• 沒有找到結果。

Appendix A: Command codes in TCAD simulator

In this appendix, command codes used in TCAD Sprocess, TCAD Sdevice simulators are given. Note that here “hGe” stands for hbody only, not the total germanium thickness.

line x loc= 0 tag=SiTop spacing=50<nm>

line x loc= 300<nm> tag=SiBottom spacing=50<nm>

line y loc= 0 tag=SiLeft spacing=50<nm>

line y loc= $Wtot tag=SiRight spacing=50<nm>

region silicon xlo=SiTop xhi=SiBottom ylo=SiLeft yhi=SiRight

init concentration=1e15 field=Boron !DelayFullD

mgoals on min.normal.size=2<nm> max.lateral.size=2<um> normal.growth.ratio=1.3

# PHYSICAL MODELS FOR GERMANIUM

pdbSetDouble ImplantData Germanium AtomicMass 72.61 pdbSetDouble ImplantData Germanium AtomicNumber 32 pdbSetDouble Germanium LatticeConstant 5.64613

pdbSetDouble Germanium LatticeDensity 4.41e22

pdbSetDouble Germanium AmorpGamma 1.0

pdbSetDouble Germanium AmorpDensity 1.1e22

pdbSetDouble Germanium AmorpThreshold 1.1e22

pdbSetDouble Germanium LatticeSpacing [expr pow(1/4.41e22,1.0/3.0)]

pdbSetString Germanium LatticeType Zincblende

pdbSetDouble Germanium MassDensity 5.35

pdbSetBoolean Germanium Amorphous 0

pdbSetString Germanium LatticeAtom COMPOSITION pdbSetString Germanium Composition Component0 Name Germanium pdbSetDouble Germanium Composition Component0 StWeight 1

pdbSetDouble Germanium CompoundNumber 1

pdbSetBoolean Germanium ElectronicStoppingLocal 1

pdbSetDouble Germanium SurfaceDisorder 5e‐4

# NUMERICAL PARAMETERS FOR TaurusMC (please consult manual)

pdbSet MCImplant TrajectoryReplication 1

pdbSet MCImplant TrajectorySplitting 1

pdbSetDouble Germanium Phosphorus MaxSplits 8.0 pdbSetDouble Germanium Phosphorus MaxSplitsPerElement 1.0

pdbSetDouble Germanium Boron MaxSplits 8.0

pdbSetDouble Germanium Boron MaxSplitsPerElement 1.0

pdbSetDouble Germanium Arsenic MaxSplits 8.0

pdbSetDouble Germanium Arsenic MaxSplitsPerElement 1.0

# Monte Carlo Implant paramerters implanted species (TaurusMC) pdbSetDouble Germanium Phosphorus amor.par 1.0 pdbSetDouble Germanium Phosphorus casc.amo 1.0

pdbSetDouble Germanium Phosphorus disp.thr 15

pdbSetDouble Germanium Phosphorus casc.dis 15

pdbSetDouble Germanium Phosphorus surv.rat 0.75 pdbSetDouble Germanium Phosphorus casc.sur 0.75 pdbSetDouble Germanium Phosphorus MCVFactor 1.0 pdbSetDouble Germanium Phosphorus MCDFactor 1.0 pdbSetDouble Germanium Phosphorus MCIFactor 1.0

pdbSetDouble Germanium Boron amor.par 1.0

pdbSetDouble Germanium Boron casc.amo 1.0

pdbSetDouble Germanium Boron disp.thr 15

pdbSetDouble Germanium Boron casc.dis 15

pdbSetDouble Germanium Boron surv.rat 0.225

pdbSetDouble Germanium Boron casc.sur 0.225

pdbSetDouble Germanium Boron MCVFactor 1.0

pdbSetDouble Germanium Boron MCDFactor 1.0

pdbSetDouble Germanium Boron MCIFactor 1.0

pdbSetDouble Germanium Boron LSS.pre 1.25

pdbSetDouble Germanium Boron nloc.exp 0.075

pdbSetDouble Germanium Boron nloc.pre 0.44

pdbSetDouble Germanium Boron casc.sat 0.02

pdbSetDouble Germanium Boron sat.par 0.02

# THESE PARAMETERS makes B only partially amorphizing in

Germanium,

# damage saturates when 2% of lattice atoms have been # displaced. This number is based on LIMITED SIMS data # and should be considered an estimate.

pdbSetDouble Germanium Arsenic amor.par 1.0

pdbSetDouble Germanium Arsenic casc.amo 1.0

pdbSetDouble Germanium Arsenic disp.thr 15

pdbSetDouble Germanium Arsenic casc.dis 15

pdbSetDouble Germanium Arsenic surv.rat 2

pdbSetDouble Germanium Arsenic casc.sur 2

pdbSetDouble Germanium Arsenic MCVFactor 1.0

pdbSetDouble Germanium Arsenic MCDFactor 1.0

pdbSetDouble Germanium Arsenic MCIFactor 1.0

pdbSetDouble Germanium Arsenic LSS.pre 1

pdbSetDouble Germanium Arsenic nloc.exp 0.075

pdbSetDouble Germanium Arsenic nloc.pre 0.5

###1_oxide_pattertn

deposit material= {Oxide} type=isotropic thickness=$hOX

etch material= {Oxide} type=anisotropic thickness=@hov@ mask=hov etch material= {Oxide} type=anisotropic thickness=[expr (@hGe@+0.001)] mask=hGe

###2_silicon_etch_back

# X1 0

define Y1 [expr @wov@+$garden]

define Y2 [expr $Y1+@hRec@/tan($theta)]

define Y3 [expr $Wtot‐$Y2]

define Y4 [expr $Wtot‐$Y1]

etch material= {Silicon} type=polygon polygon= {0 $Y1 @hRec@ $Y2 @hRec@ $Y3 0 $Y4 0 $Y1 }

###3_Germanium Growth

deposit material= {Germanium} type=fill coord=‐$hOX

###4_N++ implant (masked)

mask clear

mask name=N_imp left=‐1<nm> right=$imp_long negative

mask name=N_imp left=[expr ($Wtot‐$garden)] right=[expr ($Wtot+0.001)] negative

deposit material= {Nitride} type=anisotropic thickness=1000<nm> mask=N_imp implant Phosphorus dose=5e14<cm‐2> energy=80<keV> sentaurus.mc info=1

strip Nitride

###5_P++ implant (masked)

mask clear

mask name=P_imp left=‐1<nm> right=$garden negative

mask name=P_imp left=[expr ($Wtot‐$imp_long)] right=[expr ($Wtot+0.001)] negative deposit material= {Nitride} type=anisotropic thickness=1000<nm> mask=P_imp

implant Boron dose=5e14<cm‐2> energy=30<keV> sentaurus.mc info=1

strip Nitride

select Germanium z=(Phosphorus+Boron+@Dpeak@) name=TotalConcentration store select Silicon z=(Phosphorus+Boron) name=TotalConcentration store "

} else {

puts "

select Germanium z=(Phosphorus+Boron+@Dpeak@*exp(‐(@hRec@‐x)/0.02))

name=TotalConcentration store

select Silicon z=(Phosphorus+Boron) name=TotalConcentration store "

}

)!

###6_Contact formation #contact mask

mask clear

mask name=contact left=‐1<nm> right=[expr ($garden+0.05)]

mask name=contact left=[expr ($garden+0.05+0.35)] right=[expr ($Wtot‐($garden+0.05)‐0.35)]

mask name=contact left=[expr ($Wtot‐($garden+0.05))] right=[expr ($Wtot+0.001)]

deposit material= {Oxide} type=anisotropic thickness=250<nm>

etch material= {Oxide} type=anisotropic thickness=251<nm> mask=contact deposit material= {Aluminum} type=fill coord=[expr (‐1*($hOX+0.25))]

contact name=anode Aluminum x=[expr (‐1*($hOX+0.1))] y=[expr ($garden+0.05+0.1)] replace point contact name=cathode Aluminum x=[expr (‐1*($hOX+0.1))] y=[expr ($Wtot‐($garden+0.05+0.1))]

replace point

select z=(1e12/($sigmaX*sqrt(2*3.14159))*exp(‐

(x+$rX)*(x+$rX)/(2*$sigmaX*$sigmaX))*1/($sigmaY*sqrt(2*3.14159))*exp(‐(y‐$rY)*(y‐

Sdevice for IV

* output files:

Plot= "@tdrdat@"

*‐‐Temperature *‐‐Generation/Recombination

SRHRecombination Auger

*OpticalGeneration *OpticalIntensity

*‐ Creating initial solution

){ Coupled(Iterations=15 ) { Poisson Electron Hole} Plot (FilePrefix =

"n@node@_Dark_05" Time= (0.5))}

Goal { ModelParameter="Optics/OpticalGeneration/ReadFromFile/Scaling"

value=@Iphg@ }

){ Coupled(Iterations=15 ) { Poisson Electron Hole} Plot (FilePrefix =

"n@node@_Light_05" Time= (0.75))}

Sdevice for C‐V

Parameter="/imec/users/hellings/public/Doctoraat/TCAD/otherprojects/tables/Jan2010/Germani um_hellings_v2.par"

} Physics {

Mobility ( DopingDep)

Recombination (

Sdevice for transient

* output files:

Plot= "@tdrdat@"

*OpticalGeneration *OpticalIntensity

*‐ Ramp to negative bias

Quasistationary(

InitialStep=0.25 Increment=1.2 Decrement=4 MinStep=1e‐4 MaxStep=1

Goal { Name="anode" Voltage=‐0.5 }

){ Coupled(Iterations=15 ) { Poisson Electron Hole} Plot (FilePrefix =

"n@node@_Dark_05" Time= (0.5))}

NewCurrentFile="transient_"

Transient (

InitialTime = 0 FinalTime = 3e‐9 InitialStep=1 MaxStep=1e‐11

Bias{ ModelParameter="Optics/OpticalGeneration/ReadFromFile/Scaling" value=( 1 at 0, 1 at 0.99e‐9, 1e15 at 1e‐9, 1e15 at 1.99e‐9, 1 at 2e‐9, 1 at 2.99e‐9) }

) { Coupled { Poisson Electron Hole } }

}

Bibliography

[1] D. A. B. Miller, “Rationale and Challenges for Optical Interconnects to Electronic Chips,” proceedings of the IEEE, vol. 88, no. 6, p. 728, 2000.

[2] D. A. B. Miller, “Optical Interconnects to Silicon,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1312‐1317, 2000.

[3] D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J.

Optoelectronics, vol. 168, 1997.

[4] L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer‐scale modulators and detectors,” Optics Express, vol. 17, no. 17, pp. 15248‐15256, 2009.

[5] S. B. Samavedam, M. T. Currie, T. A. Langdo, and E. A. Fitzgerald, “High‐quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers,” Applied Physics Letters, vol. 73, no. 15, pp. 2125‐2127, 1998.

[6] M. Takenaka, K. Morii, M. Sugiyama, Y. Nakano, and S. Takagi, “Ultralow‐dark‐

current Ge photodetector with GeO 2 passivation and gas‐phase doped junction,”

IEEE International Conference on, pp. 36‐38, 2011.

[7] J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High‐gain high‐sensitivity resonant Ge / Si APD photodetectors,” Proc. SPIE, vol. 7660, pp. 1‐8, 2010.

[8] S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche

photodetector for nanophotonic on‐chip optical interconnects,” Nature, vol. 464, no. 7285, pp. 80‐84, 2010.

[9] D. A. Neamen, Semiconductor Physics and Devices.pdf, 3rd ed. McGraw‐Hill, 2003.

[10] N. V. Loukianova et al., “Leakage Current Modeling of Test Structures for

Characterization of Dark Current in CMOS Image Sensors,” IEEE Transactions on Electron Devices, vol. 50, no. 1, pp. 77‐83, 2003.

[11] R. Widenhorn, M. M. Blouke, A. Weber, A. Rest, and E. Bodegom, “Temperature dependence of dark current in a CCD,” Proc. SPIE, vol. 4669, pp. 193‐201, 2002.

[12] G. Eneman et al., “Impact of Donor Concentration , Electric Field , and

Temperature Effects on the Leakage Current in Germanium p + / n Junctions,”

IEEE Transactions on Electron Devices, vol. 55, no. 9, pp. 2287‐2296, 2008.

[13] R. N. HALL, “Electron‐Hole Recombination in Germanium,” Physical Review, vol.

87, no. 2, pp. 387‐387, 1952.

[14] C.‐T. Sah and W. Shockley, “Carrier Generation and recombination in P‐N Junctions and P‐N Junction Characteristics,” proceedings of the IRE, vol. 1, p.

1228, 1956.

[15] L. Esaki, “New Phenomenon in Narrow Germanium p‐n Junctions,” Physical Review, vol. 109, no. 2, pp. 603‐604, 1958.

[16] G. A. M. Hurkx and H. C. D. Graaff, “A New Analytical Diode Model Including Tunneling and Avalanche Breakdown,” IEEE Transactions on Electron Devices, vol. 39, no. 9, pp. 2090‐2098, 1992.

[17] L. Chen and M. Lipson, “Ultra‐low capacitance and high speed germanium photodetectors on silicon,” Optics Express, vol. 17, no. 10, pp. 7901‐7906, 2009.

[18] E. Gaubas, M. Bauz, A. Uleckas, and J. Vanhellemont, “Carrier lifetime studies in Ge using microwave and infrared light techniques,” Materials Science in Semiconductor Processing, vol. 9, pp. 781‐787, 2006.

[19] “Synopsys, Inc., Mountain View, CA, C‐2009.06 ed. Sentaurus Device Reference Manual.” 2009.

[20] D. Dai, M. J. W. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the Small Signal Response and Equivalent Circuit Model for a Separate Absorption and Multiplication Layer Avalanche Photodetector,” IEEE Journal of Selected Topics in Quantum Electronics, 2009.

[21] S. Assefa et al., “CMOS‐Integrated Optical Receivers for On‐Chip Interconnects,”

IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 5, pp. 1376‐

1385, 2010.

[22] R. A. Soref and S. Member, “Silicon‐Based Optoelectronics,” proceedings of the IEEE, vol. 81, no. 12, p. 1687, 1993.

相關文件