• 沒有找到結果。

氧化鋁/氧化釔/氧化鋯複合材料與液態鈦金屬之介面反應

N/A
N/A
Protected

Academic year: 2021

Share "氧化鋁/氧化釔/氧化鋯複合材料與液態鈦金屬之介面反應"

Copied!
86
0
0

加載中.... (立即查看全文)

全文

(1)

/

/

Reactive Phenomenon between Molten Ti and

(2)

/

/

Reactive Phenomenon between Molten Ti and

Al

2

O

3

/Y

2

O

3

/ZrO

2

Composites

Student : Po-Chi Chen

Advisor

Chien-Cheng Lin

A Thesis

Submitted to Department of Material Science and Engineering College of Engineering

National Chiao Tung University in partial Fulfillment of the Requirements

for the Degree of Master in Material Science and Engineering

July 2011

(3)

i

/

/

: :

Al2O3/Y2O3/ZrO2

1 atm (Ar) 1700 2

X (x-ray diffraction, XRD) (SEM/EDS)

(TEM/EDS)

Ti Zr

Ti2ZrAl ZrO2 TiAl

Y3Al5O12(YAG) YAlO3 Y2O3 Al3Zr…

pecolation threshold

4 YAG

(4)

ii

Reactive Phenomenon between Molten Ti and Al2O3/Y2O3/ZrO2 Composites

Student Po-Chi Chen Advisor Chien-Cheng Lin

Department of Material Science and Engineering National Chiao Tung University

Abstract

Various Al2O3/Y2O3/ZrO2 as sintering sample was reacted with titanium

at 1700 °C/2 hr in argon. Analyzing the microstructure of the reaction interface was characterized with XRD, SEM/EDS, and TEM/EDS after reaction.

There were forming TiAl Alloys on Ti side after diffusion reaction, and the reactions were more violent with the Al2O3 content increase, so the

phase transited to Ti2ZrAl by Zr took Ti place. So many compounds be

observed, including ZrO2, TiAl, Y3Al5O12(YAG), YAlO3, Y2O3, Al3Zr, etc.

When Al2O3 content exceed the percolation threshold, the interconnecting

network would be formed. Due to Ti diffused into the ceramics deeply by this network, the microstructure different from the other specimens.

In four groups with the titanium melt diffusion reaction, the reaction in the diffusion process that YAG has an important role, it will be specifically discussed YAG and Ti melt diffusion reaction with the same temperature and time.

(5)
(6)

iv ……….i ………ii ………...iii ……….… .iv ………...vi ……….….vii ………1 ………4 2.1 ……….4 2.2 ……….5 2.2.1 ………5 2.2.2 ………6 2.2.3 ………6 2.3 ……….7 2.4 ……….7 2.5 YAG……….8 2.6 ……….8 ………..11 3.1 ………...11

(7)

v 3.2 ………...12 3.3 ………...12 3.4 ………...…13 3.5 ………...14 3.6 ………...15 3.6.1 X-ray ………...15 3.6.2 (SEM/EDS)………...15 3.6.3 (TEM/EDS)………..16 ………..17 4.1 XRD ……….……17 4.2 ………..….19 4.3 Al2O3 Ti ………...23 4.4 Al2O3 Ti ………29 4.4.1 II………...29 4.4.2 III……….33 4.5 ………...36 4.6 YAG ………..36 ………..40 ………..42

(8)

vi

Table 1 ……….….………47

(9)

vii Fig. 2-1 …………..…….………..49 Fig. 2-2 ! " ………..49 Fig. 2-3 " ………..50 Fig. 2-4 ! ………..50 Fig. 2-5 ……….51

Fig. 3-1 Murray, 1987 Ti-Y Y2O3; A = Al2O3; YAG = Y3Al5O12 T = tetragonal ZrO2………..52

Fig. 3-2 ……….53

Fig. 3-3 ……….44

Fig. 4-1 X-ray …………...55

Fig. 4-2 (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ thermal etching (1300°C/2 hr) (BEI) ………..56

Fig. 4-3 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ (e)YAG 1700°C/2hr (BEI) ………..57

(10)

viii

Fig. 4-4 Ti 10A/90YZ (a)1700°C/2 hr

(BEI) (b) (f) Ti Y O Al Zr X-ray mapping………...58 Fig. 4-9 Murray, 1987 Ti-Y ………..59 Fig. 4-6 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ

1700°C/2 hr I

(BEI) ………..60 Fig. 4-7 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ

1700°C/2 hr I

………61 Fig. 4-8 10A/90YZ, (a)TEM bright-field image shows Ti3Al and ZrO2

at the interface after annealing at 1700 /2 hr, (b) the SADP of c-ZrO2, (c) the SADP of h-Ti3Al, (d) EDX spectrum of

ZrO2………62

Fig. 4-9 Murray, 1987 Ti-Al ………63 Fig. 4-10 30A/70YZ, (a) TEM bright-field image shows Ti3Al and

Ti2ZrAl at the reaction layer after annealing at 1700 /2

hr, (b) the SADP of Ti2ZrAl, (c) the SADP of Ti3Al, (d) EDX

spectrum of Ti2ZrAl………..64

Fig. 4-11 Ti 30A/70YZ 1700°C/2 hr (a)

(BEI) (b) (f) Ti Y O Al

(11)

ix

Fig. 4-12 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ

1700°C/2 hr II

(BEI) ………66 Fig. 4-13 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ

1700°C/2 hr II

………..67 Fig. 4-14 Ti 10A/90YZ 1700°C/2 hr (a)

(BEI) (b) (f) Ti Y O Al

Zr X-ray mapping……….68

Fig. 4-15 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ 1700°C/2

hr (BEI) …….69

Fig. 4-16 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ 1700°C/2

hr ……...70

Fig. 4-17 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2 hr

(BEI) ………71 Fig. 4-18 Ti YAG 1700°C/2 hr (a)

(BEI) (c) (f) Ti Y O Al X-ray

mapping………72

Fig. 4-19 Ti YAG 1700°C/2 hr (a) I

(12)

x

(BEI)……….73 Fig. 4-20 Ti YAG 1700°C/2 hr (a)

(BEI) (c) (f) Ti Y O Al X-ray mapping……….74

(13)

!"

ಃ΋ക

߻ق

⑲(Titanium, Ti)ǴࢂӦ߄֖᝶ໆ௨ӜಃѤޑߎឦǴӧӦෘύ֖ໆ ऊ0.6ʘ[1]Ǵ໻ԛܭ᎑ǵ៓ǵᗔǴځӧԾฅࣚύӭа਼ϯނ(TiO2)ޑ׎ ԄӸӧǶ⑲ڀԖեஏࡋکଯᅙᗺ੝܄Ǵऐᇑ܄ӳǵКख़ᇸǴᙖҗځд ϡનబуǴёаε൯ගϲமࡋǴځᔈҔጄൎቶݱǴҔ೼ӵૐϼπ཰෮ ፺ЇᔏᓸᕭࢤယТǴ०ᐒ่ᄬа⑲ӝߎٰڗжǴёε൯෧ᇸख़ໆǹؓ ًπ཰ޑ႟ҹಔǴٯӵǺᏁ፺ǵື܍ǹϯᏢπ཰ϐऐለး࿼Ҕऐᇑ׷ ਑ǹағᙴπ཰ሦୱٰ࣮Ǵ⑲ࣁคᅶ܄ǵคࢥ܄Ǵᆶғނ࣬৒܄ଯǴ ӧΓᡏϣό݋рᚆηǴࢂᙴᕍ෌ᡏǵᇙᛰ౛གྷ׷਑[2]Ƕ ⑲ϡનࣁຼය߄΢ಃѤຼයIV-A ௼Ǵচηׇ௨ ӈ 22 ϐၸ෠ߎឦǴ চηໆࣁ49.7Ǵஏࡋ(4.51 g/cm3)ऊࣁል(8.96 g/cm3)ᙻ(8.9 g/cm3)ޑ 1/2Ǵ εऊϟܭ᎑(2.7 g/cm3)ᆶ៓(7.8 g/cm3)ϐ໔Ǵᅙᗺࣁ(1668°C)Ǵݦᗺ (3206°C)Ǵ዗໺Ꮴ౗(0.041 cal/cm2/sec/°C/cm)Ǵ዗ᑩ๞߯ኧ(8.4!10-6 cm/cm/°C, 0~100°C)Ƕ⑲Ԗ Į(ϤБ඲ᡏ)Ϸ ȕ(ᡏЈ඲ᡏ)ٿᅿ඲ᡏ่ᄬǴ ӧ883°C а΢ਔǴ൩཮வ ϤБനஏ୴ᑈ(Hexagonal Close Packed, HCP) ޑĮ ࣬ᙯᡂԋᡏЈҥБ୴ᑈ่ᄬ(Body Center Cubic, BCC)ޑ ȕ ࣬Ƕ

⑲ӧనᄊࢂ΋ᅿࢲ܄ཱུமޑߎឦǴځ੝܄ჹ᠗೷ਔߎឦޑࢬ୏܄ Ϸഏኳޑלᇑ܄ቹៜࡐεǹҗܭᅙᑼ⑲ёаஒ΋૓ഏኳڴൖྋှǴ⑲

(14)

#"

ӝߎӧଯྕᅙᑼᄊޔௗᆶڴൖௗ᝻ܰӧϟय़วғቃਗ਼ϸᔈǴࡺคݤа གᔈྋှݤ(Vacuum Induction Melting, VIM)ྋှ⑲ӝߎǶ΋૓⑲ӝߎ ᆒஏ᠗೷ࢂ௦Ҕႝ۱ᅙᑼݤ(vacuum arc melting, VAR)ǴаНհԄልڴ ൖ౰း⑲ྋనǴӧڴൖᏛ΢ౢғᏉڰቫǴаߥៈልڴൖǶ ⑲ӝߎӧଯྕᆶ਼ޑᒃکΚࡐεǴ⑲ύ਼֖ໆՔᒿϸᔈวғԶε ൯΢ϲǴ΢ॊගډనᄊ⑲ࢲ܄ଯǴа⑲ӝߎ᠗೷ٰ࣮Ǵځܰᆶഏኳ׷ ਑วғϯᏢϸᔈǴϸᔈቫӧ᠗೷߄य़཮ූ੮ଞϾǵ਻Ͼ฻લഐǶSaha and Jacob ࡰр[3]Ǵ⑲ߎឦᆶഏౠ਼ϯނϟय़ೀ཮วғ਼ϯᗋচϸᔈǴ ӧ⑲᠗ҹᆶኳڀௗ᝻ޑ߄य़཮׎ԋ΋ฯϯቫ(Į-case)ǴԜࣁ⑲᠗ҹ߄ य़൤਼֖ޑቹៜ୔Ǵځۯ܄ǵฯࡋǵ༾ᢀ่ᄬࣣ౦ܭϣ೽ಔᙃǶWelscht

and Bunkd ࡰр[4]Ǵ਼চη཮эᏵ⑲඲਱่ᄬύϐ໔ሜՏ࿼(interstitial) ཮ׯᡂځᡂ׎ᐒڋǴӢڰྋமϯԶගଯமࡋϷླྀМ߯ኧǴफ़եۯ܄Զ ٬׷਑ᡂૄǶӢԜǴ΋૓ӧ᠗ҹֹԋࡕ཮аϯᏢྋనࢱᇑ܈ቔࣳݤନ ѐĮ-caseǴӵԜό໻ቚуԋҁǴЪቹៜҁيϐᆒஏࡋǶ ൨פᛙۓޑഏኳ׷਑аܢᏲଯྕᅙᑼᄊϐ⑲ߎឦޑߟᇑǴ٠Ԗਏ ௓ڋ⑲ᆶഏኳ໔ϟय़ϸᔈǴԋࣁߏයаٰࣴزЬᚒǶഏኳ׷਑Ҕ ZrO2 Ϸ Y2O3ࣁЬࢬϐ΋Ǵа 100ʘZrO2׷਑ಔԋޑഏኳǴ࿶ᔮ܄ന٫ՠ Ӽۓ܄ৡǴ཮೷ԋ᠗ҹ߄य़׎ԋĮ-case ฯϯቫǹа 100ʘY2O3׷਑ಔ

(15)

$"

ԋޑഏౠ׷਑Ǵ܄፦ᛙۓՠሽ਱ᇻଯܭ਼ϯ⯗ഏኳǶChang and Lin ගډ[5]Ǵ17 molʘ Y2O3–ZrO2(30 volʘ Y2O3–ZrO2)ഏౠ׷਑ᆶ⑲ߎ

ឦӧ 1700к/10min ᑼᅙᘉණϸᔈࡕǴว౜ځಔԋёаԖਏߔᏲ Tiǵ

ZrǵO ࣬ϕᘉණǴӕਔၲډӼۓ܄٫ک࿶ᔮ܄ӳޑֽय़Ƕ

ҁჴᡍа30 volʘ Y2O3–ZrO2ࣁ୷ྗǴΨ൩ࢂ਼ϯᵍᆶ਼ϯ⯗

ᡏᑈಔԋڰۓӧ3 К 7ǴӆబуόӕКٯ Al2O3׎ԋόӕޑഏౠ׷਑Ǵ

ځҞޑࢂ٬࿶ᔮ܄଺ঁ׳ӳޑև౜ǶჴᡍᇙഢБݤࣁஒΟᅿણ҃֡Ϭ షࣁ΋ᡏࡕǴӆஒځᐨ่Ǵ٠ߚӃᇙբ17 molʘ Y2O3–ZrO2(30 vol

ʘ Y2O3–ZrO2)ഏౠ׷਑ǴӆஒԜഏౠ׷਑Ҕ਼ϯ᎑ᅖ೸຾ΕǶֹԋ

ࡕᢀჸаAl2O3ޑ֖ໆჹ Al2O3/ Y2O3/ ZrO2سഏౠ׷਑ᆶ⑲ߎឦଯྕ

(16)

%"

ಃΒക চ౛ᆶЎ᝘ӣ៝

2.1 ⑲ᆶ⑲ӝߎ

⑲Ԗٿᅿӕન౦׎ᡏǴϩձࢂ Į ࣬ᆶ ȕ ࣬Ǵӧ 883ʚਔǴ൩཮வ

ϤБനஏ୴ᑈϐĮ ࣬ᙯᡂԋᡏЈҥБ୴ᑈϐ ȕ ࣬ǴԜਔޑ࣬ᡂϯྕࡋ

ᆀࣁȕ-transusǴӵ Fig. 2-1[6]܌Ңǹ඲ᡏ่ᄬ΢ޑᙯᡂӵFig. 2-2 ܌ҢǶ

୘཰પృભޑ⑲ߎឦ(CP-Ti)ǴᗨฅமࡋၨৡǴՠࢂלᇑ܄மǴК ख़ᇸǴӧπ཰΢ऩబуΑόӕӝߎϡનǴ٩Ᏽόӕሡ؃ځᆶނ౛ᆶᐒ ఓ܄፦ҭόᅰ࣬ӕǶFig. 2-3[7]܌ҢǴబуAlǵGaǵGeǵGd ฻ϡનǴ ȕ ࣬วғӅ݋ϸᔈǴᆀࣁ ȕ-ୃ඲ࠠ(ȕ-periectoid)ǹќ΋ᜪуΕ NǵOǵ C ฻ߚߎឦϡનǴ཮׎ԋୃ඲(peritectic)ǶԜٿᜪޑϡનуΕࡕ཮ග ଯȕ-transusǴ٬ Į ࣬ϐ୔ୱᡂεǴࣁᛙۓ Į ࣬ǴԜᆀࣁ Į ࣬ࠠ⑲ӝߎǴ Ԝᅿӝߎόܰᗝ೷ЪคݤҔ዗ೀ౛மϯǴՠᏱԖؼӳޑלଯྕወᡂ܄ Ϸౌௗ܄Ƕ ϸϐǴబуޑϡનё٬ȕ ࣬୔ୱᡂεǴࣁᛙۓ ȕ ࣬ǴԜᆀࣁ ȕ ࣬ ࠠ⑲ӝߎǴуΕCrǵMnǵFeǵCoǵNiǵCuǵPt ฻ϡનǴӧեྕΠ ȕ วғӅ݋ϸᔈǴᆀࣁ ȕ-Ӆ݋ࠠ(ȕ-eutectoid)ǹబу VǵZrǵMoǵZrǵ Ta ฻ϡનࡕǴᆀࣁ ȕ-ӕ඲ࠠ(ȕ-isomorphous)Ǵӵ Fig. 2-4[8]܌ҢǴԜ ٿᜪޑϡનуΕࡕ཮फ़եȕ-transusǴ٬ ȕ ࣬ϐ୔ୱᡂεǴࣁᛙۓ ȕ ࣬Ƕ

(17)

&" Ԝӝߎᗝ೷܄٫ǴՠࢂஏࡋၨଯЪ໧܄Ϸלወᡂ܄ৡǶ ԜѦǴऩబуΑ Į ࣬Ϸ ȕ ࣬ᛙۓϡનǴӵ Ti-6Al-4VǴ܄፦߈՟ ܭ316 όឌᒳϐ੝܄Ǻלᇑ܄ӳǵଯྕமࡋ٫ǴёӧᝄदᕉნΠ٬Ҕǹ Ti-6Al-4V Ԝᜪӝߎё࿶җڰྋਔਏೀ౛ٰቚуமࡋǴᆀࣁ Įɠȕ ࣬ࠠ ⑲ӝߎǴҗܭமࡋӳǴଯྕᏹբ܄፦٫ǴੲമமࡋϷלወᡂமࡋؼӳǴ ೏ቶݱ௦ҔǴՠࢂԜᜪࠠӝߎӧᡂᄊᗺаΠ཮࡚հਔ཮ૄϯǴ೷ԋౌ ௗ֚ᜤǶ 2.2 ਼ϯ⯗ [8] [9] 2.2.1 પ਼ϯ⯗(ZrO2) ਼ϯ⯗ޑٿঁЬाٰྍࣁԾฅࣚޑ⯗मࣳک௹⯗ҡǴౢໆᙦ൤Ǵ ԐයᔈҔࢂ଺ࣁऐОᑄǶ਼ϯ⯗ԖΟᅿӕન౦׎ᡏǴӧ࠻ྕਔ่ᄬࣁ ൂ௹඲࣬(monoclinic)Ǵ྽ྕࡋϲଯԿ 1170ʚǴ่ᄬ཮ᙯᡂࣁ҅Б඲ ࣬(tetragonal)Ǵӆϲ Կ 2370ʚਔǴ཮җ҅Б඲࣬ᡂࣁҥБ඲࣬(cubic)Ǵ ܭ2680ʚᙯᡂࣁన࣬Ǵ่ᄬϐᙯᡂӵ Fig. 2-5 ܌ҢǶ Wolten [10]ࡰрǴհࠅਔǴҗ҅Б඲࣬ᙯᡂԋൂ௹඲࣬ࢂ΋ᅿഞҖ ණ៓ࠠ(Martensitic transformation)࣬ᡂϯǴၸำύ཮Їଆ 3%Կ 5%౦ Бӛ܄ᡏᑈᡂϯǴЪՔᒿ๱᏾ᡏ׷਑ϐઇ຋ǴၨคճҔሽॶǴคݤճ

(18)

'" ҔଏОБԄ੃ନ࣬ᡂϯࡕౢғޑᔈᡂૈ[11]Ƕऩబуૈ٬਼ϯ⯗׎ԋᑻ ҡ่ᄬ(Fluorite)Ǵٯӵ਼ϯᵍǵ਼ϯ⯗ǵ਼ϯ✍฻բࣁӼۓᏊ(stabilizer)Ǵ ё٬਼ϯ⯗வ࠻ྕډᑼᅙ೿ᆢ࡭ҥБ่ᄬǴ೭ᅿஒቃਗ਼࣬ᡂϯ੃ନԶ ٬ҥБ඲ႽӧեྕΠᛙۓޑ׷਑ǴᆀࣁҥБᛙۓ਼ϯ⯗(CSZ)Ǵځচ ౛ࢂע࣬ᡂϯޑᙯඤྕࡋ౽ډၨեޑྕࡋǴፓ᏾ӼۓᏊӧ਼ϯ⯗ϐ֖ ໆǴ཮Ԗόӕϐ܄፦ǴϩձࣁӄӼۓϯ਼ϯ⯗ǵ೽ҽӼۓ਼ϯ⯗Ƕ

2.2.2 ೽ϩӼۓ਼ϯ⯗(partially stabilized zirconia)

బуϿໆӼۓᏊǴۈѝૈӧଯྕΠωૈౢғӼۓϐ਼ϯ⯗҅Б඲

࣬ǴҭૈӧதྕΠӼۓӸӧܭൂ௹඲࣬ύǶ೭ᅿ׎ԄϐPSZǴ྽༾຋

ᕳӧൂ௹඲࣬ύԋߏਔǴ΋ѿ຋ᕳӾᆄډၲҥБ඲࣬(t-Zr)ೀǴջว ғᔈΚᇨว࣬ᡂϯ(stress-induced phase transformation)೷ԋҥБ඲࣬ ᙯᡂࣁൂ௹඲࣬ϐ࣬ᡂϯǴԜᙯඤЇวᡏᑈᑩ๞Ǵ่݀ࠅߔЗ຋ᕳᝩ

ុԋߏ[12]Ƕ೽ϩӼۓ਼ϯ⯗ڀԖଯமࡋǵଯ໧܄ǵե዗໺Ꮴ܄کᓬؼ

ϯᏢܢל܄ǴӢԜத೏٬Ҕܭ่ᄬഏౠБय़Ƕ

2.2.3 ӄӼۓϯ਼ϯ⯗(full stabilized zirconia, FSZ)

బуى୼ޑӼۓᏊǴ٬਼ϯ⯗ܭதྕਔӄ೽ᆢ࡭ӧଯྕޑҥБ඲

࣬Ǵҗܭ FSZ ଯ਼ᚆη໺Ꮴ܄Ǵࡺҭத٬Ҕӧ਼਻ୀෳᏔϷᐯ਑ႝ

(19)

(" 2.3 ਼ϯᵍ[13] ᵍ(Yttrium)Ǵচηׇ 39Ǵ਼ϯᵍ(Yttria, Y2O3)ᔈҔܭᑻӀ׷਑Ǵ В߻Ӏႝౢ཰ว৖Ǵҗܭ਼ϯᵍڀԖଯໆηਏ౗ǵϯᏢᛙۓ܄ޑᓬᗺǴ ࡺҔܭᇙ೷ีβΟ୷ՅᑻӀણǴ೏кϩၮҔӧႝዀᡉҢᏔ΢ǹԜѦǴ ਼ϯᵍΨҔբഏౠ׷਑బуᏊϐ೽ҽӼۓ਼ϯ⯗(Y-PSZ)ǴY-PSZ Ԗ ၨଯமࡋ੝܄Ǵന٫לשமࡋӧ֖3 mol% Y2O3ǹ਼ϯᵍҭҔӧᇙ೷ ଯᓸНሌᐩǵ្৔඲ᡏǵᓯӸϡҹޑݰᅶ୔׷਑Ǵᖓጢႝ৒Ꮤک੝ᅿ ऐО׷਑฻Ƕ 2.4 ਼ϯ᎑[14] ᎑(Aluminium)Ǵচηׇ 13 ဦǴ਼ϯ᎑(Alumina, Al2O3)қՅڰ ᡏǴӧ᝜཰ǵᇙഏ཰ک׷਑ࣽᏢ΢Ξᆀࣁ᝞βǶᔈҔቶݱǴόЮܭഏ ౠπ཰ԿъᏤᡏౢ཰ǹआᙔᝊҡЬԋϩࣁ਼ϯ᎑ǴᄞΕϿໆ TiǵFe ࣁᙔᝊҡǴԶ਼ϯ᎑඲ᡏϣԖ٤೚ޑCr3+ᚇ፦ࣁआᝊҡǴҗܭआᙔᝊ ҡ඲ᡏ่ᄬ܌ठǴವԄฯࡋࣣࣁ9ǹ᎑ࣁႝک዗ޑؼᏤᡏǴԶ਼ϯ᎑ ߾࣬ϸǴЪ਼ϯ᎑ޑ่ᄬ࣬౦ᏤठฯࡋόӕǴଯฯࡋޑ፾ӝբࣴᑃ׷ ਑ϷϪപπڀǹӧ߈ԃٰǴऍ୯ 3M Ϧљ໒วрҔ᎑کีβϡનӝԋ ᇙ೷рமϯ࣒ዟǹനදၹ܌ـډޑᔈҔࣁܙӀણکъᏤᡏౢ཰ᇙำԖ ਔ཮਼৾ϯ᎑྽୷݈Ƕ

(20)

)" 2.5 YAGȐY3Al5O12ȑ

YAG(Yttrium aluminum garnet)Ǵ่ᄬࣁ҅Б඲سǴԖ٤Ꮲޣ[15] ᢀჸډ Y5Al3O12ǴҭஒԜᆀբ YAGǹځၨࣁቶݱᔈҔӧᑻӀႜ৔ک ڰᄊᐟӀ[16]ǹҗܭ YAG ଯฯࡋ੝܄Ǵӧଯႝη״Πόܰ٬׷਑ઇᚯǴ ೷ԋᕗӀ܄፦फ़եǴࡺ཮ୖᚇีβϡનӵ✍(Ce:YAG)ׯ๓ǹฅԶୖᚇ ⇕(Nd:YAG)ǵ⥭(Er:YAG)ёቚமႜ৔ޑวӀਏ౗[17]Ƕ 2.6 ⑲ᆶ਼ϯ⯗ϐϸᔈ ഏౠԖؼӳଯྕமࡋǵฯࡋǴکϯᏢᛙۓ܄฻ᓬ໨ǹ࣬ჹ໧܄ϼ եϷமࡋϩණ฻੝܄ǴᏤठϩ݋׷਑ޑё᎞܄کტڮࣣόૈ଺҅ዴຑ ՗Ƕߎឦࢂ΋ᅿڀԖӀᐛǵ൤Ԗۯ৖܄ǵ৒ܰᏤႝǵ໺዗฻܄፦ޑނ ፦Ǵځ੝፦೿ၟ඲ᡏϣ֖ԖԾҗႝηԖᜢǹߎឦϩηϐ໔ޑೱ่ࢂߎ ឦᗖǴӢԜᒿཀ׳ඤՏ࿼೿ёӆख़ཥࡌҥೱ่Ǵ೭Ψࢂߎឦ՜৖܄ؼ ӳޑচӢǹࡺߎឦ׷਑ޑ੝܄൳Яᆶഏౠ࣬ϸǴࡺഏߎፄӝ׷਑ޑࣴ ز߾ࢂࣁ٬ٿᅿ׷਑࣬ᇶ࣬ԋǴԶ೏ቶݱޑࣴزǶ ӭኧഏኳࣣ൤਼Ǵ਼চηъ৩λǴܰ຾Ε⑲ޑ਱ሜύǴӧ⑲߄य़ ׎ԋ߄य़ቫǶRuh et al.[18]ࡰрǴTi ᆶ ZrO2ࣚय़ϸᔈǴTi ӧ ZrO2ύႫ

کྋှࡋࣁ 4 at.%TiǴԶ ZrO2ӧ Ti ύႫکྋှࡋऊࣁ 10 at.% ZrO2ǹ

(21)

*"

ܰ׎ԋ࿼ඤࠠڰྋᡏǹේǵ਼ǵణচηλǴǹ߾ӧ⑲ύёᇸܰ຾Ε਱ ሜՏ࿼׎ԋ໔ሜࠠڰྋᡏǴ೷ԋ⑲ޑฯࡋቚமǴՔᒿ๱⑲඲਱தኧΨ ׯᡂǶ

Welsch and Bunk[4]ࡰрǴڰྋ਼ޑ⑲ߎឦ཮ׯᡂځᡂ׎ᐒڋ (deformation mechanism)Ǵځྖ౽य़җ࿦ࢊރ(prismatic)ྖ౽ѳय़ᙯࣁ ᒷय़ރ(pyramidal)ǴԶගଯځமࡋϷླྀМኳኧǶӕਔǴҗܭ਼চη՞

Ᏽ਱ሜՏ࿼Զගଯ Įĺȕ ࣬ᡂϯྕࡋǴ٬ Į ࣬୔ᡂεǴЪ਼চη௨ӈ

Տ࿼ޑׇϯ(Ordering)ቚуฯࡋǶIgator et al. [20]ࣴزࡰрӧҺՖྕࡋΠ

਼ӧ Į ࣬ޑᘉණ߯ኧλܭӧ ȕ ࣬Ƕ

Lin et al.[21]ޑፕЎύࡰрǴଯྕᅙᑼ⑲ύZrO2 ೏εໆྋΕǴϸᔈ

ၸำ཮ஒZrO2 ᗋচԋZrO2-xǴᄌೲհࠅΠ ᚈ඲Į-Zr(O)ޑ݋р٬ள

primary ZrO2-x ᙯඤࣁsecondary ZrO2-xǶԶZrO2 ਼ϯՔᒿ਼ޑញрǴ

೽ϩញрޑ਼׎ԋ਻ݰᆫ໣ӧ⑲ߎឦ඲ࣚೀǴ೽ϩྋΕ⑲ύ׎ԋ

Į-Ti(O)ڰྋᡏǶհࠅၸำύǴĮ-Ti(O)ڰྋᡏᙯᡂԋԖׇϯ่ᄬޑԛ ⑲ϯނTi3O(Titanium sub-oxide)Ƕ྽ϸᔈਔ໔ᡂߏ܈ࢂӧӭϾ܄ഏౠ

ޑϸᔈύǴ⑲཮೏਼ϯԋTiO2Ƕ

(22)

!+"

(second phase)ӧ඲ࣚౢғǴ೷ԋ඲ಈಒϯǴ຾΋؁ቚமᐒఓ܄፦Ƕ1200 ʚа΢໻Ԗ4 wt% TiྋܭZrO2ǴՠTiࠅёྋှຬၸ20 wt% ZrO2٠׎ԋ

Į-Ti(Zr,O)ڰྋᡏǴ΋ѿTiຬၸԜྋှࡋǴ(Ti,Zr)3OߡவĮ-Ti(Zr,O)ڰྋ

ᡏ ݋ р ǹ Ԗ ࣴ ز ᛾ ܴTi у Ε ZrO2ё ׯ ๓ZrO2ޑ ᛙ ۓ ܄ ک ל ዗ ܄

(thermal shock)[23]ǶਥᏵLin and Lin[24] [25]ࣴزǴTiᆶZrO2ӧ1750ʚ຾

ՉᘉණϸᔈǴᅙᑼ⑲ڰྋ਼ϯ⯗Զ׎ԋĮ-Ti(Zr,O)ǴհࠅਔTi2ZrO࣬

཮ӧڰ࣬Į-Tiύ݋рǶ

Zalar et al.[26]ޑࣴزᡉҢǴӧAl2O3/Tiޑᘉණ྽ύǴ⑲ݮ๱඲ࣚᘉ

ණ຾Ε਼ϯ᎑ഏౠǴ٬਼ϯ᎑ᆶ⑲ౢғϸᔈǴڰྋӧ⑲ύǴ਼ڰྋӧ

⑲ύЪTi3AlޑғԋࢂԖ೏ᢀჸډޑǹҗܭ⑲᎑ғԋϟߎឦϯӝނӵ

Ti3AlᆶTiAlǴჹܭ਱ሜ܈໔ሜচηޑྋှࡋ཮КપĮ-Ti࣬ჹٰளϿǶ

ҁჴᡍஒZrO2/TiᆶAl2O3/Tiٿᅿόӕޑس಍ӝԶࣁ΋Ǵ٠ᢀჸځ

ύޑᡂϯǴҞޑӵಃ΋കᇥॊǺӧ1980ԃࡕࣴزีβϡનჹ⑲ϐϸᔈǴ

่ፕᡉҢY2O3ࣁཱུӼۓ׷਑Ǵલᗺࢂܳ຦ԋҁ೷ԋᔈҔ܄፦ό٫Ǵฅ

ԶAl2O3ҭԖӼۓZrO2ਏ݀ǴЪܰـܰளǴԋҁե༹Ǵᙖҗ೭ኬޑಔ

(23)

!!"

ಃΟക ჴᡍ؁ᡯ

ҁჴᡍࣁAl2O3ϐ֖ໆჹ Al2O3/ Y2O3/ ZrO2سഏౠ׷਑ᆶ⑲ߎឦ ଯྕᅙᑼᘉණϟय़ϸᔈቹៜǴჴᡍ௦Ҕ5 ಔόӕషӝКٯഏౠ၂ТǴ ځಔԋԋϩ၁ӈܭ Table 1Ǵ܌ӈόӕᡏᑈКٯషӝǴӚಔ၂ТڮӜ ࣁ10A/90YZǵ20A/80YZǵ30A/70YZǵ40A/60YZǴаϷ YAGǶ

10A/90YZ ࣁ 10 vol%Al2O3 ک 90 vol%(30 vol%Y2O3 + 70

vol%ZrO2)܌ಔԋǴᡏᑈКඤᆉԋವԸКࡕࣁ 10 mol% Al2O3 + 15

mol% Y2O3 + 75 mol% ZrO2ǹԶ20A/80YZǵ30A/70YZǴϷ 40A/60YZ

ϐ၂ТڮӜᆶ࣬ᜢಔԋ߾аԜᜪ௢ǹYAG(Y3Al5O12)җ 62.5 mol%

Al2O3 + 47.5 mol% Y2O3܌ಔԋǶ

аFig. 3-1 Tuohig and Tien[27]܌ගр1450ʚϐ Al2O3-ZrO2-Y2O3

Οϡ࣬კǴ5 ಔԋϩ኱Ңрځӧ࣬კ࣬ჹՏ࿼ࡕǴёளޕࣣՏӧ࣬ӕ Gibbs triangle ϣ(c-ZrO2ǵYAGǴAl2O3ಔԋ)Ǵځύӧ࣬კ܌ฝޑޔጕ

ࣁԜtriangle 30 vol%Al2O3ޑՏ࿼Ƕ

3.1 ણᡏషӝᇙഢ

ஒ਼ϯ᎑ǵ਼ϯᵍک਼ϯ⯗ણ҃٩ Table 1 ܌ӈόӕᡏᑈКٯష

(24)

!#" (NH4OH)ፓ᏾ྋᏊԿ pH ॶԿ 11Ǵගٮ഍໚ᚆηǴᗉխഏౠણ҃ᗭಈ ౢғი༧(agglomerate)౜ຝǶௗ๱٬Ҕᠳ܏Ꮤ(Brink Homogenizer Polytron PT 3000)кϩᠳ܏ 10 ϩដǴӆаຬॣݢਁᕏᏔ(Sonicator, 550 W)ਁᕏ 10 ϩដǴԜ؁ᡯख़ፄΟԛǴ٬ځԋࣁ֡ϬϩණϐᝌੌనǴ࿼ ܭу዗݈(Hotplate)΢у዗ᠳ܏ԿྋᏊᇃวǴಖԋᐚ࿨ރǴௗ๱࿼Ε 150ʚ੗ጃޑ੗ጃ੗ଳǴଳᔿֹ౥ࡕаᅦྺࣴಙϷ݌ஒᏉ่ԋ༧ޑણ ҃ཡ࿗Ǵനࡕа80 mesh ၸᑔǴߡёளډϩණӳޑ Al2O3/ Y2O3/ ZrO2 ણ҃Ƕ 3.2 ഏౠ၂Тᇙഢ ໆڗၸᑔϐણ҃ 25 gǴ࿼Ε 20 ʠ ! 20 ʠኳڀ٠ࡼаᔈΚ 75 MPaǴᓸ༧ਔሡણ҃ӧኳڀϣѳ᏾Ǵᗉխᓸ༧ࡕ܌೷ԋғखஏࡋϩթ ό֡Ǵᇙբрࠆࡋ5 ʠϐଳᓸԋࠠ၂Тǹϐࡕஒᓸ༧ޑғखܫΕଯྕ ᝗ύǴа5ʚ/min ޑϲྕೲ౗ܭ 1500ʚᐨ่ 4 λਔǴӆ᝗հԿ࠻ྕǴ ᇙள Al2O3/ Y2O3/ ZrO2ᐨ่၂ТǶ 3.3 ஏࡋෳໆ

ᐨ ่ ၂ Т ᡏ ஏ ࡋ(bulk density) ࢂ а ߓ ୷ ԯ ቺ চ ౛ (Archmid’s method)ෳۓǶASTMC 373-72 ኱ྗೕጄǴ२Ӄஒ၂Т࿼Ε੗ጃύу዗

(25)

!$" ௗ๱ஒ၂Т࿼ΕѐᚆηН(distilled water)ύуаฆݦ٠࡭ុ 5 λਔࡕǴ ᓉ࿼24 λਔհࠅǴௗ๱ໆෳځӧНύᝌੌख़(suspended mass)Ƕᝌੌ ख़ໆෳֹ౥ࡕǴڗр၂Т٠ஒ߄य़ӭᎩϐНϩᔔ࡬Ǵߡِೲ຾Չᔸख़ (saturated mass)ෳໆǴໆᔸख़ਔ໔ाอǴаխӢ၂Т߄य़НϩᇃวǴ ԶቹៜໆෳϐᆒዴࡋǶΟ໨ኧᏵࣣໆෳֹ౥ࡕǴ٩ᏵΠӈϦԄǴߡள ၂ТޑᡏஏࡋǶ ܦ ! ܤ ܯ െ ܵ BǺଳख़ǵMǺᔸख़ǵSǺНύᝌੌख़ ણᡏ౛ፕஏࡋࢂҔMultivolume Pycnometers ໆෳԶளǶᐨ่၂Тޑᡏ ஏࡋᆶ౛ፕஏࡋޑКॶջࣁ࣬ჹஏࡋǶ 3.4 ᅙᑼᘉණϸᔈჴᡍ ଯྕᅙᑼᘉණϸᔈჴᡍϐྕࡋکਔ໔ୖኧϩձࣁ 1700ʚ/2 hrǴԜ ྕࡋଯܭ⑲ޑྋᗺ(1668ʚ)Ǵ٬⑲׎ԋనᄊǴߟᇑഏౠ၂Тύ຾Չϟ य़ᘉණϸᔈǴځჴᡍࢬำӵΠǺ 1. Ңཀკӵ Fig. 3-3 ܌ҢǴஒ⑲ણ༤ΕҡᏀڴൖύǴ༤ډ΋ъՏ࿼Ǵ ӆ࿼Ε 10 ʠ × 10 ʠ × 5 ʠϐഏౠǴനࡕӆబу⑲ણᙟᇂ᏾ঁ ഏౠ၂ТǴ٠ั༾ࡼуᓸΚ٬⑲ણ׳уЌჴǶ

(26)

!%"

2. ஒԜڴൖܫΕᅙྡྷ᝗ϣ(Model No. 4156, Centorr Inc., Nashua, New Hampshire, UK) 3. ע᝗ϣ੿ޜࡋܜԿ 10-4torr ࡕǴ೯Εො਻(argon)Կ΋ε਻ᓸǶ 4. ख़ᙟΟԛ΢࿼؁ᡯǴዴߥ๚ᡏϣ਼਻ᐚࡋᇻեܭε਻Ǵа 80ʚ/min ϐനεᒡрф౗ΠǴϲྕԿ1700ʚǶ 5. ӧ 1700ʚΠ࡭ྕٿλਔࡕǴа 5ʚ/min հࠅԿ 1000ʚࡕǴӆ᝗հ Կ࠻ྕǴߡֹԋᘉණჴᡍǶ 3.5 ၂Тᇙഢ

ճҔᄌೲϪപᐒ(Low Speed Saw, ISOMET BUEHLER)کᢕҡΘ ТϪڗAl2O3/ Y2O3/ ZrO2ഏౠ၂Тǹݮ๱ࠟޔഏౠ၂Тᆶ⑲ߎឦϟय़ БӛϪڗௗӝ၂ТǴϩձᇙբSEMǵXRDǵTEM ၂ТǶ 1. SEM ၂ТᇙഢǺஒ Al2O3/ Y2O3/ ZrO2ፄӝഏౠ၂ТϪപऊࣁ10 ʠ × 10 ʠ × 5 ʠǴаᇙഢߎ࣬ϐำׇஒ၂Т߄य़Ҕᢕҡࣳરࣴᑃܙ Ӏೀ౛Կ1 ȝPǶ 2. XRD ၂ТᇙഢǺϪപЁκౣӕ SEM ၂ТǴЪஒ၂Т߄य़ࣴᑃԿ ѳڶǴаᗉխ X Ӏᙅ৔ਔૻဦѨ੿Ƕ 3. TEM ၂ТᇙഢǺஒ၂ТϪപࣁ 3 ʠ × 3 ʠ × 1 ʠǴ٬Ҕᢕҡࣳ રࣴᑃԿ1 ȝP аΠࡕǴа AB ጤ܈ G1 ጤஒ၂Тᗹຠܭ 2 ʠ × 1 ʠϐልᕉ΢ǴӆճҔᚆη෧ᖓᐒ(Precision Ion Polishing System)Ѻ

(27)

!&"

Կ፾྽ޑઇࢰǴ຾Զᇙբᖓ୔Ƕ

3.6 ϩ݋ሺᏔ

3.6.1 X-ray ᙅ৔ϩ݋(XRD)

٬ҔX-Ray ણ҃ᙅ৔ሺ(Model M18XHF, Mac Science, Japan)௖ ૸Ƕႝᓸ೛ۓ50 kVǴႝࢬ 200 mAǴаልႢϐ CukĮ(Ȝ = 1.5406 Å)ౢ ғϐ X Ӏ৔ጕ࿶ Ni-filter ᘠݢࡕǴӧ၂Т߄य़຾Չ 5°–90±ϐ șș ኳ Ԅ௟ඔǴ௟ᅲೲࡋ 2°/minǴ؂ ș = 0.01°(Sampling = 0.01°)Ծ୏૶ᒵ X-ray மࡋǶჹ Al2O3/ Y2O3/ ZrO2ഏౠ၂Тբᙅ৔ϩ݋а᠘ۓ่඲࣬Ǵ ஒ௟ඔрٰޑpeak ӆᆶ JCPDs ь࣬ϕКჹǴаղۓ࣬ձǶ 3.6.2 ௟ඔԄႝηᡉ༾᜔(SEM/EDS) ٬Ҕ዗൑ว௟ඔԄႝηᡉ༾᜔(FESEM, JSM-6500F, JEOL Ltd., Tokyo, Japan)ϐङӛණ৔ႝηԋႽ(BEI)ᆶΒԛႝηԋႽ(SEI)Ǵаᏹբ ႝᓸࣁ20 kV ᢀჸ Al2O3/ Y2O3/ ZrO2၂Тᆶ⑲ߎឦϸᔈϟय़༾ᢀಔᙃǴ

٠аEDS Ϸ X-ray mapping ᠘ۓ၂ТύӚ࣬ಔԋϡનکъۓໆϩ݋Ƕ Ӣࣁௗӝ၂Тύޑഏౠ೽ϩόᏤႝǴࣁΑᗉխӧ๚ᡏϣᢀჸ၂Тਔౢ ғႝ಻ಕᑈܫႝ(charging)ǴᏤठ၂Т೏ઇᚯǴ໪٬Ҕ Ion coater ӧ၂

Т߄य़΢ᗓ΢΋ቫႌǴႝࢬ೛ۓࣁ20 mAǴᘢᗓਔ໔ 120 ࣾǴ੿ޜࡋ

(28)

!'" 3.6.3 ऀ೸Ԅႝηᡉ༾᜔(TEM/EDS)

аऀ೸Ԅႝηᡉ༾᜔(Philips TECAI 20)ϩ݋ϸᔈࡕޑ၂ТǴаܴ ഁႽ(Bright Field Image, BFI)ᢀჸϟय़ಔᙃǹ᏷୔ᙅ৔კ׎(Selected Area Diffraction Pattern, SADP)բࣁᒣۓ࣬ձޑ٩ᏵǴ٠ᢀჸࢂցԖБ Տᜢ߯ǹૈໆϩණӀ᛼ሺ(Eenrgy Dispersive Spectrometer, EDS)ϐۓ܄ Ϸъۓໆϩ݋а᠘ۓӚঁ࣬ޑಔԋϡનϷКٯǶ

(29)

!("

ಃѤക ่݀ᆶ૸ፕ

ҁࣴزаᘏڗङӛණ৔ႝηቹႽϩ݋ϟय़ϸᔈ༾ᢀ่ᄬǴቹႽ ၨ ߝ ޑ ࣁ চ η ׇ ၨ ε ޑ ϡ ન Ǵ ٠ ٬ Ҕ TEM/EDS ଺ ຾΋ ؁ϩ݋ Ƕ 10A/90YZǵ20A/80YZ Ϸ 30A/70YZ ϐᅙᑼᘉණϸᔈܴᡉόӕܭ 40A/60YZǴѤಔ࣬ӕϐೀࣁ YAG ӧᘉණϸᔈ܌תᄽޑفՅǹӢԜΨ ஒ௖૸YAG ൂᐱᆶ Ti ଺ᅙᑼᘉණϸᔈǴϸᔈࡕᢀჸځϟय़༾ᢀ่ᄬǹ Ӛಔޑғԋᐒᄬ܌೷ԋόӕ׎ᇮஒӧΠЎ௖૸ځচӢǶ 4.1 ҂ᆶ⑲ϸᔈϐપഏౠ XRD ϩ݋ Fig. 4-1 ࣁӚᅿόӕԋϩޑᐨ่၂Т(10A/90YZǵ20A/80YZǵ 30A/70YZǵ40A/60YZ)Ǵӧۘ҂ᆶ⑲ଯྕᘉණϸᔈ߻ޑ X Ӏᙅ৔კ ׎ǴᡉҢૻဦനଯޑΟঁঢ়ॶࣁ2ș ࣁ 30.6ǵ50.7ǵ60.5 Տ࿼Ǵа JCPDs ьᡉҢ಄ӝ c-ZrO2ǹYAG ࣁ cubic ่ᄬǹԶ Al2O3ࣁrhombohedral ่

ᄬ(Į-Al2O3)Ƕ Ѥಔ၂Т܌ϩ݋рޑঢ়ॶՏ࿼࣬ৡค౦ǴৡձനεѝࢂAl2O3ঢ় ॶޑӭჲǴவΟϡ࣬კᡉҢ[Fig. 3-2]ǴրΓஒ 40A/60YZ ೭ԋϩ኱Ң ࣁಃ 4 ᗺǴ࿶җीᆉ਼ϯ᎑֖ໆࣁ 40 vol%ǴࣁѤಔϐനǴࡺ XRD ෳрޑ Al2O3ঢ়ॶኧໆ࣬ჹၨӭǹϸϐӧ 10A/90YZ ΠǴ਼ϯ᎑ѝԖ 10 vol %Ǵ܌аளډ࣬ჹϿໆঢ়ॶǶ

(30)

!)"

Ѥಔԋϩ(10A/90YZ – 40A/60YZ)ӧ ZrO2-Y2O3-Al2O3Οϡ࣬კϣ

Տӧӕ΋ঁ Gibbs triangleǴҗ࣬კளޕࣁ c-ZrO2ǵYAGǵAl2O3ಔԋǴ

٠வ XRD ᙅ৔კᡉҢѤಔ၂ТࣣԖԜΟ࣬Ǵࡺᙅ৔კ׎ঢ়ॶՏ࿼࣬

ӕǹҗЎ᝘ӣ਼៝ϯ⯗ϐ࣬ᡂϯၸำ[Fig. 2-5]ளޕǴZrO2 ӧଯྕࣁ

cubic ่ᄬǴհࠅԿதྕᔈ཮࣬ᡂϯԋ monoclinic ่ᄬǴՠӧᙅ৔კ ׎ޑpeaks ࠅӧ c-ZrO2р౜ǴᡉҢ೭Ѥಔ၂ТԖӼۓϯޑਏ݀Ƕ

Fig. 4-2 ࣁ҂ᆶ Ti ᘉණϸᔈ߻Ǵ10A/90YZǵ20A/80YZǵ30A/70YZǵ 40A/60YZ ᐨ่ഏౠ၂Т࿶ thermal etching(1300ʚ/2 hr)ϐङӛණ৔ႝ ηቹႽ(BEI)༾ᢀ่ᄬკǶߝՅ୔ୱ࿶ SEM/EDS ۓໆϩ݋ёளޕ Y2O3

ڰྋӧZrO2ޑКٯ(OǺ62 at%ǵAlǺ2 at%ǵYǺ10 at%ǵZrǺ26 at%)Ǵ

ς࿶ၲډӄӼۓ਼ϯ⯗ޑጄᛑǴӆଛӝ΢ॊϐ XRD ϩ݋Ԝࣁ cubic

ZrO2ǹԶས୔࿶ SEM/EDS ۓໆϩ݋(OǺ60 at%ǵAlǺ33 at%ǵYǺ1 at%ǵ

ZrǺ6 at%)Ǵӆଛӝ XRD ޑ่݀КჹǴёղᘐࣁ Į-Al2O3ǹԪ୔࿶

SEM/EDS ۓໆϩ݋(OǺ62 at%ǵAlǺ23 at%ǵYǺ13 at%ǵZrǺ2 at%) ᆶXRD ޑ่݀ᡉҢǴёᘐۓࣁ YAG(Y3Al5O12)Ƕ

ҔXRD Ϸ SEM/EDS ޑϩ݋ࡕǴਥᏵ࣬კᡉҢϷ Fig. 4-2Ǵҗ࣬ კளޕ YAG ޑԋϩКٯ࿶җ level rule ीᆉ่݀Ǵӧ 10A/90YZ ࣁ 9 mol%ǵӧ 20A/80YZ ࣁ 10 mol%ǵӧ 30A/70YZ ࣁ 11 mol%ǴԶӧ

(31)

!*"

40A/60YZ ࣁ 11.5 mol%ǴѤಔ YAG Кٯৡ౦നӭѝԖ 2.5 mol%Ǵৡ ౦ࢂߚதλޑǶ

10A/90YZ ӧ࣬კ΢ё࣮ډޑࣁ਼ϯ⯗(85 mol%)Ǵ਼ϯ᎑ѝ཮Ԗ Ͽໆ(6 mol%)Ǵа Fig. 4-2(a)ёᢀෳډས୔(Al2O3)ѝԖϿໆǴ಄ӝ࣬

კޑ߃՗ǹҗFig. 4-2(b)SEM/BEI ٰᢀჸ 20A/80YZ ϐ዗ᆭᇑ၂ТǴ

ёаว౜ځߝ୔य़ᑈၟ10A/90YZ ٰКၨǴ࣬ჹၨϿǴϸϐས୔೽ϩ

К10A/90YZ ܌࣮ډޑᗋӭǴவΟϡ࣬კᡉҢǴҔ level rule ीᆉ࣬ԋ ϩޑКٯࣁ ZrO2 76 mol%ǵAl2O3 14 mol%Ǵૈᇥܴ Fig. 4-2(b)ས୔ໆ

КٯቚуচࡺǶ

ฅԶ30A/70YZǴҭҔ level rule ीᆉ่݀Ǵ่݀ᡉҢ Al2O3ࣁ26

mol %Ǵ֖ໆӭܭ߻ॊٿԋϩǴϸϐ ZrO2ࣁ63 mol%Ǵჹྣ Fig. 4-2(c)

ޑ่݀ǴႣෳډསՅ୔ໆቚуࢂ֍ӝޑǹനࡕ 40A/60YZ ӧ࣬კ΢Ǵ

வlevel rule ளޕ਼ϯ⯗ࣁ 50.5 mol%Ǵ਼ϯ᎑ޑКٯࣁᆶ߻ॊΟಔК ၨǴ֖ໆࣁ38 mol%ǴࣁѤಔϐനǴӆҗ Fig. 4-2(d)ٰᢀჸځས୔ໆ ҭࢂӭܭځдΟಔǴჴᡍ่݀಄ӝ࣬კϐႣෳǶ

4.2 ഏౠᆶ⑲ϸᔈࡕϐӄඳ༾ᢀ่ᄬ

ᅙᑼᘉණϸᔈ܌௦ҔޑୖኧǴྕࡋᆶ࡭ྕਔ໔ϩձࣁ1700ʚϷ 2

(32)

#+" ᕇளى୼ૈໆߟᇑӚಔഏౠ၂ТǴЪϸᔈਔ໔ߏǴӢԜҗFig. 4-3 ё ᢀჸډϸᔈቫࠆࡋࣣԖ 500 ȝP а΢Ǵځύа 10A/90YZ[Fig. 4-3(a)] ᆶ YAG[Fig. 4-3(e)]ӧଯྕᅙᑼᘉණޑϸᔈቫࠆࡋౣեǴځࣁচӢࣁ ׭ڋ⑲ᘉණਏ݀ԋਏ࣬ჹၨӳǹϸϐ40A/60YZ[Fig. 4-3(d)]җܭ਼ϯ ᎑ޑ֖ໆςᡂࡐଯǴࡺӧଯྕਔϸᔈၨࣁቃਗ਼ǴؒԖ׭ڋ⑲ޑਏ݀Ǵ ࡺϸᔈቫࠆࡋ൩εǶ

Fig. 4-3(a)ࣁ Ti ᆶ 10A/90YZ ϟय़ᘉණϸᔈǴङӛණ৔ႝηቹႽ

༾ᢀ่ᄬკǶҗե७౗࣬ޑ׎ᇮٰϩᒣǴ⑲ୁԿഏౠୁӅϩࣁ3 ቫǴ

ϸᔈቫI ᎞߈⑲ୁǴԶ⑲ୁ୔ୱࣁ᏾ঁས୔Ǵߎឦୁᇻᚆϟय़ೀϝԖ

ᢀჸډĮ-TiǴᆶ Chang and Lin[5]Ў᝘КၨǴ٠ؒԖᢀჸډଞރĮ-Tiǵ Ti2ZrO ฻ғԋނǴԶࢂ᏾ঁ׎ԋ Ti3Al ӝߎǹϸᔈቫ II ӧե७౗Π࣮ ډ೚ӭᐍ༝׎ޑ׎ᇮǴ٠ЪԖ٤ϣ೽ᗋԖ٤ϸᔈǴ୷׷೽ϩёа࣮ډ ས୔׎ᇮౢғǹϸᔈቫIII ܌ᢀჸډޑᆶϸᔈቫ II ৡ౦ѝӧܭ࣮ؒډ ߻ॊས୔׎ᇮϐ༾λ݋рނǹচۈϟय़ӧϸᔈI ޑՏ࿼Ǵ၁ಒޑ׎ᇮ ᆶғԋᐒᄬஒ཮ӧϐࡕ૸ፕǶ Fig. 4-3 (b)ࣁ Ti ᆶ 20A/80YZ ϟय़ᘉණϸᔈङӛණ৔ႝηቹႽ༾ ᢀ่ᄬკǶҗե७౗࣬ޑ׎ᇮٰϩᒣǴ⑲ୁԿഏౠୁӅҭϩࣁ3 ቫǴ ӧ⑲ୁ୔׎ԋTi3Al ӝߎǴϸᔈቫ I ᎞߈ ⑲ୁǴԖ Ti3AlǵZrO2ǵTi2ZrAl

(33)

#!"

ғԋނౢғǴߎឦୁᇻᚆϟय़ೀϝԖᢀჸډĮ-TiǴЪচۈϟय़ҭӧԜ

୔ୱǴҔጂᓐ኱ҢϐǹϸᔈቫIIǵIII ᆶ Fig. 4-4 (a)ႜӕǴ࣬౦໻ࢂӧ ᎞߈ഏౠୁ୔ୱǴၨቃਗ਼ܭ10A/90YZǶ

Fig. 4-3 (c)ࣁ Ti ᆶ 30A/70YZ ϟय़ᘉණϸᔈङӛණ৔ႝηቹႽ༾

ᢀ่ᄬკǶҗ BEI კ࣬ޑ׎ᇮϩ݋ࡕҭϩࣁ 3 ቫǴӧϟय़ೀས୔ೀϝ

ࣁ Ti3Al ӝߎǴߎឦୁᇻᚆϟय़ೀԖᢀჸډ Į-TiǴӧচۈϟय़܌ӧޑ

ϸᔈቫI ᎞߈⑲ୁǴᢀჸډ Ti3AlǵZrO2ǵTi2ZrAl ғԋނǹϸᔈቫ IIǵ

III ᗨӧե७౗Πᢀჸډᆶ߻ॊٿಔ࣬߈Ǵՠ຾΋؁ࠅว౜όᅰฅ࣬ ӕǴᐍ༝׎ ϣ೽ϸᔈ౜ຝ׎ϐᇮς࿶ၨϿ೏ᢀჸډǴ࣬ჹᛙۓᘉණϸ ᔈӧԜԋϩς࿶ၲډᖏࣚॶǶ Fig. 4-3 (d)ࣁ Ti ᆶ 40A/60YZ ϟय़ᘉණϸᔈǴङӛණ৔ႝηቹႽ ༾ᢀ่ᄬკǶҗѰୁԿѓୁϸᔈቫ٩ׇࣁIǵIIǴϸᔈቫ I ᎞߈⑲ୁǴ ϸᔈቫ II ௗ߈ഏౠୁǴӧϟय़ೀ⑲ୁޑՏ࿼ໆෳډޑࣁ TiAlǴߎឦ ୁᇻᚆϟय़ೀϝԖᢀჸډĮ-TiǴচۈϟय़ӧϸᔈቫ I ޑՏ࿼Ǵӵጂᓐ ܌ҢǶ Fig. 4-3(a)–(d)ࢂਥᏵ਼ϯ᎑ԋϩӭჲԶ௨ӈǴ਼ϯ᎑ԋϩຫӭ ߾ϸᔈຫቃਗ਼Ǵځύа Ti ᆶ 40A/60YZ ϸᔈࣁനᝄख़Ǵ᏾ঁϸᔈቫ ޑ׎ᇮς࿶όӕܭځдΟಔǴࢂӢࣁనᄊ⑲ᘉණډߚதϣ೽Ꮴठǹฅ

(34)

##"

Զ 10A/90YZ Կ 30A/70YZǴ୷ҁޑ༾ᢀ่ᄬკৡ౦όεǴЬाৡ౦

ࣁϟय़ೀϸᔈቫǴவΟϡ࣬კ[Fig. 3-1]ٰ࣮ point 1–5 ϩձࣁځ҂ᆶ ⑲ϸᔈ߻ޑԋϩǴԶӧԜ Gibbs triangle ္܌ฝޑٗచጕࣁ Al2O3 30

vol%Տ࿼ǴԜεऊࣁ percolation threshold Տ࿼ Ǵᜢܭ percolation ౛ ፕҗΠӈ܌௶ॊǶ

٩Ᏽpercolation theory[28]ǴԜ౛ፕॊᇥǺ྽܄፦ߚதཱུᆄޑٿঁ ނ፦ A ک BǴ྽ AB ֡ϬషӝࡕǴऩ A ϣୖΕ B ޑԋϩࣁ 30 vol%а

΢ਔǴ܌և౜ޑ੝܄ࣁௗ߈પ B ޑ܄፦ǹऩ A ϣୖΕ B ޑԋϩ҂ၲ

ډ 30 vol%ਔǴև౜ޑ܄፦ϝࢂа A ޑࣁЬǶځচӢࣁ B Кٯӧ 30 vol%а΢ਔǴς࿶ၠၸ percolation thresholdǴ٠Ъ཮ӧ A ϣ೽׎ԋϣ ೯ၡǴ٬ளᏤႝ܈ᘉණ฻Ǵ཮ᒿ๱Ԝϣ೯ၡ຾ՉǴࡺ܌և౜ޑ܄፦ࣣ

߈પBǹB Кٯ҂ၲ 30 vol%ߡคݤ׎ԋϣ೯ၡǴࡺ܄፦໺ሀڙډߔ

ᏲǴ܌և౜рޑ܄፦ϝࢂа A ޑࣁЬǶԜ౛ፕ፾ҔܭᏤႝ܄ǵᘉණ

܄ǴࣗԿࢂϯᏢϸᔈ੝܄Ƕ

٩Ᏽpercolation theoryǴٰ࣮ࡑ 40A/60YZ ჹ Ti ޑϸᔈǴ਼ϯ᎑ ޑ֖ໆςຬၸpercolation thresholdǴߡ཮ӧഏౠ္׎ԋϣ೯ၡǴЪ⑲ ჹ਼ϯ᎑ޑϸᔈቃਗ਼Ǵࡺ⑲ߡёӧԜϣ೯ၡ຾ՉᘉණԿഏౠుೀǴӢ

(35)

#$"

਼ϯ᎑ޑໆคݤ׎ԋϣ೯ၡǴ⑲คݤݮԜ೯ၡᘉණ຾Εഏౠ္ǴӢԜ 10A/90YZ Կ 30A/70YZ ჹ⑲ޑᘉණϸᔈϝฅԖ׭ڋਏ݀Ǵ٬ள༾ᢀ ่ᄬৡ౦όᇻǶ

Fig. 4-3 (e)ࣁ Ti ᆶ YAG ϟय़ᘉණϸᔈǴङӛණ৔ႝηቹႽ༾ᢀ

่ᄬკǶϸᔈቫӅϩࣁ4 ቫǴനѰୁས୔ೀࣁ Į-Ti(Al, O)Ǵቫᆶቫϐ ໔ޑϩܴࣚᡉǴӧ BEI Πёᢀჸډచރ่ᄬǴϸᔈቫ IǵII চηׇന εǴຫ۳ഏౠୁচηׇຫλ(ၨས)ǴচӢࣁ᎞߈⑲ୁޑ YAG ϸᔈቃ ਗ਼Ǵ⑲཮ᆶഏౠϣޑ਼ϸᔈǴ྽਼֖ໆ೏ϸᔈԿ΋ۓਔǴᒿϐ᎑Ψ཮ ᆶ⑲຾ՉϸᔈǴฅԶ Y2O3ӧᅙᑼᘉණϸᔈ࣬ჹᛙۓǴࡺӧϟय़ೀё ᢀჸډԜ࣬ූ੮ǴԶనᄊ⑲຾Εഏౠ္ޑϸᔈำࡋǴᒿ๱ుΕഏౠϣ ࡕ೴ᅌѳ጗ǹচۈϟय़ӧϸᔈቫI ޑՏ࿼Ǵӵጂᓐ܌ҢǶ 4.3 Al2O3Ti ୁϸᔈቫޑቹៜ ⑲ୁޑϸᔈϐ௖૸ᆶϸᔈቫ I ׎ԋ࣬ᜢǴFig. 4-4 ࣁ Ti ᆶ 10A/90YZ ࿶(a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϟय़༾ᢀ่ᄬܫεკ (BEI)Ǵёᢀჸډϟय़ೀࣁόೕ߾ᒯᏁރ׎ᇮǴߝ୔ࣁ ZrO2ǵས୔೽

ϩࣁ Ti3AlǹFig. 4-4(b)–(f)ϩձࣁ Ti ǵYǵOǵAlǵZr ϡનϐ X-ray

mappingǴTi ༾ໆᘉණ຾Εഏౠ୔ୱǴҗܭ Ti ᆶ Al2O3܌բҔǴεໆ

(36)

#%"

Ҕ׭ڋ Zr ܌ѦӛᘉණǴZr ൳Яόᆶ⑲຾ՉᘉණϸᔈǴԶ Zr ᆶ Y ૻ

ဦᗺࣣӧ਼ϯ⯗୔ǴਥᏵFig. 4-5 Murray ගрϐ Ti-Y ࣬კǴளޕᵍ ӧ⑲ޑڰྋໆ༾Яځ༾Ǵࡺᵍޑϩթё଺ࣁղᘐ⑲ᆶഏౠচۈϟय़ޑ Տ࿼Ǵӵጂᓐ܌ҢǴځдΟಔ(20A/80YZǵ30A/70YZǴϷ 40A/60YZ)

܌ளډޑኧᏵᆶԜԖ๱࣬ӕޑ่݀ǴࡺրΓஒѝҔ10A/90YZ ೭ಔ྽

բж߄ٰᘐۓচۈϟय़ӧՖೀǶ

ਥᏵLin and Lin[25]ࣴزTi ᆶ ZrO2ᘉණଽа዗ᓸݤ࿶ 1550 ǑC ዗

ೀ౛Ǵว౜ௗ߈ϟय़ೀ⑲ୁڰྋεໆޑ Zr ϡન(ऊ 25-30.7 at%Zr)Ǵ հࠅࡕ٠҂ᙯᡂࣁ Į-TiǴԶࢂֹӄᙯᡂ orthorhombic ่ᄬޑ ȕғ-Ti(Zr, O)ǹLin and Lin[29]ࣴز Ti ᆶ ZrO2࿶ 1750 ǑC ࣚय़ϸᔈࡕǴҭӧϟय़

ೀว౜ଞރ݋р࣬Ǵ࿶TEM ᠘ۓࣁ Į-Ti(Zr, O)Ǵଞރ Į-Ti தว౜ܭ Įȕ ⑲ӝߎس಍ύǴӵ Ti-6Al-4V ܈ Ti-Cr س಍ύǶՠவ Fig. 4-4 ύǴ

٠ؒԖᢀჸډ⑲ୁڰྋεໆޑZr ϡનǴϟय़ೀҭؒว౜ଞރ Į-Ti ݋

р࣬ǴԜࣁҁჴᡍᆶ߻ΓЎ᝘നЬाޑৡ౦Ƕ

Fig. 4-6 ࣁ Ti ᆶ(a)10A/90YZǵ(b)20A/80YZǵ(c)30A/70YZǵ (d)40A/60YZ ࿶ 1700ʚ/2 hrǴᅙᑼᘉණϸᔈࡕǴϸᔈቫ I ༾ᢀ่ᄬკ (BEI)Ƕ4 ಔԋϩ܌ᢀჸډޑߝ୔ࣣࣁ ZrO2ǹ10A/90YZǵ20A/80YZǵ

(37)

#&"

Ԫ୔ϐ༾ᢀ่ᄬѝԖӧ 20A/80YZ Ϸ 30A/70YZ ౢғǴа TEM/EDS ϩ݋่݀ࣁ Ti2ZrAlǶ а Fig. 4-7(a)10A/90YZ ϸᔈቫ I ғԋᐒᄬҢཀკᡉҢǴϸᔈቫ I ӧଯྕਔǴ྽ᅙᑼ⑲຾ΕഏౠਔǴ਼ϯ᎑৒ܰᆶ⑲ౢғϸᔈǴЪ O ᆶ Ti ϐᒃکΚεЪ O ӧ Į-Ti ύޑᘉණ߯ኧᇻεܭӧ ZrO2ύ[30]ǴӢ Ԝ਼ࡐ৒ܰᘉණԿ⑲ୁǶ Al2O3ࣁᏊໆКϯӝނ(Stoichiometric compound)Ǵ྽Ԗ 3 ঁ਼ၟ ⑲բҔਔǴᒿϐ཮Ԗ2 ঁ᎑চη೏ញܫрǴਥᏵЎ᝘ࡰр[31-33]Ǵӧྕ ࡋ 800KǴ᎑ӧ⑲ޑᘉණ߯ኧК਼ӧ⑲ޑᘉණ߯ኧεٿঁኧໆભǹՠ ӧଯྕ 1400K ਔǴ᎑ӧ⑲ޑᘉණ߯ኧК਼ӧ⑲ޑᘉණ߯ኧǴϝฅӭ Α΋ঁኧໆભǶ᎑ڰྋӧ⑲ύډၲ΋ۓКٯǴӧଯྕհࠅਔߡ཮׎ԋ ⑲᎑ӝߎǴ߈চۈϟय़ Al εໆᘉණԿ Ti ୁ׎ԋ Ti3AlǹЪਥᏵ߻ॊ Ў ᝘ ග ډ[31-33]Ǵ ё а ှ ញ ࣁ ϙ ሶ ਼ Ѧ ӛ ᘉ ණ ޑ ໆ ၨ ᎑ Ͽ Ƕ ࿶ җ SEM/EDS ϩ݋ว౜ས୔ԋϩ(OǺ5 at%ǵAlǺ30 at%ǵTiǺ61 at%ǵ ZrǺ4 at%)ࣁ Ti3Alǹߝ୔೽ϩ࿶ SEM/EDS ϩ݋(OǺ63 at%ǵAlǺ1 at%ǵ

TiǺ2 at%ǵYǺ10 at%ǵZrǺ24 at%)ࣁ ZrO2Ƕ

Fig. 4-7(b)(c)ࣁ 20A/80YZǵ30A/70YZ ϸᔈቫ I ғԋᐒᄬҢཀკ ᡉҢǴ׎ԋޑᐒڋᆶ߻य़௶ॊৡ౦όᇻǴਥᏵRavi et al.ޑࣴزࡰр[36]Ǵ

(38)

#'"

ӧ Ti3Al ੝ۓ඲਱௨ӈਔǴZr ཮ᆶ Ti ౢғ࿼ඤࠠԶ׎ԋ Ti2ZrAlǶᒿ

๱਼ϯ᎑ޑКٯቚуǴϸᔈ཮׳уቃਗ਼Ǵҗܭ Zr ک Ti ཮ౢғ࿼ඤࠠ

ڰྋᡏǴ௢ፕ᎞߈ϟय़ೀޑZrO2Ԗ٤⯗চη཮࿼ඤ຾ΕTiAl3Ǵౢғ

(Ti1-xZrx)3Al[34]Ƕ࿶җ SEM/EDS ϩ݋ว౜ߝ୔ԋϩ(OǺ60 at%ǵYǺ

12 at%ǵZrǺ28 at%)ǵϷ(OǺ62 at%ǵYǺ11 at%ǵZrǺ27 at%)ࣣࣁ c-ZrO2ǹས୔ࣣࣁ Ti3AlǹԶԪՅ୔ୱࣁ(Ti1-xZrx)3Al ࿶ၸ຾΋؁᠘ۓ

ࡕǴҗTEM/EDS аϷ SADP ϩ݋Ǵёаዴۓౢғғԋނ Ti2ZrAlǶ

Fig. 4-7(d)ϸᔈቫ I ғԋᐒᄬҢཀკᡉҢǴҗܭӧ 40A/60YZ ޑ Al2O3Кٯς࿶ຬၸ30 vol%Ǵ྽ Ti ᘉණ຾ΕഏౠਔǴϸᔈКႣයύ

ᗋाቃਗ਼ǴTi ᏾ঁߟᇑԿഏౠుೀǴεໆ Al2O3ᆶ Ti ϸᔈԶӧഏౠ

ϣ೽׎ԋᘉණϣ೯ၰǴ׳ӭ Al চηᘉණԿϟय़ೀ׎ԋ TiAlǶ࿶җ

SEM/EDS ϩ݋ෳໆډߝ୔ࣁ ZrO2(OǺ62 at%ǵAlǺ2 at%ǵTiǺ3 at%ǵ

YǺ11 at%ǵZrǺ22 at%)ǵས୔ࣁ TiAl(OǺ6 at%ǵAlǺ48 at%ǵTiǺ 38 at%ǵZrǺ8 at%)ǴTi ӧഏౠୁ܌ϸᔈϷϣӛᘉණၨזǴࡺ׎ԋΑ TiAl Զߚ Ti3Al(⑲ޑ֖ໆၨե)ǴЪ Ti ёᙖҗϣ೯ၡӛഏౠୁΕߟǴ

ӢԜ Ti ӧϟय़ೀޑಕᑈໆၨϿǶ

ࣁుΕΑှ⑲ᆶ਼ϯ⯗ϐϸᔈቫǴFig. 4-8 ࣁ Ti ᆶ 10A/90YZ ࿶ (a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϟय़༾ᢀ่ᄬܫεკ(BFI)Ǵёаܴ

(39)

#("

ᡉ࣮ډϟय़ೀǴϩձԖٿঁ࣬ǴFig. 4-8(b)࿶җ SADP ᠘ۓ ZrO2่ᄬ

ࣁcubicǴ࿶җीᆉϐ඲਱தኧࣁ 5.09 ÅǴzone axisǺ[111]ǴЪҗ Fig. 4-8(d)TEM/EDS ۓໆϩ݋่݀ࣁ OǺ62.01 at%ǵTiǺ12.02 at%ǵZrǺ 25.97 at%Ǵளޕ Y2O3ޑڰྋໆςၲډӄӼۓ਼ϯ⯗ޑጄൎǴࡺё׳

уዴۓࢂc-ZrO2Ƕ

Fig. 4-8 (c)࿶җ᏷୔ᙅ৔(SADP)᠘ۓ Ti3Al ่ᄬࣁ hexagonalǴी

ᆉрϐ඲਱தኧࣁ a = 5.775 Åǵc = 4.638 ÅǴc К a ॶࣁ 0.803 λܭ 1.633Ǵࡺࣁቨࡧϐ hcpǴzone axisǺ["ത102]ǹவ Murray ගр Ti-Al ࣬ კ[Fig. 4-9]ᡉҢǴளޕ Ti3Al ڰྋጄൎࣁ 20–50 at% AlǴҗ Fig.

4-8(e)TEM/EDS spectrum Ϸۓໆϩ݋่݀ࣁ AlǺ32.29 at%ǵTiǺ61.32 at%ǵZrǺ6.40 at%Ǵ০ပӧ Ti3Al ڰྋጄൎϣǴࡺ׳уܴዴϟय़ೀࣁ

ϸᔈނTi3Al ඲рԶό໻ࢂ Al ڰྋӧ Ti ္Ƕ

ਥᏵϐ߻Ў᝘[25]ǴZrO2཮ᆶ Ti ౢғϸᔈǴଯྕਔεໆޑ Zr ᆶ O

ڰྋӧܭprimary Į-TiǴ׎ԋϟᛙۓ(metastable)ၸႫکޑ Į-Ti(Zr,O)ڰ ྋᡏǴӧհࠅޑၸำύǴĮ-Ti ڰྋޑ Zr ک O ໆ೴ᅌफ़եǴTi2ZrO ཮

࿶җӅ݋(eutectoid)ϸᔈவၸႫک Į-Ti ύ݋рǶՠࢂҁჴᡍ࣮όډԜ

౜ຝǴЬाޑচӢӵΠǺᗨฅ ZrO2཮ၟ Ti ཮ϸᔈǴՠࢂ Ti ཮Ӄၟ

(40)

#)"

཮Ԗᇸ༾લ਼Ǵ਼ޜϾό཮ډၲၸႫکރᄊǴӢԜόىᡣĮ-Zr ݋рǶ

Fig. 4-11 ࣁ Ti ᆶ 30A/70YZ ࿶(a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴ ϸᔈቫI ༾ᢀ่ᄬܫεკ(BFI)Ǵϩ݋კύѓᜐٿ࣬ǴFig. 4-11(b)࿶җ SADP ᠘ۓ Ti2ZrAl ่ᄬࣁ hexagonalǴ࿶ीᆉ඲਱தኧࣁ a = 5.961 Åǵ

c = 4.793 ÅǴځ c К a ॶࣁ 0.804 λܭ 1.633ǴࡺԜ hcp ่ᄬၨቨࡧǴ c/a ॶᆶ Ti3Al ߚதௗ߈Ǵzone axisǺ[0001]ǹЪҗ(d)TEM/EDS ۓໆ

ϩ݋่݀ࣁ OǺ4.70 at%ǵAlǺ23.21 at%ǵTiǺ40.56 at%ǵZrǺ31.53 at%Ǵвಒᢀჸ(Ti + Zr)ǺAl ޑԋϩௗ߈ 3Ǻ1Ǵ಄ӝ Spring Handbook[34] ܌ගрޑ(Ti1-xZrx)3AlǴЪ Y-ZrO2 + Ti ཮Ԗ Į-Zr ౢғǴՠҁࣴز٠ؒ

࣮ډԜ่݀ǴZr ྋΕ Ti3Al ڗж TiǴനࡕᡂԋΑ Ti2ZrAlǶϩ݋ޑ่

ፕࣣёҔЎ᝘[35]ٰှញϐǴЪԜϯӝނ਒ᜐѸۓԖ Ti3AlǴ⑲ᆶ਼ϯ

⯗ϣ⯗࿼ඤࡕǴߡёғԋTi2ZrAlǴӢԜᘐۓԜ่݀Ƕ

4-11(c)࿶җ᏷୔ᙅ৔(SADP)᠘ۓ Ti3Al ่ᄬࣁ hexagonalǴ࿶ीᆉ

ࡕ඲਱தኧࣁa = 5.793 Åǵc = 4.639 ÅǴځ c К a ॶࣁ 0.800 λܭ౛ གྷॶ 1.633Ǵzone axisǺ["ത103]ǹவ Ti-Al ࣬კǴёளޕ Ti3Al ڰྋጄ

ൎࣁ20–50 at% AlǴҗ Fig. 4-11(e)TEM/EDS spectrum Ϸۓໆϩ݋่ ݀ࣁ OǺ5.73 at%ǵAlǺ36.56 at%ǵTiǺ46.88 at%ǵZrǺ10.83 at%Ǵ Al э(Al + Ti)Кٯࣁ 43 at%Ǵ০ပӧ Ti3Al ୔ୱϣǶ

(41)

#*"

Fig. 4-11 Ti ᆶ 30A/70YZ ࿶(a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϸᔈ ቫI ༾ᢀ่ᄬܫεკ(BEI)Ǵߝ୔ࣁ ZrO2ǵԪՅ୔ୱࣁTi2ZrAlǵԶས

୔೽ϩࣁ Ti3AlǴёаᢀჸډ Ti2ZrAl Ѹۓᎃ๱ Ti3Al ᆶ ZrO2ǹFig.

4-11(b)–(f)ϩձࣁ Ti ǵYǵOǵAlǵZr ϡનϐ X-ray mappingǴϡન Y ޑૻဦࣣӧკ(a)ߝ୔ೀǴԶ Ti ᘉණ຾Εϸᔈቫ I ϐૻဦᗺёӧས ୔ϷԪ୔ᢀჸډǴAl ϡનૻဦҭӧས୔ϷԪ୔р౜ǴКၨॶளݙཀ ޑࢂZr ૻဦόѝӧߝ୔ೀǴӧས୔ϷԪ୔ҭёᢀჸډϿໆޑૻဦᗺǴ Mapping ่݀ᆶ EDS ࣬಄ӝǴЪҗ Zr ޑϡનૻဦᗺӑຓΑ྽਼ϯ᎑ ֖ໆ΢ϲ٬ϸᔈᡂቃਗ਼Ǵջ٬ࢂӄӼۓ਼ϯ⯗ҭ཮ୖᆶϸᔈǶ 4.4 Al2O3ჹഏౠϸᔈቫޑቹៜ 4.4.1 ϸᔈቫ II Fig. 4-12 Ti ᆶ (a)10A/90YZǵ(b)20A/80YZǵ(c)30A/70YZǵ(d) 40A/60Y ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϸᔈቫ II ϐ༾ᢀ่ᄬკ (BEI)ǶFig 4-12(a)၂Т 10A/90YZ ёᢀჸډߝ୔ࣁ ZrO2ǹས୔చރ೽

ϩࣁ TiAlǴԪՅ୔ୱ Al3Zr ࣁచރ׎ᇮǴ٠཮Քᒿӧ TiAl ਒ǹԶས

୔ᐍ༝׎ᇮࣁ YAGǴᐍ༝׎ᇮ္ᗋԖ࣮ډϸᔈǴаᵍǵ᎑ǵ਼ϡન

܌ಔԋޑᐍ༝׎׎ᇮǴրΓᆀϐ Y-Al-O compounds(YAG, YAP, YAM ฻)ǴԜ׎ᇮёаᢀෳډόӕࠆࡋǵόӕޑၸ෠࣬Ǵ߄ҢԜ҂ၲѳᑽ ϸᔈǴ10A/90YZ ၂Тϣޑ Y-Al-O compounds ္Ǵനύ໔ߝ୔ޑࣁ

(42)

$+"

Y2O3ǵԛϐԪՅ୔ୱޑࣁYAP(YAlO3)ǵԶനѦቫས୔೽ϩ߾ࢂ YAGǶ

Fig 4-12(b)၂Т 20A/80YZ ܌ᢀჸډޑ࣬Ǵߝ୔ϝࢂ ZrO2ǹས୔

ᆶԪ୔చރ೽ϩϩձࣁ TiAlǵ Al3ZrǴAl3Zr ׎ᇮόӕܭ 10A/90YZ

၂ТǴନΑϿኧచރѦǴεӭ࣮ډࣁᙝރ׎ᇮǹԶས୔ᐍ༝׎ᇮࣁ YAGǴаϷᐍ༝ YAG ϣԖϸᔈޑ Y-Al-O compoundsǶ

Fig 4-12(c)၂Т 30A/70YZ ܌ᢀჸډޑ࣬Ǵ࣮ډޑЬाόӕܭ߻

ٿޣޑࢂǴځYAG ่ᄬόѝࣁᐍ༝ރǴᗋёа࣮ډᙝ׎చރޑ೽ϩǹ

Զ Y-Al-O compounds ӧԜԋϩΠǴ೏ᢀჸډޑ೽ϩߡᅌᅌޑ෧ϿǶ

Fig 4-12(d)ࣁ၂Т 40A/60YZ ϸᔈቫ IIǴ܌ᢀჸډޑߝ୔ࣁ ZrO2Ǵས

୔೽ϩࣁ᎑֖ໆၨӭޑTiAl ⑲᎑ӝߎǹᐍ༝׎ས୔೽ϩࣁ YAGǴԖ

ϸᔈޑ YAGǴΨ൩ࢂ Y-Al-O compounds ӧ 40A/60YZ ԋϩΠǴ࣮ډ ޑᐒ౗༾Яځ༾Ƕ

а Fig. 4-13(a)ࣁ 10A/90YZ ϸᔈቫ II ғԋᐒᄬҢཀკᡉҢǴ྽ Ti ᘉණ຾Εϸᔈቫ II ਔǴᒿ๱਼ϯ᎑ύޑ਼ᆶ⑲ϸᔈࡕǴ߻ॊගډ

Al2O3ࣁᏊໆКϯӝނǴ྽Ԗ 3 ঁ਼ၟ⑲բҔਔǴᒿϐ཮Ԗ 2 ঁ᎑চ

η೏ញܫрǴ೏ញܫрޑ᎑চη཮ڰྋܭᘉණ຾Εޑ⑲ύǴҗܭ᎑ޑ

֖ໆ࣬ჹӭܭϸᔈቫIǴӧჴᡍྕࡋ 1700ʚਔ׎ԋᅙᑼనᄊǴᒿ๱ྕ

(43)

$!" ฅԶԖ٤ញܫрޑ᎑ӧ 1700ʚࣁనᄊǴЪ཮ᆶ ZrO2ౢғϸᔈǴ Leverkoehne et al.ࡰр[36]Ǵ྽଺਼ϯ᎑ᆶ਼ϯ⯗ᐨ่ჴᡍǴуΕߎឦ ᎑ёߦ຾ጏஏ܄ǴԜЎ᝘ගډ Al ک ZrO2཮ౢғ ZrxAlyǴబу Al ֖ ໆၨϿਔǴ܌ளډޑᐨ่၂ТǴёа࣮ډ Al3Zr Ϸ Al2Zr ޑ׎ԋǶӧ ҁჴᡍϸᔈቫ IIǴ࿶җ SEM/EDS ϩ݋ࡕǴёᢀჸډ᎑⯗ޑϯӝނ

Al3Zr(OǺ5 at%ǵAlǺ69 at%ǵZrǺ24 at%)ǴਥᏵ΢ॊЎ᝘ޑ௶ॊǴ

ёаှញԜғԋނϐ׎ԋǶ 10A/90YZ ޑ Al2O3ѝԖ 10 vol%Ǵ྽ϸᔈቫޑ਼ϯ᎑ᆶ⑲ϸᔈԿ ΋ۓำࡋਔǴ⑲཮ᆶ YAG ຾ՉϯᏢϸᔈǴӧϐࡕ(4.6 ࿯)ගډ YAG ᆶ Ti ଯྕᅙᑼᘉණϸᔈǴTi ᆶ YAG ޑ਼ϯ᎑բҔࡕǴёᢀჸډ࣬ჹ ᛙۓޑ Y2O3੮ΠǴࡺ྽࣮ډપY2O3ౢғਔǴж߄ YAG ᆶ Ti ϸᔈǹ Զ YAP(YAlO3)܌эޑᡏᑈКǴߡёளޕϸᔈރݩǴԖ٤ࠆࡋКၨࠆ ޑ൩ୃӛϸᔈਔ໔ၨΦޑၸ෠࣬Ǵӧ೭္ᗨฅ YAG ୖᆶϸᔈǴՠӧ 10A/90YZ Ьा׭ڋ⑲ᘉණϝࢂڙ Y2O3֖ໆޑቹៜǶ Ti ᆶ 10A/90YZ ӧ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕΠǴว౜ YAG ᆶ Ti ϸᔈࡕǴԖғԋނ Y2O3ౢғޑᐒ౗ၨଯǹ٠Ъᒿ๱ Al2O3ޑКٯ ቚуǴߡԖى୼ޑ਼ϯ᎑ᆶ Ti ଺ᅙᑼᘉණϸᔈǴऩ਼ϯ᎑ىໆᆶ⑲

(44)

$#" Кၨόܰ೏ᢀჸډǹԶ୷׷Ьाࢂ҂ౢғϸᔈޑc-ZrO2Ƕ Fig. 4-13(b)ࣁ 20A/80YZ ϸᔈቫ II ғԋᐒᄬҢཀკᡉҢǴ୷ҁғ ԋᐒᄬ׎ԋϸᔈࣣᆶ߻ॊৡ౦όεǴࣣࢂ᎑ᘉණ܌ЬᏤ๱᏾ঁᡂϯǴ ᒿ๱ Al2O3֖ໆޑቚуǴᗨฅϸᔈቫ I ׎ԋ Ti3AlǴՠਥᏵ TEM/EDS

ϩ݋(OǺ5.73 at%ǵAlǺ36.56 at%ǵTiǺ46.88 at%ǵZrǺ10.83 at%)

⑲᎑֖ໆςௗ߈TiAlǴࡺ௢ፕ Al ޑᘉණᅌᅌԖΑज़ڋǹᒿ๱ Ti ᘉණ ຾Εϸᔈቫ II ޑጄൎਔǴᗨฅ Al ޑቚуǴՠ٠҂ว౜ TiAl Ψၟ๱ᡂ ӭޑ௃ݩǶ ᗨฅ Ti ཮ߟᇑ຾ΕഏౠୁǴՠഏౠፄӝ׷਑ϝࢂԖ׭ڋ⑲຾Ε ޑਏ݀Ǵ٬ள Ti ྽բज़ໆϸᔈǴ௓ڋ TiAl ޑ׎ԋǴᒿ๱ Al ޑቚуǴ Ꮴठ Al3Zr ΨഌុᡂӭǹӧԜԋϩΠǴפډ҂ϸᔈޑપ YAG ޑᐒ౗ ΢ϲǴΨޔௗ᛾ܴБω܌ගрޑଷ೛ϐ҅ዴ܄Ǵ୷׷೽ϩϝࢂᛙۓޑ cubic ZrO2Ƕ Fig. 4-13(c)ࣁ 30A/70YZ ϸᔈቫ II ғԋᐒᄬҢཀკᡉҢǴ 30A/70YZ ӧ਼ϯ᎑ԋϩ΢ς࿶ၲډ΋ঁᛙۓޑᖏࣚॶǴԜਔ Al2O3 ֖ໆ׳ӭǴᆶ 20A/80YZ ϸᔈቫ II ࣬ӕޑࣁ TiAl ޑໆΨؒԖቚуǴ Al3Zr ϐ֖ໆਥᏵ SEM ޑ BEI კёว౜ς࿶ᆶ୷׷ c-ZrO2ӕӭΑǴ

(45)

$$"

30A/70YZ ԋϩΠКၨᐱԖޑࢂપ YAG ޑ morphologyନΑᐍ༝׎ѦǴ ќ΋ᅿ׎ᇮࣁᙝ׎చރǶ Fig. 4-13(d)ࣁ 40A/60YZ ϸᔈቫ II ғԋᐒᄬҢཀკᡉҢǴӧԜԋ ϩΠว౜ഏౠς࿶ֹӄؒԖ׭ڋ⑲ޑਏ݀Ǵ྽εໆ Ti ݮ๱ϣ೯ၰᘉ ණ຾Εϸᔈቫ II ਔǴҗܭ 40A/60YZ ޑ਼ϯ᎑кىǴ཮ᆶ Ti ౢғቃ ਗ਼ϸᔈԶ׎ԋ TiAlǴϸᔈቫࣁ࣬྽ࠆޑ΋ቫǴЪ൳Я࣮όډ཮ౢғ Y2O3ғԋނޑ Y-Al-O compounds Ǵҗܭεໆޑ਼ϯ᎑ᆶనᄊ⑲ޑϸ ᔈǴ٬ளYAG ӧԜԋϩΠࣁ࣬ჹᛙۓǴᏤठ YAG ཮׭ڋ⑲ᅙᑼᘉණ

ޑଷຝǴ୷׷ޑ೽ϩਥᏵSEM/EDS ϩ݋ϝࢂ cubic ZirconiaǶ

Fig. 4-14 ࣁ 10A/90YZ ϸᔈቫ II ϐ X-ray mappingǴFig. 4-1 4(b) ёᢀෳډ Y-Al-O compounds Ϸ YAG ޑ୔ୱό֖Ԗ⑲ޑૻဦᗺǴ೷ ԋ YAG ჹ ⑲ ࣁ ࣬ ჹ Ӽ ۓ ޑ ଷ Ⴝ ǹ Fig. 4-14(b)(c) ᡉ Ң Y-Al-O compounds Ǵຫ۳ᐍ༝׎ϣ೽ Y ޑૻဦຫଯǴຫѦቫ߾ࢂ਼ϯ᎑К ٯଯǴ܌ᢀჸډޑAl ૻဦΨၨӭǹҗ Fig. 4-14(f)ϡન Zr ό཮ڰྋӧ YAGǵY-Al-O compoundsǴԶࢂ֡ϬණѲӧ୷׷ύǶ 4.4.2 ϸᔈቫ III Fig. 4-15 ᡉҢ Ti ϩձᆶ 10A/90YZǵ20A/80YZǵ30A/70YZǵ 40A/60YZ ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϸᔈቫ III ϐ༾ᢀ่ᄬკ

(46)

$%"

(BEI)ǶFig. 4-15(a)ࣁ၂Т 10A/90YZ ܌ᢀჸډޑ࣬Ǵёа࣮ډߝ୔ࣁ ZrO2ǴԪՅ୔ୱAl3Zr ࣁᙝރ׎ᇮǴZrO2ᆶAl3Zr ֡ϬණѲӧ᏾ঁϸ

ᔈቫIII ύǹԶས୔ᐍ༝׎ᇮࣁ YAGǴᐍ༝׎ᇮ္ᗋԖ࣮ډϸᔈǴࣁ

Y-Al-O compoundsǶฅԶа 10A/90YZ ϐϸᔈቫ IIǵIII аၨǴৡ౦ࣁ ⑲ᘉණόډϸᔈቫ IIIǴࡺؒԖ TiAl ౢғǹAl3Zr ׎ᇮӧϸᔈቫ II ࣁ

చރǴډΑϸᔈቫ III ࢂᙝރ׎ᇮǴځᎩϯӝނౢғࣣ࣬ӕǶ

Fig. 4-15(b)ࣁ၂Т 20A/80YZ ϸᔈቫ III ܌ᢀჸډޑ࣬Ǵё࣮ډ ߝ୔ࣁ ZrO2ǴԪՅ୔ୱ Al3Zr ࣁᙝރ׎ᇮǴས୔ᐍ༝׎ᇮࣁ YAGǴ

аϷᐍ༝׎ᇮ္ᗋԖϸᔈޑ Y-Al-O compoundsǴ೭٤ϯӝނࣣᆶ

10A/90YZ ϐϸᔈቫ III ࣬ӕǶFig. 4-15(c)ࣁ၂Т 30A/70YZ ϸᔈቫ III

܌ᢀჸډޑ࣬Ǵ܌ᢀჸډޑ่݀ᆶ၂Т 10A/90YZǵ20A/80YZ ϐϸ

ᔈቫ III εठ࣬ӕǴࣣࣁߝ୔ࣁ ZrO2ǴԪՅ୔ୱ Al3Zr ࣁᙝރ׎ᇮǴ

ས୔ᐍ༝׎ᇮࣁ YAGǹՠࢂӧ 30A/70YZ ϸᔈቫ III ύ Y-Al-O compounds ς࿶൳Я࣮όډΑǴќ΋ঁᆶόӕೀࣁӧԜϸᔈቫϝฅё а࣮ډ TiAl ౢғ(10A/90YZǵ20A/80YZ ϸᔈቫ III ߾ค)Ǵ߄ҢӧԜ

ԋϩ Ti ӧഏౠϣૈᘉණၨుೀǶ

Fig. 4-16(a)ࣁ 10A/90YZ ϸᔈቫ III ғԋᐒᄬҢཀკᡉҢǴှញ SEM/BEI [Fig. 4-15(a)]ᢀჸډޑғԋނǴа 10A/90YZ ϸᔈቫ III ᢀჸǴ

(47)

$&" җܭ Ti வϟय़ೀ΋ޔ۳ഏౠుೀᘉණǴόᘐޑ೏׭ڋǴԶϸᔈቫ III Ξௗ߈ܭഏౠୁ୔ǴډԜ୔ୱਔ Ti ς࿶൳Яόӆ߻຾Ǵࡺό཮࣮ډ Ti ᆶ Al ޑϯӝނǶ10A/90YZ ϸᔈቫ III ܌և౜ޑᆶϸᔈቫ II КၨǴ ৡ౦ѝӧϸᔈቫIII ؒᢀෳډ TiAl ޑ೽ϩǶ ᗨฅ⑲ؒᘉණ຾ΕϸᔈቫIIIǴՠࢂ Ti ᆶ AlǵO ڀԖࡐଯޑᒃک ΚǴӧ1700ʚଯྕΠǴAl2O3ϝԖى୼ޑૈໆૈ۳ϸᔈቫ IIǵϸᔈቫ I ӛѦᘉණᆶ Ti բҔǶ߻ॊගډ ZrO2཮ᆶ Al ϸᔈԶ׎ԋ Al3ZrǴ߄ Ң਼ϯ⯗཮ᆶ᎑ϸᔈǴԶ٬೽ϩޑ᎑ό۳ϟय़ೀᘉණ౽୏Ǵ᎑ڙډٿ ᅿ࣬ϸБӛբҔΚΠǴӧϸᔈቫ III ׎ԋ Al3ZrǹYAG ཮ύޑ਼ϯ᎑ ӛѦᘉණᆶ⑲ౢғϸᔈࡕǴ֖Ԗ Y2O3ූӸޑౢғǴ௢ፕ၀୔ୱޑϸ ᔈቫIII ϐ਼ϯ᎑ϸᔈԿ΋ۓำࡋࡕω཮Ꮴठ YAG ᆶ Ti ϸᔈǶ

Fig. 4-16(b)ࣁ 20A/80YZ ϸᔈቫ III ғԋᐒᄬҢཀკᡉҢǴှញ SEM/BEI [Fig. 4-15(b)]ᢀჸډޑғԋނǴځᢀჸډޑ౜ຝᆶ 10A/90YZ

ӧϸᔈቫIII ΋ኬǴҭࢂؒ ᢀჸډ Ti ޑ຾ΕԶౢғ TiAlǴҗܭ࣮ؒډ

ԜᅿϯӝނǴёаஒϐ྽բࢂ⑲ᘉණԿഏౠ၂ТుࡋǴղᘐ⑲ᘉණຯ ᚆߏอޑќ΋ᅿ٩ᏵǴ20A/80YZ ҭԖғԋ Al3ZrǴځғԋϐӢનᆶ΢

ॊ࣬ӕǹԶჹ Y-Al-O compounds ԶقǴ YAP ܌эޑᡏᑈϩ౗εӭ К10A/90YZ ޑλளӭǶ

(48)

$'"

Fig. 4-16(c)ࣁ 30A/70YZ ϸᔈቫ III ғԋᐒᄬҢཀკᡉҢǴှញ SEM/BEI [Fig. 4-15(c)]ᢀჸډޑғԋނǴ30A/70YZ ϸᔈቫ III ᢀჸǴ

ځ܌և౜ޑᆶ࣬ӕԋϩϐϸᔈቫ II КၨǴ࣬ӕᗺࣁࣣᢀෳډ TiAl ޑ ӸӧǴࣁϙሶѝӧ30A/70YZ ޑϸᔈቫ III Ԗᢀჸډ?ࢂӢࣁԜԋϩޑ ഏౠ၂ТAl2O3Кٯς࿶ၲډ΋ঁᖏࣚॶǴഏౠᆶ⑲ϐ໔ޑϸᔈς࿶ ډၲၨቃਗ਼ޑӦ؁Ǵՠࢂεठϝࢂёа׭ڋεӭኧޑ Ti ຾ΕǴς຾ Εഏౠޑ Ti ς࿶ёаᘉණԿϸᔈቫ III ޑӦБǴࡺёᢀෳډ TiAl ޑ ౢғǹჹ YAG ׎ᇮԶقǴᆶϸᔈቫ II ࣁനεόӕޑࢂϸᔈቫ III ѝ ᢀෳޑډᐍ༝׎ރޑYAGǴ࣮όډᙝރచદޑ Y3Al5O12Ƕ җа΢൳ᅿғԋނޑϸᔈǴёаว౜Ծҗޑ਼ϯ᎑ᆶ⑲ϸᔈനቃ ਗ਼ǹ྽਼ϯ᎑ϸᔈԿ΋ۓำࡋࡕǴYAG ύޑ਼ϯ᎑ω཮຾ՉϯᏢϸ ᔈǹԶᒿ๱਼ϯ᎑КٯቚуǴᢀჸډӧ 20A/80YZǵ30A/70YZ ޑϸ ᔈቫ I ϐ ZrO2཮ᆶ Ti3Al ଺࿼ඤౢғ Ti2ZrAlǶਥᏵа΢่ፕ௢ፕӚ

ᅿ਼ϯނᆶ⑲ޑϸᔈ৒ܰำࡋǺAl2O3ɧYAGɧZrO2(FSZ)ɧY2O3Ƕ

4.5 ഏౠୁ

Fig. 4-17 Ti ᆶ(a)10A/90YZǵ(b)20A/80YZǵ(c)30A/70YZǵ(d) 40A/60YZ ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴഏౠୁϐ༾ᢀ่ᄬკ(BEI)Ƕ

(49)

$(" ූ੮࣬Ǵᆶᘉණϸᔈ߻ϐ thermal etching પഏౠ၂ТѺрٰޑ่ፕ࣬ ӕǴࣣࣁߝ୔ࣁZrO2ǵԪՅ୔ୱࣁYAGǵుՅ୔ୱࣁ Al2O3Ƕ 4.6 પ YAG ᆶ⑲ଯྕᅙᑼᘉණϸᔈ րΓࣴز௖૸ЬाаTi ᆶ 10A/90YZǵ20A/80YZǵ30A/70YZ а Ϸ 40A/60YZ ᆶ⑲଺ଯྕᅙᑼᘉණϸᔈǴϸᔈ่ፕว౜ YAG ӧᘉණ ϸᔈၸำԖ๱ख़ाޑفՅǴࡺஒYAG ੝ձ૸ፕǴൂᐱၟ Ti ଺ଯྕᅙ ᑼᘉණϸᔈǶ

YAG/Ti ଯྕᅙᑼᘉණϸᔈӄඳკ[Fig 4-3(e)]ǴځӅϩࣁ 4 ቫǴന

Ѱୁས୔ೀࣁĮ-Ti(Al, O)Ǵቫᆶቫϐ໔ޑϩܴࣚᡉǴӧ BEI Πёᢀჸ

ډచރ่ᄬǴϸᔈቫ IǵII ࣁߝ୔চηׇ࣬ჹၨεǴ਼ϯ᎑ୖᆶϸᔈǴ

٬ள Y2O3 ޑᐚࡋቚуǹԶຫ۳ഏౠୁࣁϸᔈቫ IIIǵIVǴY2O3 ʈ

Y5Al3O12 ʈ YAlO3਼ϯ᎑ޑ੃઻ໆሀ෧ǴࡺቹႽޑߝࡋफ़եǶ

Fig. 4-18 ࣁ Ti ᆶ YAG ࿶(a)1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴϟय़༾ ᢀ่ᄬܫεკ(BEI)Ǵёᢀჸډϟय़ೀࣁόೕ߾ޑᒯᏁރ׎ᇮǴߝ୔ ࣁ Y2O3ǵས୔೽ϩࣁ Į-TiǹFig. 4-19(b)–(f)ϩձࣁ Ti ǵYǵOǵAl

ϡનϐX-ray mappingǴ่݀ᡉҢ AlǵO ᘉණԿ⑲ୁǴTi ߾ܴᡉᘉණ ຾ΕഏౠϸᔈቫǴҗY ޑ mapping ϐ่݀ǴਥᏵ Ti-Y ࣬კளޕ Y ڰ

(50)

$)" ᘐচۈϟय़ӧՖೀǴӵጂᓐ܌ҢǶԜᆶ߻ॊ10A/90YZ ᆶ⑲ଯྕᅙᑼ ᘉණϸᔈࡕǴղᘐচۈϟय़Ԗ๱΋Կ܄Ƕ Fig. 4-19(a)–(d)ϩձࣁϸᔈቫ I Կϸᔈቫ IV ϐङӛණ৔ႝη (BEI)༾ᢀ่ᄬკǴϸᔈቫ I ߝ୔ࣁ Y2O3ǵས୔ࣁ Į-Ti(Al,O)ǴӧԜቫ నᄊTi ߟᇑ຾ΕഏౠǴҗܭ᎞߈চۈϟय़ೀϸᔈቃਗ਼Ǵ⑲཮ᆶ YAG ϣޑ਼ϸᔈǴ਼ϯ᎑೏ᆐڗрٰǴY2O3 ӧᅙᑼᘉණϸᔈࡕόڰྋܭ

⑲ύǴࡺӧϟय़ೀёᢀჸډԜ࣬ᛙۓූ੮ǹZalar et al.ࡰр[26]ǴAl2O3

ၟTi ຾ՉϯᏢϸᔈࡕ཮ౢғ Al ک O ڰྋӧ⑲ύǴਥᏵ SEM/EDS ۓ ໆϩ݋ᡉҢ(OǺ21 at%ǵAlǺ12 at%ǵTiǺ67 at%)Ǵ᎑ک਼཮ڰྋӧ Ti ύԶ׎ԋࣁ Į-Ti(Al,O)Ƕ

Fig. 4-19(b)ϸᔈቫ II ߝ୔ҭࣁ Y2O3ǵས୔߾ࣁTi3AlǴӢࣁԜቫ

ӧഏౠୁୃϟय़ೀǴ྽Ti ᘉණԿഏౠፄӝ׷਑ٰډϸᔈቫ II ਔǴAl2O3

ҭ཮ၟTi ϸᔈǴՠࢂ Al ёᘉණޑຯᚆၟϸᔈቫ I ٰᇥ࣬ჹԖज़ǴAl

ಕᑈӧഏౠୁ္Ǵҗܭ֖ໆϼӭǴຬрΑӧ Ti ύڰྋޑጄൎǴ

SEM/EDS ϩ݋่݀ࣁ Ti3Al(OǺ18 at%ǵAlǺ20 at%ǵTiǺ62 at%)Ƕ

Fig. 4-19(c)ϸᔈቫ III ߝ୔ਥᏵ SEM/EDS ϩ݋ࣁ Y5Al3O12[15](OǺ

60 at%ǵAlǺ15 at%ǵTiǺ1 at%ǵYǺ24 at%)Ǵས୔ࣁ Ti3AlǹFig. 4-19(d)

(51)

$*"

YǺ20 at%)ǵས୔ҭࣁ Ti3AlǴຫ۳ഏౠୁޑϸᔈຫόቃਗ਼Ǵၟ⑲চ

ηᒃӝޑ਼চηᡂϿǴࡺӧϸᔈቫ IIIǵIV ҭ཮ᢀჸډ֖Ԗ਼ϯ᎑К

ٯϐϯӝނǴӵǺY5Al3O12܈YAlO3ǴYAG ࿶җ⑲ᘉණ຾Εഏౠ׎ԋ

ځд Y-Al-O ޑϯӝނǴ่݀ᡉҢǴຫ۳ഏౠୁǴ਼ϯ᎑ޑКٯຫεǴ

߄Ңഏౠຫόᆶ⑲ϸᔈǶ

Fig. 4-20 Ti ᆶ YAG ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕ(a)ࣁϸᔈቫ IIǵ III ໔ϐ༾ᢀ่ᄬܫεკ(BEI)ǴߝǵԪ୔аٿ࣬୔БԄӅӸǹAl ӧԪ ୔а Y5Al3O12БԄև౜ǴЪคݤڰྋӧߝ୔ Y2O3Ǵӧས୔а Ti3Al БԄ݋рǹTi ёаᘉණԿϸᔈቫ III ೀǹԶ Y ޑૻဦϩթӧߝ୔ǵԪ ୔ǹҗϡનY Ѱୁ(߈ߝ୔ೀ)ૻဦᗺӭܭѓୁ(Ԫ୔)ǴЪ Al ૻဦคݤ ӧߝ୔ว౜ǴߡёղᘐϸᔈቫIIǵIII ҬࣚǶ Ti ᆶ YAG ࿶ 1700ʚ/2 hr ᅙᑼᘉණϸᔈࡕǴਥᏵ΢ӈඔॊ଺ঁ่ ፕǴ྽ว౜ғԋނ Y2O3Ǵж߄ YAG ϣޑ Al2O3ς࿶ֹӄᆶ⑲ϸᔈǴ YAG ჹ Ti Զق٠όࢂߚதᛙۓޑϯӝނǴYAG Ѹ໪ᙯᡂԋόӕϸᔈ ቫٰჹᅙᑼ⑲଺׭ڋǴՠ࣬ჹ਼ϯ᎑ǵ೽ҽӼۓ਼ϯ⯗ഏౠԶق࣬Ǵ ᗋࢂԖᛙۓޑਏ݀ǴӧԜёаӆ଺຾΋؁ޑࡕុࣴزǺ਼ϯ⯗ϣబу όӕКٯޑ YAG ჹ Ti ᘉණϸᔈϐቹៜǶӚಔഏౠ၂Тᆶ⑲ଯྕᘉණ ϸᔈ܌ౢғޑϸᔈቫ኱ҢӧTable 2Ƕ

(52)

%+"

ಃϖക

่ፕ

1. 10A/90YZ(15 mol% Y2O3–10 mol% Al2O3–75 mol% ZrO2) ፄӝ

׷਑ᆶనᄊ⑲ӧ1700ʚ/2 hr ᅙᑼᘉණϸᔈǴӄӼۓ਼ϯ⯗׭ڋ⑲

ᘉණ຾Εഏౠ၂ТǴՠࢂӼۓ਼ϯ⯗բҔޑ਼ϯ᎑Ǵᆶ⑲ϸᔈϝ ࢂߚதቃਗ਼ǴᏤठ᎑ǵ਼ᘉණԿ⑲ୁǴϿໆ⑲ᘉණ຾Εഏౠ္ǹ

߈চۈϟय़⑲ୁࣁ Ti3AlǴϸᔈቫ္ߥ੮๱ၸ෠ϸᔈϐ Y-Al-O

compounds Ǵ⑲ᆶ᎑ӧଯྕౢғన࣬Ǵհࠅਔ݋р TiAlǹAl ᆶ ZrO2

ғԋ Al3ZrǴc-ZrO2ࣁᛙۓ࣬Ƕ

2. 20A/80YZ(14 mol% Y2O3–19 mol% Al2O3–67 mol% ZrO2) ፄӝ

׷਑ᆶనᄊ⑲ӧ1700ʚ/2 hr ᅙᑼᘉණϸᔈǴϸᔈᒿ਼ϯ᎑֖ໆ΢

ϲԶቚуǴό໻ӧϟय़ೀ Ti ୁౢғ Ti3AlǴϸᔈቫ I ᢀჸډ ZrO2

ᆶ Ti3Al ϸᔈǴғԋ Ti2ZrAlǴ⑲ᘉණ຾Εഏౠ္ޑϸᔈᐒᄬᆶ

10A/90YZ ᜪ՟Ǵࡺҭᢀෳډ Y-Al-O compoundsǵTiAlǵAl3ZrǴа

Ϸc-ZrO2Ƕ

3. 30A/70YZ(12 mol% Y2O3–29 mol% Al2O3–59 mol% ZrO2) ፄӝ

׷਑ᆶనᄊ⑲ӧ1700ʚ/2 hr ᅙᑼᘉණϸᔈǴԜԋϩаၲډ࣬ჹᛙ

ۓޑᖏࣚॶǴᅙᑼ⑲ᘉණԿഏౠ္ޑຯᚆǴςёӧϸᔈቫ III ࣮ډ

(53)

%!"

ނࣣёӧ30A/70YZ ࣮ډǶ

4. 40A/60YZ(10 mol% Y2O3–40 mol% Al2O3–50 mol% ZrO2) ፄӝ

׷਑ᆶనᄊ⑲ӧ1700ʚ/2 hr ᅙᑼᘉණϸᔈǴϸᔈቃਗ਼ำࡋௗ߈પ

ᆐ⑲ᆶ਼ϯ᎑ᅙᑼϸᔈǴεໆޑ⑲ᘉණ຾ΕഏኳǴ࣬ჹޑεໆޑ

᎑ᘉණԿ⑲ୁǴࡺӧϟय़ೀ Ti ୁౢғ TiAlǴϸᔈቫ IǵII ࣣౢғ

TiAl ᆶ FSZǴЪϸᔈቫ II ൳Я࣮όډ Y-Al-O compounds ǴѝԖ࣮

ډ҂ϸᔈޑપ YAGǶ

5. YAG(37.5 mol% Y2O3–62.5 mol% Al2O3)ፄӝ׷਑ᆶనᄊ⑲ӧ

1700ʚ/2 hr ᅙᑼᘉණϸᔈǴ⑲ᘉණ຾ΕഏౠǴԖܴᡉᘉණϸᔈቫǴ ⑲ୁࣁĮ-Ti(Al,O)Ǵഏౠୁ YAG ᒿ๱ Ti ᘉණ௃ݩϩှԋόӕޑ࣬Ǵ җϟय़Կഏౠ္ϩձࣁǺY2O3ǵY5Al3O12ǵYAlO3ǴϷ҂ϸᔈޑYAGǴ

(54)

%#"

ୖԵЎ᝘

1. ই୯ျǴȸ⑲ᆶ⑲ӝߎϐᅙྡྷȹ᠗೷ДтǴ΋΋ΎයǴ҇୯ 88 ԃ 6 ДǶ 2. ߠೣඵǴȸ2009 ߚߎឦ੝ᒠ ⑲ߎឦጇȹǴ଄იݤΓߎឦπ཰ࣴ زว৖ύЈǴ҇୯ 98 ԃ 9 ДǶ

3. R. L. Saha and K. T. Jacob (1986). “Casting of Titanium and It's Alloy.”

Def. Sci., 36(2): 121-141.

4. Welsch, G. and W. Bunk (1982). "Deformation Modes of the Alpha-Phase of Ti-6al-4v as a Function of Oxygen Concentration and Aging Temperature." Metallurgical Transactions a-Physical Metallurgy and Materials Science 13(5): 889-899.

5. Lin, C. C., Y. W. Chang, et al. (2008). "Effect of yttria on interfacial reactions between titanium melt and hot-pressed yttria/zirconia composites at 1700 ʚ." Journal of the American Ceramic Society 91(7): 2321-2327.

6. Eugene P. Lautenschlager, Peter Monaghan, “Titanium And Titanium Alloy as Dental Materials,” International Dental Journal, [43]245-531, (1993).

7. Molchanova. E. K, “Phase Diagrams of Titanium Alloy,” [Transl. Of Atlas Diagram Sostoyaniya Titanovyk Splavov], Israel Program for Scientific Translations. (1965).

(55)

%$"

҇୯83 ԃ 1 ДǶ

9. ׵ྍѶǵ஭ЎڰǴ“਼ϯ⯗ԿᇙഢᆶᔈҔ”ϯπמೌǴ΋ڔϤයǴ ҇୯82 ԃ 9 ДǶ

10. G. M. Wolten, ” Diffusionless Phase Transformations in Zirconia and Hafnia,” J. Am. Ceram. Soc. 46 [9] 418-422, (1963).

11. A. H. Heuer, N. Claussen, W. M. Kriven, M. Ruhle, ”Stability of Tetragonal ZrO2 Particles in Ceramic Matrices,” J. Am. Ceramic.Soc.

65 [12] 642-650, (1982).

12. R. C. Garvie, R. H. Hannik and R. T. Pascoe, “Ceramic Steel,” Nature Vol.258 (1975), p.703.

13. Yong-Nian Xu; Zhong-quan Gu; W. Y. Ching. Electronic, structural, and optical properties of crystalline yttria. Phys. Rev.. 1997, B56: 14993–15000.

14. L. Keith Hudson, Chanakya Misra, Anthony J. Perrotta, Karl Wefers, F. S. Williams “Aluminum Oxide” in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim.

15. Omori, M., Isobe, T. and Hirai, T. (2000), Consolidation of Eutectic Powder of Al2O3–GdAlO3. Journal of the American Ceramic Society,

83: 2878–2880.

16. M. S. Scholl and J. R. Trimmier, “Luminescence of YAG:(Tm,Tb),” J.

Elec- trochem. Soc., 133 [3] 643–48 (1986).

17. Saiki, T; Imasaki, K; Motokoshi, S; Yamanaka, C; Fujita, H; Nakatsuka, M; Izawa, Y (2006). "Disk-type Nd/Cr:YAG ceramic

(56)

%%"

lasers pumped by arc-metal-halide-lamp". Optics Communications 268 (1): 155.

18. R. Ruh, N. M. Tallan, and H. A. Lipsitt, “Effect of Metal Addition on the Microstructure of Zirconia,” J. Am. Ceram. Soc. 47[12], 632-635 (1964).

19. R. Ruh, “Reaction of Zirconia and Titaniumat Elevated Temperatures,” J. Am. Ceram. Soc. 46[7], 301-306, (1976).

20. D. V. Igator, M. S. Model, L. F. Sokyriansky, and A. Ya. Shinyaev, “Parameters of Oxygen Diffuison in Alpha and Beta-form of Titanium,” Bri. Ceram. Trans., 2536-2544 (1972).

21. K. F. Lin and C. C. Lin, “Interface Reaction between Ti-6Al-4V alloy and Zirconia mold during casting,” J. Mater. Sci., 34. 5899-5906 (1999).

22. C. L. Lin, D. Gan, P. Shen, “Stabilization of zirconia sintered with Titanium,” J. Am. Ceram. Soc. 71[8], 624-629 (1988).

23. B. C. Weber, W. M. Thompson, H. O. Bielstein, M. A. Schwarts, “Ceramic crucible for Melting Titanium,” J. Am. Ceram. Vol. 40[11], 363-373 (1957).

24. K.F. Lin and C. C. Lin, “Transmission Electron Microscope

Investigation of the Interface between Titanium and Zirconia,” J. Am. Ceram. Soc., 82[11], 3179-85 (1999).

25. K. L. Lin and C. C. Lin, “Ti2ZrO Phases Formed in the Titanium

and Zirconia Interface after Reaction at 1550oC,” J. Am. Ceram. Soc., 88 [5] 1268-72 (2005).

(57)

%&"

26. Zalar, A., B. M. M. Baretzky, et al. (1999). "Interfacial reactions in Al2O3/Ti, Al2O3/Ti3Al and Al2O3/TiAl bilayers." Thin Solid Films

352(1-2): 151-155.

27. W. D. Tuohig and T. Y. Tien, J. Am. Ceram. Soc., 63 [9-10] 595-596 (1980).

28. Kesten, Harry (2006), "What Is ... Percolation?", Notices of the American Mathematical Society (Providence, RI: American Mathematical Society) 53 (5): 572–573.

29. K. F. Lin and C. C. Lin, “Interfacial Reaction between Zirconia and Titanium,” Scripta Materialia, Vol. 39, No. 10, 1333-1338 (1998). 30. R. L. Saha and T. K. Nandy, R. D. K. Misra, and K. T. Jacob, “On the

Evaluation of Stability of Rare Earth Oxides Face Coat for Investment Casting of Titanium,” Metal. Trans. B. 21B[6] 559-566 (1990).

31. Mishin, Y. and C. Herzig (2000). "Diffusion in the Ti-Al system." Acta Materialia 48(3): 589-623.

32. Das, K., P. Choudhury, et al. (2002). "The Al-O-Ti (aluminum- oxygen-titanium) system." Journal of Phase Equilibria 23(6): 525-536. 33. Rosa, C. J. (1970). "Oxygen diffusion in alpha and beta titanium in the temperature range of 932° to 1142°C." Metallurgical and Materials Transactions B 1: 2517-2522.

34. Materials Science International Team MSIT®, and Tretyachenko, Ludmila: Al-Ti-Zr (Aluminium - Titanium - Zirconium). Effenberg, G., Ilyenko, S. (ed.). SpringerMaterials - The Landolt-Börnstein Database.

(58)

%'"

35. Ravi, C., S. MathiJaya, et al. (2002). "Site preference of Zr in Ti3Al

and phase stability of Ti2ZrAl." Physical Review B 65(15).

36. Leverkoehne, M., R. Janssen, et al. (2002). "Phase development of ZrxAly-Al2O3 composites during reaction sintering of Al/ZrO2/Al2O3

powder mixtures." Journal of Materials Science Letters 21(2): 179-183.

(59)

Table 1

(vol%)

mol%)

XRD phase

1 10A/90YZ (30%Y10%Al2O3+90%

2O3+70%ZrO2 ) 10%Al2O3+15%Y2O3 +75%ZrO2 1500!/4hr

98.2%

c-ZrO2 !-Al2O3 c-Y3Al5O12 2 20A/80YZ 20%Al2O3+80% (30%Y2O3+70%ZrO2 ) 19%Al2O3+14%Y2O3 +67%ZrO2 1500!/4hr

97.5%

c-ZrO2 !-Al2O3 c-Y3Al5O12

3 30A/70YZ (30%Y30%Al2O3+70%

2O3+70%ZrO2 ) 29%Al2O3+12%Y2O3 +59%ZrO2 1500!/4hr

96.7%

c-ZrO2 !-Al2O3 c-Y3Al5O12 4 40A/60YZ 40%Al2O3+60% (30%Y2O3+70%ZrO2 ) 40%Al2O3+10%Y2O3 +50%ZrO2 1500!/4hr

97.0%

c-ZrO2 !-Al2O3 c-Y3Al5O12

5 YAG 49%Al2O3+51%Y2O3 62.5%Al2O3+37.5%Y2O3 none

99.8%

c-Y3Al5O12

10

(60)

Table 2 1700!/2 hr

48

YAG YAG YAG

YAG 10A/90YZ10A/90YZ10A/90YZ10A/90YZ 20A/80YZ20A/80YZ20A/80YZ20A/80YZ 30A/70YZ30A/70YZ30A/70YZ30A/70YZ 40A/60YZ40A/60YZ40A/60YZ

! " # $ sideTi ! " # sideTi ! " # sideTi ! " # sideTi ! "

!-Ti(Al,O) " x x x " x x x " x x x " x x x " x x Ti3Al x " " " " " x x " " x x " " x x x x x TiAl x x x x x x " x x x " x x x x x x " " Ti2ZrAl x x x x x x x x x " x x x " x x x x x ZrO2 x x x x x " " " x " " " x " " " x " " Y3Al5O12 x x x " x x " " x x " " x x " " x x " YAlO3 x x x x x x " " x x " " x x " " x x x Y2O3 " " x x x x " " x x " " x x " " x x x Y3Al5O12 (worm-like) x x x x x x x x x x x x x x " x x x x Al3Zr (worm-like) x x x x x x x " x x " " x x " " x x x Al3Zr x x x x x x " x x x " x x x " x x x x Y5Al3O12 x x " x x x x x x x x x x x x x x x x ", observed;x, none

(61)

49 Fig. 2-1

Fig. 2-2 ! "

[From Structure and Properties of Engineering Material,4th Ed., by R.Brick, A. W. Pense and R. B. Gordon Copyright.1997 By

McGraw-Hill,New York.

(62)

50 Fig. 2-3 "

(a) (peritectic) (b) (periectoid)

Fig. 2-4 !

(63)

51 Fig. 2-5

(64)

1 2

3 4

Fig. 1

System ZrO

2

-Y

2

O

3

-Al

2

O

3

at 1450!. C = cubic ZrO

2

solid solution; Y = Y

2

O

3

; A =

Al

2

O

3

; YAG = Y

3

Al

5

O

12

(point 5); T = tetragonal ZrO

2

.

[1]

From point 1 to point 4 are 10A/90YZ, 20A/80YZ, 30A/70YZ, and 40A/60YZ respectively.

The green line is 30 vol%Al

2

O

3

from Gibbs triangle of cubic ZrO

2

, YAG, and Al

2

O

3

.

5

12

Fig. 3-1 System ZrO2-Y2O3-Al2O3 at 1450°C. C = cubic ZrO2 solid solution; Y =

Y2O3; A = Al2O3; YAG = Y3Al5O12 (point 5); T = tetragonal ZrO2.

[From point 1 to point 4 are 10A/90YZ, 20A/80YZ, 30A/70YZ, and 40A/60YZ respectively. The line is 30 vol%Al2O3 from Gibbs triangle of cubic ZrO2, YAG, and

Al2O3.]

(65)

Al2O3/Y2O3/ZrO2 ( NH4OH) (Hotplate 150 ) ( 80mesh ) 1500 /4 hr 1atm Ar XRD Ti 1700 /2 hr SEM/EDS TEM/EDS 7 Fig. 3-2 53

(66)

CHEN-HWA ZG-10

Fig. 3-3

(67)

2!

40A/60YZ 30A/70YZ 20A/80YZ 10A/90YZ

c-ZrO

2 △

-Y

3

Al

5

O

12

r-Al

2

O

3

(!-Al

2

O

3

)

c c c r r r r r r r r r r c c c c c c r r r r r r r r r r c c c c c c c r

XRD

11 Fig. 4-1 X-ray 55

(68)

A

B

1 µm 1 µm

1 µm 1 µm

Fig. 1. (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ thermal etching

(1300!/2hr) A B C YAG a b c d A C A B A B C A B C C

Fig. 4-2 (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ

thermal etching (1300°C/2 hr) A B

C YAG

(69)

a c b d ! " # ! " # ! " ! " 30µm 30µm 30µm 30µm Interface Interface Interface Interface Ti3Al TiAl # e 30µm Interface ! " # $ !-Ti 33 Fig. 3 Ti (a)10A/90YZ、(b)20A/80YZ、(c)30A/70YZ、(d)40A/60YZ、(e)YAG, 1700°C/2 hr , (BEI) Ti3Al Ti3Al !-Ti !-Ti !-Ti !-Ti

Fig. 4-3 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ (e)YAG, 1700°C/2hr ,

(BEI

(70)

a b c

Interface

ZrO2

Ti3Al

Fig. 6. Ti 10A/90YZ (a)1700°C/2hr BEI (b) (f) O Al Y X-ray mapping

Ti

Y

Zr

O

e f 1µm d

Al

Fig. 4-4 Ti 10A/90YZ (a)1700°C/2 hr BEI (b) (f) Ti Y

Zr X-ray mapping

(71)

'(a) 0 to 7 hP2 P63/mmc

''(a) 7 to 18.3 oC4 Cmcm

(a)

20 to 30 hP3 P6/mmm

(a) Metastable

Ti-Y (Titanium - Yttrium) J.L. Murray, 1987

Ti-Y phase diagram

Ti-Y crystallographic data

Phase Composition, wt% Y Pearson symbol Space group ( Ti) 0 to 3.7 cI2 Im m

Fig. 4-5 Murray, 1987 Ti-Y

(72)

a b c d 1µm 1µm 1µm 1µm ZrO2 ZrO2 ZrO2 ZrO2 ZrO2 TiAl Ti3Al Ti3Al Ti3Al Fig. 8 Ti (a)10A/90YZ、(b)20A/80YZ、(c)30A/70YZ、(d)40A/60YZ, 1700°C/2 hr , ! (BEI)

!

Ti2ZrAl Ti2ZrAl 20 Fig. 4-6 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2 hr

I (BEI

(73)

Ti Ceramic Diffusion couple Ti ! Ti ! Ti3 Al Ti3 Al !-T i(Al,O) !-T i(Al,O) Ti + Al2O3 c-ZrO2 c-ZrO2 Al O Ti heating cooling (a) Ti3Al Ti3 Al Diffusion couple Ti ! Ti ! Ti Ceramic !-T i(Al,O) !-T i(Al,O) TiAl3 Ti + Al2O3 ZrO2 +Ti3Al c-ZrO2 Al O Ti Zr Diffusion couple Ti Ceramic Ti3 Al !-T i(Al,O) !-T i(Al,O) TiAl3 Ti + Al2O3 ZrO2 +Ti3Al c-ZrO2 Al O Ti Zr heating cooling heating cooling Ti ! Ti ! (b) (c) Ti2ZrAl c-ZrO2 Ti3Al Ti2ZrAl c-ZrO2 Ti3Al c-ZrO2 Al O Ti Ti Ceramic Diffusion couple Ti + Al2O3 c-ZrO2 Ti3 Al !-T i(Al,O) !-T i(Al,O) TiA l heating cooling Ti ! Ti ! (d) TiAl

Fig. 4-7 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2 hr I

(74)

d b T [111] (202) c-ZrO2 (220) a ZrO2 Ti3Al c T (1101) (2240) [1102] Ti3Al e

Fig. 4-8 10A/90YZ, (a)TEM bright-field image shows Ti3Al and ZrO2 at the

interface after annealing at 1700!/2 hr, (b) the SADP of c-ZrO2, (c) the SADP of

h-Ti3Al, (d) EDX spectrum of ZrO2, O:62.01 at %、Y:12.02 at %、Zr:25.97 at

%, (e) EDX spectrum of Ti3Al, Al:32.29 at %、Ti:61.32 at %、Zr:6.40 at %

(75)

Th4Al7(b) 16.9 (a) . . . ThAl2 18.9 hP3 P6/mmm ThAl3 26 hP8 P63/mmc Th2Al7 29.0 oP18 Pbam (Al) 100 cF4 Fm3m (a) Tetragonal.

(b) Considered same as ThAlx

Al-Ti (Aluminum - Titanium) J.L. Murray, 1987

Al-Ti phase diagram

Al-Ti crystallographic data

Fig. 4-9 Murray, 1987 Ti-Al

(76)

T Ti2ZrAl Ti3Al Ti2ZrAl d a b 23 [0001] c (1120) (1211) [1103] Ti3Al e

Fig. 4-10 30A/70YZ, (a) TEM bright-field image shows Ti3Al and Ti2ZrAl at the

reaction layer ! after annealing at 1700"/2 hr, (b) the SADP of Ti2ZrAl, (c) the

SADP of Ti3Al, (d) EDX spectrum of Ti2ZrAl,O:4.70 at %、Al:23.21 at %、

Ti:40.56 at %、Zr:31.53 at %, (e) EDX spectrum of Ti3Al,O:5.73 at %、Al:

36.56 at %、Ti:46.88 at %、Zr:10.83 at %

(77)

b c d a e f

Y

Al

Ti

Zr

O

1µm

Fig. 4-11 Ti 30A/70YZ 1700°C/2 hr (a) ! (BEI)

(78)

5µm a ZrO2 YAG YAP Y2O3 Al3Zr TiAl 5µm ZrO2 YAG YAP Y2O3 Al3Zr TiAl b 2µm c ZrO2 YAG Al 3Zr TiAl 5µm d ZrO2 YAG TiAl

Fig. 12. Ti (a)10A/90YZ (b)20A/70YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2hr

, ! (BEI

!

Fig. 4-12 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2

hr II (BEI

(79)

heating cooling heating cooling heating cooling ! ! ! ! ! ! ! ! ! ! YAG YAG YAG ZrO2 ZrO2 ZrO2 Al2O3 Al2O3 Al2O3 Ti + Al2O3 Ti + Al2O3 + ZrO2 Y-Al-O compounds c-ZrO2 Ti + Al2O3 Ti + Al2O3 + ZrO2 Y-Al-O compounds c-ZrO2 Ti + Al2O3 Ti + Al2O3 + ZrO2 Y-Al-O compounds c-ZrO2 Al O Ti Zr Al O Ti Zr Al O Zr YAG YAP Y2O3 Al3Zr TiAl ZrO2 ZrO2 ZrO2 YAG YAG YAG Al3Zr YAP Y2O3 TiAl TiAl Al3Zr

(a)

(b)

(c)

Ti heating cooling ! ! ! YAG ZrO2 Al2O3 Ti + Al2O3 Y-Al-O compounds c-ZrO2 Al O Ti ZrO2 YAG

(d)

TiAl

Fig. 4-13 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ (d)40A/60YZ 1700°C/2

hr II

(80)

b c d a e f

Y

Al

Ti

Zr

O

5µm

Fig. 4-14 Ti 10A/90YZ 1700°C/2 hr (a) ! (BEI)

(81)

!

a b c ZrO2 YAG YAP Y2O3 Al3Zr TiAl ZrO2 Al3Zr YAG YAG Al3Zr YAP Y2O3 ZrO2 3µm 3µm 3µm

Fig. 14. Ti (a)10A/90YZ (b)20A/70YZ (c)30A/70YZ, 1700°C/2hr , ! (BEI

Fig. 4-15 Ti (a)10A/90YZ (b)20A/80YZ (c)30A/70YZ 1700°C/2 hr

! (BEI

參考文獻

Outline

相關文件

中興國中

中興國中

探討燃燒所得的碳簇、活性碳及二氧化錳對 雙氧水分解的影響。將 3個100 mL量筒中各加 入 5 mL雙氧水和1 mL的清潔劑水溶液,分別 加入 0 .2 g碳黑、0.2

結果得知以 V/Ti = 0.05 在 600 ℃下煅燒和 Sr/Ti = 0.005,在 750

而在後續甲烷化反應試驗方面,以前段經厭氧醱酵產氫後之出流水為進流基 質。在厭氧光合產氫微生物方面,以光合作用產氫細菌中產氫能力最好的菌株 Rhodopseudomonas palustris

①尼古丁 ②焦油 ③一氧化碳

有人說「血液中之二氧化碳含量應該維持一定」 ,你認為這樣

The prepared nanostructured titania were applied for the photoanodes of dye-sensitized solar cell.. The photoanodes were prepared by the doctor blade technique and the area