• 沒有找到結果。

1 ms 0.95 3.48X10

-9

10 ms 0.82 4.27X10

-11

30 ms 0.45 2.01X10

-16

50 ms 0.35 4.18X10

-18

80 ms 0.29 3.76X10

-19

表 4.1-1 2.2 ML RTA750 不同填充偏壓時間下熱退火缺陷活化能與缺陷捕捉截 面積表

圖 4.1-15 圖解熱退火缺陷能階圖

59

表 4.1-2 熱退火缺陷活化能與缺陷捕捉截面積表

60 filling pulse changes

ln( SH435 2.2 ML RTA650

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 SH438 2.8 ML RTA650

圖 4.2-1 DLTS 和 transient 阿瑞尼斯圖

DLTS

DLTS

61

-4 -3 -2 -1 0

150 200 250 300 350 400 450

C ( p F )

Bias (V)

T:300K F:10KHz

sh454(2ML) sh435(2.2ML) sh438(2.8ML)

-0.10 -0.15 -0.20 -0.25 -0.30 -0.35 -0.40 4x1016

6x1016 8x1016 1017

T:300K F:10KHz

sh454(2ML) sh435(2.2ML) sh438(2.8ML)

N (cm -3 )

Depth (m)

圖 4.3-1(a)(b) 2.0,2.2,2.8 ML 室溫 CV 及縱深分布圖

QD1

62

-0.20 -0.25 -0.30 -0.35

4.0x1016

-0.20 -0.25 -0.30 -0.35

4x1016

63

-0.10 -0.15 -0.20 -0.25 -0.30 -0.35 -0.40 3x1016

-0.10 -0.15 -0.20 -0.25 -0.30 -0.35 -0.40 3x1016

64

-5 -4 -3 -2 -1 0

50 100 150 200 250 300 350 400 450

sh438(2.8ML) T:300 K

C ( p F )

Bias (V)

30K 50K 100K 300K

-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 1015

1016 1017

sh438(2.8ML) T:300 K

N (cm -3 )

Depth (m)

30K 50K 100K 300K

圖 4.3-6(a)(b) 2.8 ML 室溫大偏壓 CV 及縱深分布圖

QD1 QD2

65

-5 -4 -3 -2 -1 0

50 100 150 200 250 300

350 sh435(2.2ML) RTA650 T:85K

C ( p F )

Bias (V)

1K 5K 10K 50K 100K 300K

0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 1013

1014 1015 1016 1017

sh435(2.2ML) RTA650 T:85K

N (cm -3 )

Depth (m)

1K 5K 10K 50K 100K 300K

圖 4.3-7(a)(b) 2.2 ML RTA650 低溫 CV 及縱深分布圖

66

-5 -4 -3 -2 -1 0

200 300 400 500 600 700 800

sh435(2.2ML) RTA650 T:300K

C ( p F )

Bias (V)

5K 10K 50K 100K 300K 500K

-0.05 -0.10 -0.15 -0.20 -0.25 -0.30 -0.35 1016

1017

sh435(2.2ML) RTA650 T:300K

N (cm -3 )

Depth (m)

5K 10K 50K 100K 300K 500K

圖 4.3-8(a)(b) 2.2 ML RTA650 室溫 CV 及縱深分布圖

67

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 50

100 150 200 250 300

350 sh438(2.8ML) RTA650 T:100K

C ( p F )

Bias (V)

1K 5K 10K 50K 100K 300K

-0.2 -0.4 -0.6 -0.8 -1.0

1014 1015 1016 1017

sh438(2.8ML) RTA650 T:100K

N (cm -3 )

Depth (m)

1K 5K 10K 50K 100K 300K

圖 4.3-9(a)(b) 2.8 ML RTA650 低溫 CV 及縱深分布圖

68

-5 -4 -3 -2 -1 0

100 200 300 400 500

600 sh438(2.8ML) RTA650 T:300K

C ( p F )

Bias (V)

1K 5K 10K 50K 100K 300K

-0.10 -0.15 -0.20 -0.25 -0.30 -0.35 -0.40 -0.45 -0.50 1015

1016 1017

sh438(2.8ML) RTA650 T:300K

N (cm -3 )

Depth (m)

1K 5K 10K 50K 100K 300K

圖 4.3-10(a)(b) 2.8 ML RTA650 室溫 CV 及縱深分布圖

69

70

900 sh438(2.8ML) RTA650 F:10K Hz

1017 sh438(2.8ML) RTA650

F:10K Hz

71

圖 4.3-12 2.8 ML RTA650 室溫 C-V 圖

2.8 ML RTA650 Nt (cm

-3

) -0~-0.5V 2.04X10

15

-0.5~-1V 3.00X10

15

-1~-1.5V 2.95X10

15

-1.5~-2V 2.23X10

15

-2~-2.5V 1.87X10

15

-2.5~-3V 1.11X10

15

表 4.3-1 2.8 ML RTA650 各偏壓下的 Nt

-5 -4 -3 -2 -1 0

150 200 250 300 350 400

sh438(2.8ML) RTA650 T:300K

C ( p F )

Bias (V)

5 K 10 K 50 K 100 K 300 K

defect

72

圖 4.4-1(a) 2.2 ML RTA650 HRTEM

73

圖 4.4-1(b) 2.2 ML RTA650 HRTEM(經傅立葉轉換)

74

第五章 結論

從光激發螢光光譜(Photoluminescence, PL)的討論,根據 Varshni fitting 解析出 2.2 ML 和 2.8 ML 長波長訊號為 InSb QDs,了解到 Sb 在 InAs+Sb QDs 的成長中,會有 相分離的情形產生(InSb QDs 和 InAs-rich QDs)。由於 Sb 表面活化效應的影響,使 得受表面活化效應影響不一的 InAs-rich QDs 生長形成大大小小尺寸不一的量子 點,跟 AFM 所顯現出的量子點均勻性不一可以互相應證。根據 Sb 表面活化效應 延遲 InAs QDs 生長概念,推演出 InAs+Sb QDs 生長情況。

熱退火 InAs+Sb QDs,讓跟 GaAs 基板不匹配程度大的 InSb QDs 發生晶格鬆弛現 象,可從 PL 光譜看出 2.2 ML 和 2.8 ML 的 InSb QDs 經熱退火以後強度衰減,推 測熱退火所提供的熱能讓 InSb QDs 產生晶格鬆弛,減少 InSb QDs 發光數目。另 外深層暫態能階頻譜(DLTS)也可觀察到熱退火缺陷,故此缺陷是影響 InSb QDs 發 光減弱的原因。而熱退火對於 InAs-rich QDs 的影響,可改善尺寸不均勻情況。2.2 ML 和 2.8 ML 經過熱退火後,PL 半寬明顯縮減並解析出兩個清楚可見的訊號。高 溫度退火 2.8 ML,InAs-rich QDs 顯示具有 InAs QDs 發光行為。

熱退火 2.2 ML 和 2.8 ML 產生的缺陷,根據 DLTS 改變填充偏壓時間以及 transient 量測,判斷熱退火缺陷具有點缺陷特性。但熱退火缺陷的活化能又隨著填充偏壓 時間變化有巨大的改變,以及缺陷捕捉截面積跟缺陷活化能之間成指數關係!根 據捕捉位能障會影響缺陷活化能大小的理論,推測熱退火讓缺陷擁有多個缺陷能 階,也因此產生捕捉位能障改變缺陷捕捉截面積的大小。

退火 2.2 ML 和 2.8 ML 的 C-V 頻譜,可以觀察到靠近表面的缺陷訊號牽制量子點,

影響量子點頻率響應,並隨著溫度變化影響量子點遷移。另外從 2.8 ML 退火 650oC 變溫 C-V 觀察到兩群量子點隨著溫度傳輸的行為可以對應 PL 載子在 InSb QDs 和 InAs-rich QDs 間的傳輸行為。

TEM 顯現熱退火缺陷佐證 PL,DLTS,Transient,以及 C-V 所觀察。

75

[1] L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Leroux, "GROWTH BY MOLECULAR-BEAM EPITAXY AND CHARACTERIZATION OF INAS/GAAS

STRAINED-LAYER SUPERLATTICES," Applied Physics Letters, vol. 47, pp.

1099-1101, 1985.

[2] O. B. Shchekin, G. Park, D. L. Huffaker, and D. G. Deppe, "Discrete energy level separation and the threshold temperature dependence of quantum dot lasers," Applied Physics Letters, vol. 77, pp. 466-468, Jul 2000.

[3] A. Persano, A. Cola, A. Taurino, M. Catalano, M. Lomascolo, A. Convertino, G.

Leo, L. Cerri, A. Vasanelli, and L. Vasanelli, "Electronic structure of double stacked InAs/GaAs quantum dots: Experiment and theory," Journal of Applied

Physics, vol. 102, p. 8, Nov 2007.

[4] N. Vukmirovc and S. Tomic, "Plane wave methodology for single quantum dot electronic structure calculations," Journal of Applied Physics, vol. 103, p. 12, May 2008.

[5] D. L. Huffaker and D. G. Deppe, "Electroluminescence efficiency of 1.3 mu m wavelength InGaAs/GaAs quantum dots," Applied Physics Letters, vol. 73, pp.

520-522, Jul 1998.

[6] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, E. C. Le Ru, and R. Murray,

"Optimizing the growth of 1.3 mu m InAs/GaAs quantum dots," Physical

Review B, vol. 64, p. 6, Dec 2001.

[7] H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J.

Mowbray, and M. S. Skolnick, "Optimizing the growth of 1.3 mu m

InAs/InGaAs dots-in-a-well structure," Journal of Applied Physics, vol. 93, pp.

2931-2936, Mar 2003.

[8] H. Y. Liu, I. R. Sellers, M. Gutierrez, K. M. Groom, R. Beanland, W. M. Soong, M.

Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick,

"Optimizing the growth of 1.3-mu m InAs/InGaAs dots-in-a-well structure:

Achievement of high-performance laser," Materials Science & Engineering

C-Biomimetic and Supramolecular Systems, vol. 25, pp. 779-783, Dec 2005.

[9] C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, "Effects of size and shape on electronic states of quantum dots," Optical and Quantum Electronics, vol. 38, pp. 981-991, Sep 2006.

[10] S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, "Size distribution effects on self-assembled InAs quantum dots," Journal of

Materials Science-Materials in Electronics, vol. 18, pp. S191-S194, Oct 2007.

[11] A. Zolotaryov, A. Schramm, C. Heyn, and W. Hansen, "InAs-coverage

dependence of self-assembled quantum dot size, composition, and density,"

Applied Physics Letters, vol. 91, p. 3, Aug 2007.

76

[12] N. Y. Tang, "Effect of size non-uniformity on photoluminescence from ensembles of InAs quantum dots embedded in GaAs," Journal of Materials

Science, vol. 42, pp. 6913-6916, Aug 2007.

[13] Y. D. Jang, H. Lee, D. Lee, J. S. Kim, J. Y. Leem, and S. K. Noh, "The energy level spacing from InAs/GaAs quantum dots: Its relation to the emission

wavelength, carrier lifetime, and zero dimensionality," Journal of Applied

Physics, vol. 99, p. 3, May 2006.

[14] J. T. Ng, U. Bangert, and M. Missous, "Formation and role of defects in stacked large binary InAs/GaAs quantum dot structures," Semiconductor Science and

Technology, vol. 22, pp. 80-85, Feb 2007.

[15] R. Choudhury, D. R. Bowler, and M. J. Gillan, "Atomic structure of misfit

dislocations at InAs/GaAs(110)," Journal of Physics-Condensed Matter, vol. 20, p. 7, Jun 2008.

[16] E. Hulicius, J. Oswald, J. Pangrac, J. Vyskocil, A. Hospodkova, K. Kuldova, K.

Melichar, and T. Simecek, "Growth and properties of InAs/InxGa1-xAs/GaAs quantum dot structures," Journal of Crystal Growth, vol. 310, pp. 2229-2233, Apr 2008.

[17] T. Yang, J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Effects of accumulated strain on the surface and optical properties of stacked 1.3 mu m InAs/GaAs quantum dot structures," Physica E-Low-Dimensional Systems &

Nanostructures, vol. 40, pp. 2182-2184, Apr 2008.

[18] P. Frigeri, L. Nasi, M. Prezioso, L. Seravalli, G. Trevisi, E. Gombia, R. Mosca, F.

Germini, C. Bocchi, and S. Franchi, "Effects of the quantum dot ripening in high-coverage InAs/GaAs nanostructures," Journal of Applied Physics, vol. 102, p. 8, Oct 2007.

[19] T. Yang, J. Tatebayashi, K. Aoki, M. Nishioka, and Y. Arakawa, "Effects of rapid thermal annealing on the emission properties of highly uniform

self-assembled InAs/GaAs quantum dots emitting at 1.3 mu m," Applied

Physics Letters, vol. 90, p. 3, Mar 2007.

[20] N. Arpatzanis, A. Tsormpatzoglou, C. A. Dimitriadis, J. D. Song, W. J. Choi, J. I.

Lee, and C. Charitidis, "Effect of rapid thermal annealing on the noise

properties of InAs/GaAs quantum dot structures," Journal of Applied Physics, vol. 102, p. 6, Sep 2007.

[21] R. Santoprete, P. Kratzer, M. Scheffler, R. B. Capaz, and B. Koiller, "Effect of post-growth annealing on the optical properties of InAs/GaAs quantum dots:

A tight-binding study," Journal of Applied Physics, vol. 102, p. 8, Jul 2007.

[22] L. Hoglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz,

"Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal

77

organic vapor phase epitaxy," Applied Surface Science, vol. 252, pp.

5525-5529, May 2006.

[23] T. Passow, S. Li, P. Feinaugle, T. Vallaitis, J. Leuthold, D. Litvinov, D. Gerthsen, and M. Hetterich, "Systematic investigation into the influence of growth conditions on InAs/GaAs quantum dot properties," Journal of Applied Physics, vol. 102, p. 9, Oct 2007.

[24] V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N.

K. Polyakov, V. A. Egorov, A. F. Tsatsul'nikov, N. A. Krizhanovskaya, V. M.

Ustinov, and P. Werner, "Effect of growth kinetics on the structural and optical properties of quantum dot ensembles," Journal of Crystal Growth, vol. 267, pp. 47-59, Jun 2004.

[25] V. G. Dubrovskii, Y. G. Musikhin, G. E. Cirlin, V. A. Egorov, N. K. Polyakov, Y. B.

Samsonenko, A. A. Tonkikh, N. V. Kryzhanovskaya, N. A. Bert, and V. M.

Ustinov, "Dependence of structural and optical properties of QD arrays in an InAs/GaAs system on surface temperature and growth rate," Semiconductors, vol. 38, pp. 329-334, 2004.

[26] V. G. Dubrovskii, V. A. Egorov, G. E. Cirlin, N. K. Polyakov, Y. B. Samsonenko, N.

V. Kryzhanovskaya, A. F. Tsatsul'nikov, and V. M. Ustinov, "Theoretical and experimental study of the effect of InAs growth rate on the properties of QD arrays in InAs/GaAs system," Semiconductors, vol. 37, pp. 855-860, 2003.

[27] T. Kaizu, M. Takahasi, K. Yamaguchi, and J. Mizuki, "Modification of InAs quantum dot structure during annealing," Journal of Crystal Growth, vol. 301, pp. 248-251, Apr 2007.

[28] A. Semenov, O. G. Lyublinskaya, V. A. Solov'ev, B. Y. Meltser, and S. V. Ivanov,

"Surface segregation of Sb atoms during molecular-beam epitaxy of InSb quantum dots in an InAs(Sb) matrix," Journal of Crystal Growth, vol. 301, pp.

58-61, Apr 2007.

[29] H. Miyoshi, R. Suzuki, H. Amano, and Y. Horikoshi, "Sb surface segregation effect on the phase separation of MBE grown InAsSb," Journal of Crystal

Growth, vol. 237, pp. 1519-1524, Apr 2002.

[30] T. Matsuura, T. Miyamoto, T. Kageyama, M. Ohta, Y. Matsui, T. Furuhata, and F.

Koyama, "Surfactant effect of Sb on GaInAs quantum dots grown by

molecular beam epitaxy," Japanese Journal of Applied Physics Part 2-Letters &

Express Letters, vol. 43, pp. L605-L607, May 2004.

[31] D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "Effect of antimony on the density of InAs/Sb : GaAs(100) quantum dots grown by metalorganic chemical-vapor deposition," Journal of Crystal Growth, vol. 298, pp. 548-552, Jan 2007.

78

[32] Y. Sun, S. F. Cheng, G. Chen, R. F. Hicks, J. G. Cederberg, and R. M. Biefeld,

"The effect of antimony in the growth of indium arsenide quantum dots in gallium arsenide (001)," Journal of Applied Physics, vol. 97, p. 6, Mar 2005.

[33] K. S. a. Y. Arakawa, "

Near 1.3μm Emission at Room Temperature from InAsSb/GaAs Self-Assembled Quantum Dots on GaAs Substrates

," vol. 1, 139, 2001.

[34] G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gerard, and I. Sagnes, "Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots," Applied Physics Letters, vol. 79, pp. 2157-2159, Oct 2001.

[35] J. Rihani, V. Sallet, H. J. Christophe, M. Oueslati, and R. Chtourou, "Antimony incorporation in InAs quantum dots grown on GaAs substrate by molecular beam epitaxy," Physica E: Low-dimensional Systems and Nanostructures, vol.

40, pp. 550-555, 2008.

[36] O. G. Lyublinskaya, V. A. Solov'ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent'ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K.

Thonke, and R. Sauer, "Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots," Journal of Applied Physics, vol. 99, p. 6, May 2006.

[37] A. N. Semenov, O. G. Lyublinskaya, V. A. Solov'ev, B. Y. Mel'tser, and S. V.

Ivanov, "In situ study of the formation kinetics of InSb quantum dots grown in an InAs(Sb) matrix," Semiconductors, vol. 42, pp. 74-79, Jan 2008.

[38] Y. M. Park, Y. J. Park, K. M. Kim, J. D. Song, J. I. Lee, K. H. Yoo, H. S. Kim, and C.

G. Park, "Interdiffusion and structural change in an InGaAs dots-in-a-well structure by rapid thermal annealing," Journal of Applied Physics, vol. 96, pp.

5496-5499, Nov 2004.

[39] Z. M. Wang, S. L. Feng, Z. D. Lu, Q. Zhao, X. P. Yang, Z. G. Chen, Z. Y. Xu, and H.

Z. Zheng, "Annealing behavior of InAs/GaAs quantum dot structures," Journal

of Electronic Materials, vol. 27, pp. 59-61, Feb 1998.

[40] Q. W. Mo, T. W. Fan, Q. Gong, J. Wu, Z. G. Wang, and Y. Q. Bai, "Effects of annealing on self-organized InAs quantum islands on GaAs (100)," Applied

Physics Letters, vol. 73, pp. 3518-3520, Dec 1998.

[41] J. F. Chen, R. S. Hsiao, S. H. Shih, P. Y. Wang, J. S. Wang, and J. Y. Chi,

"Properties of defect traps in triple-stack InAs/GaAs quantum dots and effect of annealing," Japanese Journal of Applied Physics Part 2-Letters & Express

Letters, vol. 43, pp. L1150-L1153, Sep 2004.

[42] S. W. Lin, A. M. Song, N. Rigopolis, B. Hamilton, A. R. Peaker, and M. Missous,

"Combined optical and electrical studies of the effects of annealing on the

79

intrinsic states and deep levels in a self-assembled InAs quantum-dot structure," Journal of Applied Physics, vol. 100, Aug 2006.

[43] D. Z. Hu, D. M. Schaadt, and K. H. Ploog, "Stress development during

annealing of self-assembled InAs/GaAs quantum dots measured in situ with a cantilever beam setup," Journal of Crystal Growth, vol. 293, pp. 546-549, Aug 2006.

[44] M. M. Sobolev, I. V. Kochnev, V. M. Lantratov, N. A. Bert, N. A. Cherkashin, N.

N. Ledentsov, and D. A. Bedarev, "Thermal annealing of defects in InGaAs/GaAs heterostructures with three-dimensional islands,"

Semiconductors, vol. 34, pp. 195-204, 2000.

[45] G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G.

Wang, "Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy," Journal of Crystal Growth, vol. 269, pp.

181-186, Sep 2004.

[46] J. Tatebayashi, Y. Arakawa, N. Hatori, H. Ebe, M. Sugawara, H. Sudo, and A.

Kuramata, "InAs/GaAs self-assembled quantum-dot lasers grown by

metalorganic chemical vapor deposition - Effects of postgrowth annealing on stacked InAs quantum dots," Applied Physics Letters, vol. 85, pp. 1024-1026, Aug 2004.

[47] J. F. Chen, R. S. Hsiao, W. D. Huang, Y. H. Wu, L. Chang, J. S. Wang, and J. Y. Chi,

"Strain relaxation and induced defects in InAsSb self-assembled quantum dots," Applied Physics Letters, vol. 88, p. 3, Jun 2006.

[48] M. Y. Kong, X. L. Wang, D. Pan, Y. P. Zeng, J. Wang, and W. K. Ge, "A

comparison of photoluminescence properties of InGaAs GaAs quantum dots with a single quantum well," Journal of Applied Physics, vol. 86, pp.

1456-1459, Aug 1999.

[49] Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J.

Wang, and L. L. Chang, "Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,"

Physical Review B, vol. 54, pp. 11528-11531, Oct 1996.

相關文件