶϸᔈǴՠӧ 10A/90YZ Ьा׭ڋ⑲ᘉණϝࢂڙ Y2O3֖ໆޑቹៜǶ

Ti ᆶ 10A/90YZ ӧ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕΠǴว౜ YAG ᆶ Ti ϸᔈࡕǴԖғԋނ Y2O3ౢғޑᐒ౗ၨଯǹ٠Ъᒿ๱ Al2O3ޑКٯ ቚуǴߡԖى୼ޑ਼ϯ᎑ᆶ Ti ଺ᅙᑼᘉණϸᔈǴऩ਼ϯ᎑ىໆᆶ⑲ բҔǴ߾࣬ჹޑYAG ߡၨၨϿᆶ⑲ౢғϸᔈǴࡺ Y-Al-O compounds

$#"

Кၨόܰ೏ᢀჸډǹԶ୷׷Ьाࢂ҂ౢғϸᔈޑc-ZrO2Ƕ

Fig. 4-13(b)ࣁ 20A/80YZ ϸᔈቫ II ғԋᐒᄬҢཀკᡉҢǴ୷ҁғ ԋᐒᄬ׎ԋϸᔈࣣᆶ߻ॊৡ౦όεǴࣣࢂ᎑ᘉණ܌ЬᏤ๱᏾ঁᡂϯǴ ᒿ๱ Al2O3֖ໆޑቚуǴᗨฅϸᔈቫ I ׎ԋ Ti3AlǴՠਥᏵ TEM/EDS ϩ݋(OǺ5.73 at%ǵAlǺ36.56 at%ǵTiǺ46.88 at%ǵZrǺ10.83 at%)

⑲᎑֖ໆςௗ߈TiAlǴࡺ௢ፕ Al ޑᘉණᅌᅌԖΑज़ڋǹᒿ๱ Ti ᘉණ

຾Εϸᔈቫ II ޑጄൎਔǴᗨฅ Al ޑቚуǴՠ٠҂ว౜ TiAl Ψၟ๱ᡂ ӭޑ௃ݩǶ

ᗨฅ Ti ཮ߟᇑ຾ΕഏౠୁǴՠഏౠፄӝ׷਑ϝࢂԖ׭ڋ⑲຾Ε ޑਏ݀Ǵ٬ள Ti ྽բज़ໆϸᔈǴ௓ڋ TiAl ޑ׎ԋǴᒿ๱ Al ޑቚуǴ Ꮴठ Al3Zr ΨഌុᡂӭǹӧԜԋϩΠǴפډ҂ϸᔈޑપ YAG ޑᐒ౗

΢ϲǴΨޔௗ᛾ܴБω܌ගрޑଷ೛ϐ҅ዴ܄Ǵ୷׷೽ϩϝࢂᛙۓޑ cubic ZrO2Ƕ

Fig. 4-13(c)ࣁ 30A/70YZ ϸᔈቫ II ғԋᐒᄬҢཀკᡉҢǴ 30A/70YZ ӧ਼ϯ᎑ԋϩ΢ς࿶ၲډ΋ঁᛙۓޑᖏࣚॶǴԜਔ Al2O3

֖ໆ׳ӭǴᆶ 20A/80YZ ϸᔈቫ II ࣬ӕޑࣁ TiAl ޑໆΨؒԖቚуǴ Al3Zr ϐ֖ໆਥᏵ SEM ޑ BEI კёว౜ς࿶ᆶ୷׷ c-ZrO2ӕӭΑǴ YAG εӭࣁ҂ୖᆶϸᔈǴY-Al-O compounds ࡐϿ೏ᢀჸډǴฅԶӧ

$$"

30A/70YZ ԋϩΠКၨᐱԖޑࢂપ YAG ޑ morphologyନΑᐍ༝׎ѦǴ ќ΋ᅿ׎ᇮࣁᙝ׎చރǶ

Fig. 4-13(d)ࣁ 40A/60YZ ϸᔈቫ II ғԋᐒᄬҢཀკᡉҢǴӧԜԋ ϩΠว౜ഏౠς࿶ֹӄؒԖ׭ڋ⑲ޑਏ݀Ǵ྽εໆ Ti ݮ๱ϣ೯ၰᘉ ණ຾Εϸᔈቫ II ਔǴҗܭ 40A/60YZ ޑ਼ϯ᎑кىǴ཮ᆶ Ti ౢғቃ ਗ਼ϸᔈԶ׎ԋ TiAlǴϸᔈቫࣁ࣬྽ࠆޑ΋ቫǴЪ൳Я࣮όډ཮ౢғ Y2O3ғԋނޑ Y-Al-O compounds Ǵҗܭεໆޑ਼ϯ᎑ᆶనᄊ⑲ޑϸ ᔈǴ٬ளYAG ӧԜԋϩΠࣁ࣬ჹᛙۓǴᏤठ YAG ཮׭ڋ⑲ᅙᑼᘉණ ޑଷຝǴ୷׷ޑ೽ϩਥᏵSEM/EDS ϩ݋ϝࢂ cubic ZirconiaǶ

Fig. 4-14 ࣁ 10A/90YZ ϸᔈቫ II ϐ X-ray mappingǴFig. 4-1 4(b) ёᢀෳډ Y-Al-O compounds Ϸ YAG ޑ୔ୱό֖Ԗ⑲ޑૻဦᗺǴ೷

ԋ YAG ჹ ⑲ ࣁ ࣬ ჹ Ӽ ۓ ޑ ଷ Ⴝ ǹ Fig. 4-14(b)(c) ᡉ Ң Y-Al-O compounds Ǵຫ۳ᐍ༝׎ϣ೽ Y ޑૻဦຫଯǴຫѦቫ߾ࢂ਼ϯ᎑К ٯଯǴ܌ᢀჸډޑAl ૻဦΨၨӭǹҗ Fig. 4-14(f)ϡન Zr ό཮ڰྋӧ YAGǵY-Al-O compoundsǴԶࢂ֡ϬණѲӧ୷׷ύǶ

4.4.2 ϸᔈቫ III

Fig. 4-15 ᡉҢ Ti ϩձᆶ 10A/90YZǵ20A/80YZǵ30A/70YZǵ 40A/60YZ ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϸᔈቫ III ϐ༾ᢀ่ᄬკ

$%"

(BEI)ǶFig. 4-15(a)ࣁ၂Т 10A/90YZ ܌ᢀჸډޑ࣬Ǵёа࣮ډߝ୔ࣁ ZrO2ǴԪՅ୔ୱAl3Zr ࣁᙝރ׎ᇮǴZrO2ᆶAl3Zr ֡ϬණѲӧ᏾ঁϸ ᔈቫIII ύǹԶས୔ᐍ༝׎ᇮࣁ YAGǴᐍ༝׎ᇮ္ᗋԖ࣮ډϸᔈǴࣁ Y-Al-O compoundsǶฅԶа 10A/90YZ ϐϸᔈቫ IIǵIII аၨǴৡ౦ࣁ

⑲ᘉණόډϸᔈቫ IIIǴࡺؒԖ TiAl ౢғǹAl3Zr ׎ᇮӧϸᔈቫ II ࣁ చރǴډΑϸᔈቫ III ࢂᙝރ׎ᇮǴځᎩϯӝނౢғࣣ࣬ӕǶ

Fig. 4-15(b)ࣁ၂Т 20A/80YZ ϸᔈቫ III ܌ᢀჸډޑ࣬Ǵё࣮ډ ߝ୔ࣁ ZrO2ǴԪՅ୔ୱ Al3Zr ࣁᙝރ׎ᇮǴས୔ᐍ༝׎ᇮࣁ YAGǴ аϷᐍ༝׎ᇮ္ᗋԖϸᔈޑ Y-Al-O compoundsǴ೭٤ϯӝނࣣᆶ 10A/90YZ ϐϸᔈቫ III ࣬ӕǶFig. 4-15(c)ࣁ၂Т 30A/70YZ ϸᔈቫ III

܌ᢀჸډޑ࣬Ǵ܌ᢀჸډޑ่݀ᆶ၂Т 10A/90YZǵ20A/80YZ ϐϸ ᔈቫ III εठ࣬ӕǴࣣࣁߝ୔ࣁ ZrO2ǴԪՅ୔ୱ Al3Zr ࣁᙝރ׎ᇮǴ ས୔ᐍ༝׎ᇮࣁ YAGǹՠࢂӧ 30A/70YZ ϸᔈቫ III ύ Y-Al-O compounds ς࿶൳Я࣮όډΑǴќ΋ঁᆶόӕೀࣁӧԜϸᔈቫϝฅё а࣮ډ TiAl ౢғ(10A/90YZǵ20A/80YZ ϸᔈቫ III ߾ค)Ǵ߄ҢӧԜ ԋϩ Ti ӧഏౠϣૈᘉණၨుೀǶ

Fig. 4-16(a)ࣁ 10A/90YZ ϸᔈቫ III ғԋᐒᄬҢཀკᡉҢǴှញ SEM/BEI [Fig. 4-15(a)]ᢀჸډޑғԋނǴа 10A/90YZ ϸᔈቫ III ᢀჸǴ

$&"

җܭ Ti வϟय़ೀ΋ޔ۳ഏౠుೀᘉණǴόᘐޑ೏׭ڋǴԶϸᔈቫ III Ξௗ߈ܭഏౠୁ୔ǴډԜ୔ୱਔ Ti ς࿶൳Яόӆ߻຾Ǵࡺό཮࣮ډ Ti ᆶ Al ޑϯӝނǶ10A/90YZ ϸᔈቫ III ܌և౜ޑᆶϸᔈቫ II КၨǴ ৡ౦ѝӧϸᔈቫIII ؒᢀෳډ TiAl ޑ೽ϩǶ

ᗨฅ⑲ؒᘉණ຾ΕϸᔈቫIIIǴՠࢂ Ti ᆶ AlǵO ڀԖࡐଯޑᒃک ΚǴӧ1700ʚଯྕΠǴAl2O3ϝԖى୼ޑૈໆૈ۳ϸᔈቫ IIǵϸᔈቫ I ӛѦᘉණᆶ Ti բҔǶ߻ॊගډ ZrO2཮ᆶ Al ϸᔈԶ׎ԋ Al3ZrǴ߄ Ң਼ϯ⯗཮ᆶ᎑ϸᔈǴԶ٬೽ϩޑ᎑ό۳ϟय़ೀᘉණ౽୏Ǵ᎑ڙډٿ ᅿ࣬ϸБӛբҔΚΠǴӧϸᔈቫ III ׎ԋ Al3ZrǹYAG ཮ύޑ਼ϯ᎑

ӛѦᘉණᆶ⑲ౢғϸᔈࡕǴ֖Ԗ Y2O3ූӸޑౢғǴ௢ፕ၀୔ୱޑϸ ᔈቫIII ϐ਼ϯ᎑ϸᔈԿ΋ۓำࡋࡕω཮Ꮴठ YAG ᆶ Ti ϸᔈǶ

Fig. 4-16(b)ࣁ 20A/80YZ ϸᔈቫ III ғԋᐒᄬҢཀკᡉҢǴှញ SEM/BEI [Fig. 4-15(b)]ᢀჸډޑғԋނǴځᢀჸډޑ౜ຝᆶ 10A/90YZ ӧϸᔈቫIII ΋ኬǴҭࢂؒ ᢀჸډ Ti ޑ຾ΕԶౢғ TiAlǴҗܭ࣮ؒډ ԜᅿϯӝނǴёаஒϐ྽բࢂ⑲ᘉණԿഏౠ၂ТుࡋǴղᘐ⑲ᘉණຯ ᚆߏอޑќ΋ᅿ٩ᏵǴ20A/80YZ ҭԖғԋ Al3ZrǴځғԋϐӢનᆶ΢

ॊ࣬ӕǹԶჹ Y-Al-O compounds ԶقǴ YAP ܌эޑᡏᑈϩ౗εӭ К10A/90YZ ޑλளӭǶ

$'"

Fig. 4-16(c)ࣁ 30A/70YZ ϸᔈቫ III ғԋᐒᄬҢཀკᡉҢǴှញ SEM/BEI [Fig. 4-15(c)]ᢀჸډޑғԋނǴ30A/70YZ ϸᔈቫ III ᢀჸǴ ځ܌և౜ޑᆶ࣬ӕԋϩϐϸᔈቫ II КၨǴ࣬ӕᗺࣁࣣᢀෳډ TiAl ޑ ӸӧǴࣁϙሶѝӧ30A/70YZ ޑϸᔈቫ III Ԗᢀჸډ?ࢂӢࣁԜԋϩޑ ഏౠ၂ТAl2O3Кٯς࿶ၲډ΋ঁᖏࣚॶǴഏౠᆶ⑲ϐ໔ޑϸᔈς࿶

ډၲၨቃਗ਼ޑӦ؁Ǵՠࢂεठϝࢂёа׭ڋεӭኧޑ Ti ຾ΕǴς຾

Εഏౠޑ Ti ς࿶ёаᘉණԿϸᔈቫ III ޑӦБǴࡺёᢀෳډ TiAl ޑ

ౢғǹჹ YAG ׎ᇮԶقǴᆶϸᔈቫ II ࣁനεόӕޑࢂϸᔈቫ III ѝ ᢀෳޑډᐍ༝׎ރޑYAGǴ࣮όډᙝރచદޑ Y3Al5O12Ƕ

җа΢൳ᅿғԋނޑϸᔈǴёаว౜Ծҗޑ਼ϯ᎑ᆶ⑲ϸᔈനቃ ਗ਼ǹ྽਼ϯ᎑ϸᔈԿ΋ۓำࡋࡕǴYAG ύޑ਼ϯ᎑ω཮຾ՉϯᏢϸ ᔈǹԶᒿ๱਼ϯ᎑КٯቚуǴᢀჸډӧ 20A/80YZǵ30A/70YZ ޑϸ ᔈቫ I ϐ ZrO2཮ᆶ Ti3Al ଺࿼ඤౢғ Ti2ZrAlǶਥᏵа΢่ፕ௢ፕӚ ᅿ਼ϯނᆶ⑲ޑϸᔈ৒ܰำࡋǺAl2O3ɧYAGɧZrO2(FSZ)ɧY2O3Ƕ

4.5 ഏౠୁ

Fig. 4-17 Ti ᆶ(a)10A/90YZǵ(b)20A/80YZǵ(c)30A/70YZǵ(d) 40A/60YZ ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴഏౠୁϐ༾ᢀ่ᄬკ(BEI)Ƕ ਥᏵSEM/EDS ޑϩ݋ᡉҢǴഏౠୁ୔ӧᆶ⑲ᅙᑼᘉණϟय़ϸᔈࡕޑ

$("

ූ੮࣬Ǵᆶᘉණϸᔈ߻ϐ thermal etching પഏౠ၂ТѺрٰޑ่ፕ࣬

ӕǴࣣࣁߝ୔ࣁZrO2ǵԪՅ୔ୱࣁYAGǵుՅ୔ୱࣁ Al2O3Ƕ

4.6 પ YAG ᆶ⑲ଯྕᅙᑼᘉණϸᔈ

րΓࣴز௖૸ЬाаTi ᆶ 10A/90YZǵ20A/80YZǵ30A/70YZ а Ϸ 40A/60YZ ᆶ⑲଺ଯྕᅙᑼᘉණϸᔈǴϸᔈ่ፕว౜ YAG ӧᘉණ ϸᔈၸำԖ๱ख़ाޑفՅǴࡺஒYAG ੝ձ૸ፕǴൂᐱၟ Ti ଺ଯྕᅙ ᑼᘉණϸᔈǶ

YAG/Ti ଯྕᅙᑼᘉණϸᔈӄඳკ[Fig 4-3(e)]ǴځӅϩࣁ 4 ቫǴന Ѱୁས୔ೀࣁĮ-Ti(Al, O)Ǵቫᆶቫϐ໔ޑϩܴࣚᡉǴӧ BEI Πёᢀჸ ډచރ่ᄬǴϸᔈቫ IǵII ࣁߝ୔চηׇ࣬ჹၨεǴ਼ϯ᎑ୖᆶϸᔈǴ

٬ள Y2O3 ޑᐚࡋቚуǹԶຫ۳ഏౠୁࣁϸᔈቫ IIIǵIVǴY2O3 ʈ Y5Al3O12 ʈ YAlO3਼ϯ᎑ޑ੃઻ໆሀ෧ǴࡺቹႽޑߝࡋफ़եǶ

Fig. 4-18 ࣁ Ti ᆶ YAG ࿶(a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϟय़༾

ᢀ่ᄬܫεკ(BEI)Ǵёᢀჸډϟय़ೀࣁόೕ߾ޑᒯᏁރ׎ᇮǴߝ୔

ࣁ Y2O3ǵས୔೽ϩࣁ Į-TiǹFig. 4-19(b)–(f)ϩձࣁ Ti ǵYǵOǵAl ϡનϐX-ray mappingǴ่݀ᡉҢ AlǵO ᘉණԿ⑲ୁǴTi ߾ܴᡉᘉණ

຾ΕഏౠϸᔈቫǴҗY ޑ mapping ϐ่݀ǴਥᏵ Ti-Y ࣬კளޕ Y ڰ ྋӧ Ti ֖ໆߚதϿǴϡન Y ૻဦᗺ໣ύӧѓୁೀǴҗԜ੝܄ߡёղ

$)"

ᘐচۈϟय़ӧՖೀǴӵጂᓐ܌ҢǶԜᆶ߻ॊ10A/90YZ ᆶ⑲ଯྕᅙᑼ ᘉණϸᔈࡕǴղᘐচۈϟय़Ԗ๱΋Կ܄Ƕ

Fig. 4-19(a)–(d)ϩձࣁϸᔈቫ I Կϸᔈቫ IV ϐङӛණ৔ႝη (BEI)༾ᢀ่ᄬკǴϸᔈቫ I ߝ୔ࣁ Y2O3ǵས୔ࣁ Į-Ti(Al,O)ǴӧԜቫ నᄊTi ߟᇑ຾ΕഏౠǴҗܭ᎞߈চۈϟय़ೀϸᔈቃਗ਼Ǵ⑲཮ᆶ YAG ϣޑ਼ϸᔈǴ਼ϯ᎑೏ᆐڗрٰǴY2O3 ӧᅙᑼᘉණϸᔈࡕόڰྋܭ

⑲ύǴࡺӧϟय़ೀёᢀჸډԜ࣬ᛙۓූ੮ǹZalar et al.ࡰр[26]ǴAl2O3

ၟTi ຾ՉϯᏢϸᔈࡕ཮ౢғ Al ک O ڰྋӧ⑲ύǴਥᏵ SEM/EDS ۓ ໆϩ݋ᡉҢ(OǺ21 at%ǵAlǺ12 at%ǵTiǺ67 at%)Ǵ᎑ک਼཮ڰྋӧ Ti ύԶ׎ԋࣁ Į-Ti(Al,O)Ƕ

Fig. 4-19(b)ϸᔈቫ II ߝ୔ҭࣁ Y2O3ǵས୔߾ࣁTi3AlǴӢࣁԜቫ ӧഏౠୁୃϟय़ೀǴ྽Ti ᘉණԿഏౠፄӝ׷਑ٰډϸᔈቫ II ਔǴAl2O3 ҭ཮ၟTi ϸᔈǴՠࢂ Al ёᘉණޑຯᚆၟϸᔈቫ I ٰᇥ࣬ჹԖज़ǴAl ಕᑈӧഏౠୁ္Ǵҗܭ֖ໆϼӭǴຬрΑӧ Ti ύڰྋޑጄൎǴ SEM/EDS ϩ݋่݀ࣁ Ti3Al(OǺ18 at%ǵAlǺ20 at%ǵTiǺ62 at%)Ƕ

Fig. 4-19(c)ϸᔈቫ III ߝ୔ਥᏵ SEM/EDS ϩ݋ࣁ Y5Al3O12[15](OǺ 60 at%ǵAlǺ15 at%ǵTiǺ1 at%ǵYǺ24 at%)Ǵས୔ࣁ Ti3AlǹFig. 4-19(d) ϸᔈቫIV ߝ୔ࣁ YAP(YAlO3, OǺ57 at%ǵAlǺ19 at%ǵTiǺ4 at%Ǵ

$*"

YǺ20 at%)ǵས୔ҭࣁ Ti3AlǴຫ۳ഏౠୁޑϸᔈຫόቃਗ਼Ǵၟ⑲চ ηᒃӝޑ਼চηᡂϿǴࡺӧϸᔈቫ IIIǵIV ҭ཮ᢀჸډ֖Ԗ਼ϯ᎑К ٯϐϯӝނǴӵǺY5Al3O12܈YAlO3ǴYAG ࿶җ⑲ᘉණ຾Εഏౠ׎ԋ ځд Y-Al-O ޑϯӝނǴ่݀ᡉҢǴຫ۳ഏౠୁǴ਼ϯ᎑ޑКٯຫεǴ ߄Ңഏౠຫόᆶ⑲ϸᔈǶ

Fig. 4-20 Ti ᆶ YAG ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕ(a)ࣁϸᔈቫ IIǵ III ໔ϐ༾ᢀ่ᄬܫεკ(BEI)ǴߝǵԪ୔аٿ࣬୔БԄӅӸǹAl ӧԪ

୔а Y5Al3O12БԄև౜ǴЪคݤڰྋӧߝ୔ Y2O3Ǵӧས୔а Ti3Al БԄ݋рǹTi ёаᘉණԿϸᔈቫ III ೀǹԶ Y ޑૻဦϩթӧߝ୔ǵԪ

୔ǹҗϡનY Ѱୁ(߈ߝ୔ೀ)ૻဦᗺӭܭѓୁ(Ԫ୔)ǴЪ Al ૻဦคݤ ӧߝ୔ว౜ǴߡёղᘐϸᔈቫIIǵIII ҬࣚǶ

Ti ᆶ YAG ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴਥᏵ΢ӈඔॊ଺ঁ่

ፕǴ྽ว౜ғԋނ Y2O3Ǵж߄ YAG ϣޑ Al2O3ς࿶ֹӄᆶ⑲ϸᔈǴ YAG ჹ Ti Զق٠όࢂߚதᛙۓޑϯӝނǴYAG Ѹ໪ᙯᡂԋόӕϸᔈ ቫٰჹᅙᑼ⑲଺׭ڋǴՠ࣬ჹ਼ϯ᎑ǵ೽ҽӼۓ਼ϯ⯗ഏౠԶق࣬Ǵ ᗋࢂԖᛙۓޑਏ݀ǴӧԜёаӆ଺຾΋؁ޑࡕុࣴزǺ਼ϯ⯗ϣబу όӕКٯޑ YAG ჹ Ti ᘉණϸᔈϐቹៜǶӚಔഏౠ၂Тᆶ⑲ଯྕᘉණ ϸᔈ܌ౢғޑϸᔈቫ኱ҢӧTable 2Ƕ

%+"

ಃϖക ่ፕ

1. 10A/90YZ(15 mol% Y2O3–10 mol% Al2O3–75 mol% ZrO2) ፄӝ

׷਑ᆶనᄊ⑲ӧ1700ʚ/2 hr ᅙᑼᘉණϸᔈǴӄӼۓ਼ϯ⯗׭ڋ⑲ ᘉණ຾Εഏౠ၂ТǴՠࢂӼۓ਼ϯ⯗բҔޑ਼ϯ᎑Ǵᆶ⑲ϸᔈϝ

ࢂߚதቃਗ਼ǴᏤठ᎑ǵ਼ᘉණԿ⑲ୁǴϿໆ⑲ᘉණ຾Εഏౠ္ǹ ߈চۈϟय़⑲ୁࣁ Ti3AlǴϸᔈቫ္ߥ੮๱ၸ෠ϸᔈϐ Y-Al-O compounds Ǵ⑲ᆶ᎑ӧଯྕౢғన࣬Ǵհࠅਔ݋р TiAlǹAl ᆶ ZrO2 ғԋ Al3ZrǴc-ZrO2ࣁᛙۓ࣬Ƕ

2. 20A/80YZ(14 mol% Y2O3–19 mol% Al2O3–67 mol% ZrO2) ፄӝ

׷਑ᆶనᄊ⑲ӧ1700ʚ/2 hr ᅙᑼᘉණϸᔈǴϸᔈᒿ਼ϯ᎑֖ໆ΢

ϲԶቚуǴό໻ӧϟय़ೀ Ti ୁౢғ Ti3AlǴϸᔈቫ I ᢀჸډ ZrO2 ᆶ Ti3Al ϸᔈǴғԋ Ti2ZrAlǴ⑲ᘉණ຾Εഏౠ္ޑϸᔈᐒᄬᆶ 10A/90YZ ᜪ՟Ǵࡺҭᢀෳډ Y-Al-O compoundsǵTiAlǵAl3ZrǴа Ϸc-ZrO2Ƕ

3. 30A/70YZ(12 mol% Y2O3–29 mol% Al2O3–59 mol% ZrO2) ፄӝ

׷਑ᆶనᄊ⑲ӧ1700ʚ/2 hr ᅙᑼᘉණϸᔈǴԜԋϩаၲډ࣬ჹᛙ ۓޑᖏࣚॶǴᅙᑼ⑲ᘉණԿഏౠ္ޑຯᚆǴςёӧϸᔈቫ III ࣮ډ TiAl ݋рǴ᏾ᡏϸᔈᐒᄬႜӕǴ ӧ 10A/90YZǵ20A/80Y ޑғԋ

%!"

ނࣣёӧ30A/70YZ ࣮ډǶ

4. 40A/60YZ(10 mol% Y2O3–40 mol% Al2O3–50 mol% ZrO2) ፄӝ

׷਑ᆶనᄊ⑲ӧ1700ʚ/2 hr ᅙᑼᘉණϸᔈǴϸᔈቃਗ਼ำࡋௗ߈પ ᆐ⑲ᆶ਼ϯ᎑ᅙᑼϸᔈǴεໆޑ⑲ᘉණ຾ΕഏኳǴ࣬ჹޑεໆޑ

᎑ᘉණԿ⑲ୁǴࡺӧϟय़ೀ Ti ୁౢғ TiAlǴϸᔈቫ IǵII ࣣౢғ TiAl ᆶ FSZǴЪϸᔈቫ II ൳Я࣮όډ Y-Al-O compounds ǴѝԖ࣮

ډ҂ϸᔈޑપ YAGǶ

5. YAG(37.5 mol% Y2O3–62.5 mol% Al2O3)ፄӝ׷਑ᆶనᄊ⑲ӧ 1700ʚ/2 hr ᅙᑼᘉණϸᔈǴ⑲ᘉණ຾ΕഏౠǴԖܴᡉᘉණϸᔈቫǴ

⑲ୁࣁĮ-Ti(Al,O)Ǵഏౠୁ YAG ᒿ๱ Ti ᘉණ௃ݩϩှԋόӕޑ࣬Ǵ җϟय़Կഏౠ္ϩձࣁǺY2O3ǵY5Al3O12ǵYAlO3ǴϷ҂ϸᔈޑYAGǴ ځύ YAG ύޑ਼ϯ᎑཮ӛѦᘉණᆶనᄊ⑲׎ԋ Ti3AlǶ

%#"

Def. Sci., 36(2): 121-141.

4. Welsch, G. and W. Bunk (1982). "Deformation Modes of the Alpha-Phase of Ti-6al-4v as a Function of Oxygen Concentration and Aging Temperature." Metallurgical Transactions a-Physical Metallurgy and Materials Science 13(5): 889-899.

5. Lin, C. C., Y. W. Chang, et al. (2008). "Effect of yttria on interfacial reactions between titanium melt and hot-pressed yttria/zirconia composites at 1700 ʚ." Journal of the American Ceramic Society 91(7): 2321-2327.

6. Eugene P. Lautenschlager, Peter Monaghan, “Titanium And Titanium Alloy as Dental Materials,” International Dental Journal, [43]245-531, (1993).

7. Molchanova. E. K, “Phase Diagrams of Titanium Alloy,” [Transl. Of Atlas Diagram Sostoyaniya Titanovyk Splavov], Israel Program for Scientific Translations. (1965).

8. ڬਁ჏Ǵ “਼ϯ⯗ഏౠύޑഞҖණ៓࣬ᡂϯᆶ໧ϯ”ΜΟڔ΋යǴ

%$"

҇୯83 ԃ 1 ДǶ

9. ׵ྍѶǵ஭ЎڰǴ“਼ϯ⯗ԿᇙഢᆶᔈҔ”ϯπמೌǴ΋ڔϤයǴ

҇୯82 ԃ 9 ДǶ

10. G. M. Wolten, ” Diffusionless Phase Transformations in Zirconia and Hafnia,” J. Am. Ceram. Soc. 46 [9] 418-422, (1963).

11. A. H. Heuer, N. Claussen, W. M. Kriven, M. Ruhle, ”Stability of Tetragonal ZrO2 Particles in Ceramic Matrices,” J. Am. Ceramic.Soc.

65 [12] 642-650, (1982).

12. R. C. Garvie, R. H. Hannik and R. T. Pascoe, “Ceramic Steel,” Nature Vol.258 (1975), p.703.

13. Yong-Nian Xu; Zhong-quan Gu; W. Y. Ching. Electronic, structural, and optical properties of crystalline yttria. Phys. Rev.. 1997, B56:

14993–15000.

14. L. Keith Hudson, Chanakya Misra, Anthony J. Perrotta, Karl Wefers, F. S. Williams “Aluminum Oxide” in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim.

15. Omori, M., Isobe, T. and Hirai, T. (2000), Consolidation of Eutectic Powder of Al2O3–GdAlO3. Journal of the American Ceramic Society, 83: 2878–2880.

16. M. S. Scholl and J. R. Trimmier, “Luminescence of YAG:(Tm,Tb),” J.

Elec- trochem. Soc., 133 [3] 643–48 (1986).

17. Saiki, T; Imasaki, K; Motokoshi, S; Yamanaka, C; Fujita, H;

Nakatsuka, M; Izawa, Y (2006). "Disk-type Nd/Cr:YAG ceramic

%%"

lasers pumped by arc-metal-halide-lamp". Optics Communications 268 (1): 155.

18. R. Ruh, N. M. Tallan, and H. A. Lipsitt, “Effect of Metal Addition on the Microstructure of Zirconia,” J. Am. Ceram. Soc. 47[12], 632-635 (1964).

19. R. Ruh, “Reaction of Zirconia and Titaniumat Elevated Temperatures,”

J. Am. Ceram. Soc. 46[7], 301-306, (1976).

20. D. V. Igator, M. S. Model, L. F. Sokyriansky, and A. Ya. Shinyaev,

“Parameters of Oxygen Diffuison in Alpha and Beta-form of Titanium,” Bri. Ceram. Trans., 2536-2544 (1972).

21. K. F. Lin and C. C. Lin, “Interface Reaction between Ti-6Al-4V alloy and Zirconia mold during casting,” J. Mater. Sci., 34. 5899-5906 (1999).

22. C. L. Lin, D. Gan, P. Shen, “Stabilization of zirconia sintered with Titanium,” J. Am. Ceram. Soc. 71[8], 624-629 (1988).

23. B. C. Weber, W. M. Thompson, H. O. Bielstein, M. A. Schwarts,

“Ceramic crucible for Melting Titanium,” J. Am. Ceram. Vol. 40[11], 363-373 (1957).

24. K.F. Lin and C. C. Lin, “Transmission Electron Microscope

Investigation of the Interface between Titanium and Zirconia,” J. Am.

Ceram. Soc., 82[11], 3179-85 (1999).

25. K. L. Lin and C. C. Lin, “Ti2ZrO Phases Formed in the Titanium and Zirconia Interface after Reaction at 1550oC,” J. Am. Ceram. Soc., 88 [5] 1268-72 (2005).

%&" American Mathematical Society (Providence, RI: American Mathematical Society) 53 (5): 572–573.

29. K. F. Lin and C. C. Lin, “Interfacial Reaction between Zirconia and Titanium,” Scripta Materialia, Vol. 39, No. 10, 1333-1338 (1998).

30. R. L. Saha and T. K. Nandy, R. D. K. Misra, and K. T. Jacob, “On the Evaluation of Stability of Rare Earth Oxides Face Coat for Investment Casting of Titanium,” Metal. Trans. B. 21B[6] 559-566 (1990).

31. Mishin, Y. and C. Herzig (2000). "Diffusion in the Ti-Al system."

Acta Materialia 48(3): 589-623.

32. Das, K., P. Choudhury, et al. (2002). "The Al-O-Ti (aluminum- oxygen-titanium) system." Journal of Phase Equilibria 23(6): 525-536.

33. Rosa, C. J. (1970). "Oxygen diffusion in alpha and beta titanium in the temperature range of 932° to 1142°C." Metallurgical and Materials Transactions B 1: 2517-2522.

34. Materials Science International Team MSIT®, and Tretyachenko, Ludmila: Al-Ti-Zr (Aluminium - Titanium - Zirconium). Effenberg, G., Ilyenko, S. (ed.). SpringerMaterials - The Landolt-Börnstein Database.

%'"

35. Ravi, C., S. MathiJaya, et al. (2002). "Site preference of Zr in Ti3Al and phase stability of Ti2ZrAl." Physical Review B 65(15).

36. Leverkoehne, M., R. Janssen, et al. (2002). "Phase development of ZrxAly-Al2O3 composites during reaction sintering of Al/ZrO2/Al2O3 powder mixtures." Journal of Materials Science Letters 21(2):

179-183.

Table 1

Table 2 1700!/2 hr

48 YAG

YAG YAG

YAG 10A/90YZ10A/90YZ10A/90YZ10A/90YZ 20A/80YZ20A/80YZ20A/80YZ20A/80YZ 30A/70YZ30A/70YZ30A/70YZ30A/70YZ 40A/60YZ40A/60YZ40A/60YZ

! " # $ Ti

49

Fig. 2-1

Fig. 2-2 ! "

[From Structure and Properties of Engineering Material,4th Ed., by R.Brick, A. W. Pense and R. B. Gordon Copyright.1997 By

McGraw-Hill,New York.

Used with the permission of McGraw-Hill Book Company]

50

Fig. 2-3 "

(a) (peritectic) (b) (periectoid)

Fig. 2-4 !

(a) (isomorphous) (b) (eutectoid)

51

Fig. 2-5

1 2

3 4

Fig. 1 System ZrO2-Y2O3-Al2O3 at 1450!. C = cubic ZrO2 solid solution; Y = Y2O3; A = Al2O3; YAG = Y3Al5O12 (point 5); T = tetragonal ZrO2.[1]

From point 1 to point 4 are 10A/90YZ, 20A/80YZ, 30A/70YZ, and 40A/60YZ respectively.

The green line is 30 vol%Al2O3 from Gibbs triangle of cubic ZrO2, YAG, and Al2O3.

5

12

Fig. 3-1 System ZrO2-Y2O3-Al2O3 at 1450°C. C = cubic ZrO2 solid solution; Y = Y2O3; A = Al2O3; YAG = Y3Al5O12 (point 5); T = tetragonal ZrO2.

[From point 1 to point 4 are 10A/90YZ, 20A/80YZ, 30A/70YZ, and 40A/60YZ respectively. The line is 30 vol%Al2O3 from Gibbs triangle of cubic ZrO2, YAG, and Al2O3.]

52

Al2O3/Y2O3/ZrO2 ( NH4OH)

(Hotplate 150 )

( 80mesh )

1500 /4 hr 1atm Ar

XRD

Ti 1700 /2 hr

SEM/EDS TEM/EDS

7

Fig. 3-2

53

CHEN-HWA ZG-10

Fig. 3-3

54

2!

A

B

1 µm 1 µm

1 µm 1 µm

Fig. 1. (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ thermal etching

(1300!/2hr) A B C YAG

a b

c d

A

C

A B

A

B

C

A

B C

C

Fig. 4-2 (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ

thermal etching (1300°C/2 hr) A B C YAG

56

a

Fig. 3 Ti (a)10A/90YZ、(b)20A/80YZ、(c)30A/70YZ、(d)40A/60YZ、(e)YAG, 1700°C/2 hr (BEI)

Fig. 4-3 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ (e)YAG, 1700°C/2hr , (BEI

57

a b c

Interface

ZrO2

Ti3Al

Fig. 6. Ti 10A/90YZ (a)1700°C/2hr BEI (b) (f) O Al

Y X-ray mapping

Ti Y

O Zr

e f

1µm

d

Al

Fig. 4-4 Ti 10A/90YZ (a)1700°C/2 hr BEI (b) (f) Ti Y

Zr X-ray mapping

58

'(a) 0 to 7 hP2 P63/mmc

''(a) 7 to 18.3 oC4 Cmcm

(a) 20 to 30 hP3 P6/mmm

(a) Metastable

Ti-Y (Titanium - Yttrium)

J.L. Murray, 1987

Ti-Y phase diagram

Ti-Y crystallographic data

Phase Composition, wt% Y

Pearson symbol

Space group

( Ti) 0 to 3.7 cI2 Im m

Fig. 4-5 Murray, 1987 Ti-Y

59

a b

c d

1µm 1µm

1µm 1µm

ZrO2

ZrO2

ZrO2

ZrO2

ZrO2

TiAl Ti3Al

Ti3Al

Ti3Al

Fig. 8 Ti (a)10A/90YZ、(b)20A/80YZ、(c)30A/70YZ、(d)40A/60YZ, 1700°C/2 hr

! (BEI)

!

Ti2ZrAl

Ti2ZrAl

Fig. 4-6 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2 hr 20

I (BEI

60

Ti Ceramic

Diffusion couple Ti ! Ti !

Ti3Al

Ti3Al!-Ti(Al,O) !-Ti(Al,O)Ti + Al2O3 c-ZrO2

c-ZrO2

Diffusion couple Ti ! Ti !

Ti Ceramic

!-Ti(Al,O) !-Ti(Al,O) Ti3AlTi + Al2O3

ZrO2 +Ti3Al

Ti3Al!-Ti(Al,O) !-Ti(Al,O) Ti3AlTi + Al2O3

ZrO2 +Ti3Al

Ti3Al!-Ti(Al,O) !-Ti(Al,O) TiAl

heating cooling

Ti ! Ti !

(d)

TiAl

Fig. 4-7 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2 hr I

61

d

b

T

[111]

(202) c-ZrO2

(220)

a

ZrO2

Ti3Al

c

T (1101)

(2240)

[1102]

Ti3Al

e

Fig. 4-8 10A/90YZ, (a)TEM bright-field image shows Ti3Al and ZrO2 at the interface after annealing at 1700!/2 hr, (b) the SADP of c-ZrO2, (c) the SADP of h-Ti3Al, (d) EDX spectrum of ZrO2, O:62.01 at %、Y:12.02 at %、Zr:25.97 at

%, (e) EDX spectrum of Ti3Al, Al:32.29 at %、Ti:61.32 at %、Zr:6.40 at %

62

Th4Al7(b) 16.9 (a) . . .

ThAl2 18.9 hP3 P6/mmm

ThAl3 26 hP8 P63/mmc

Th2Al7 29.0 oP18 Pbam

(Al) 100 cF4 Fm3m

(a) Tetragonal.

(b) Considered same as ThAlx

Al-Ti (Aluminum - Titanium)

J.L. Murray, 1987

Al-Ti phase diagram Al-Ti crystallographic data

Fig. 4-9 Murray, 1987 Ti-Al

63

T

Ti2ZrAl

Ti3Al

Ti2ZrAl

d

a b

23

[0001]

c

(1120) (1211)

[1103]

Ti3Al

e

Fig. 4-10 30A/70YZ, (a) TEM bright-field image shows Ti3Al and Ti2ZrAl at the reaction layer ! after annealing at 1700"/2 hr, (b) the SADP of Ti2ZrAl, (c) the SADP of Ti3Al, (d) EDX spectrum of Ti2ZrAl,O:4.70 at %、Al:23.21 at %、

Ti:40.56 at %、Zr:31.53 at %, (e) EDX spectrum of Ti3Al,O:5.73 at %、Al:

36.56 at %、Ti:46.88 at %、Zr:10.83 at %

64

b c

d a

e f

Y

Al Ti

Zr O

1µm

Fig. 4-11 Ti 30A/70YZ 1700°C/2 hr (a) ! (BEI)

65

a 5µm

Fig. 12. Ti (a)10A/90YZ (b)20A/70YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2hr

! (BEI

!

Fig. 4-12 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2

hr II (BEI

66

heating cooling

Fig. 4-13 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2

hr II

67

b c

d a

e f

Y

Al Ti

Zr O

5µm

Fig. 4-14 Ti 10A/90YZ 1700°C/2 hr (a) ! (BEI)

68

!

Fig. 14. Ti (a)10A/90YZ (b)20A/70YZ (c)30A/70YZ, 1700°C/2hr !

(BEI

Fig. 4-15 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ 1700°C/2 hr

! (BEI

69

YAG

Fig. 18 Ti (a)10A/90YZ、(b)20A/80YZ、(c)30A/70YZ, 1700°C/2 hrFig. 4-16 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ 1700°C/2 hr !

!

70

1µm

Fig. 4-17 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2

hr (BEI

71

Y Ti

c d

!-Ti

a

! " # $

30µm Interface

Al O

e f

b 10µm

Y2O3

!-Ti

Interface

Fig. 4-18 Ti YAG 1700°C/2 hr (a) (BEI)

72

1µm 1µm

1µm

Y2O3

Y2O3

Y5Al3O12

!-Ti

Ti3Al

Ti3Al

a b

c

Fig. 4. (a) ! (b) (c) (d) " (BEI)

1µm

Ti3Al

YAlO3

d

Fig. 4-19 Ti YAG 1700°C/2 hr (a) I (b) (c)

IV (BEI)

73

Ti Y

b c

17

Fig. 6 (a)Ti YAG 1700°C/2 hr , !、" (BEI);(b) (e) Ti、Y、O

Al X-ray mapping

Al O

d e

a 1µm

Fig. 4-20 Ti YAG 1700°C/2 hr (a) !、" (BEI)

74

相關文件