• 沒有找到結果。

CMOS 90nm CMOS 90nm CMOS 90nm CMOS 90nm 60GHz 60GHz 60GHz 60GHz

60GHz

60GHz

TSMC 90nm CMOS RF 1.2/2.4V

14.46 mW

3.1 3.1

3.1 3.1

3-1

(Radio Frequency , RF) (Itermediate frequency , IF)

LNA

LO IF

VCO Down mixer Antenna RF

3-1 60GHz

(Receiver)

(signal to noise ratio , SNR)

1. (Gain):

2. (Noise Figure):

(SNR)

3. (Stability): K

4. (Impedance Match)

5. (Isolation):

6. (linearity): P1dB IIP3

7. (Power consumption):

3.2 60GHz

3-2 3-3 (common source ,

CS ) (cascode)

3-2 3-3

3.2.1

(VDD)

(VGS) VGS

(Gm)

3-2 VDD 1.2 (Gm) VGS (ids)

VGS Gm VGS 0.8

VGS 0.8 (NFmin)

VGS Gm

(Vgs) 0.75 (volt)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 0

2 4 6 8 10

0.008 0.010 0.012 0.014

ids

ids (mA) NFmin(dB)

VGS (V)

NFmin NFmin

Gm(i/v)

3-3 Gm & ids & NFmin VGS

(channel length) (channel width) (number of finger)

TSMC CMOS 90nm RF

0.1um 0.1um 1

3-4 / (MSG/MAG) 3-4

/ (MSG/MAG)

1.8um

3-5 60GHz (NFmin) /

(MSG/MAG)

2um

1.8um

40 50 60 70 80 90 100

channel length=0.1um channel width = ?um number of finger = 1

3-4 / (MSG/MAG)

channel length=0.1um channel width = ?um number of finger = 1 NFmin(dB) MSG/MAG(dB)

Channel Width(um) NFmin

MSG/MAG

3-5 60GHz MSG & MAG & NFmin

3-6 0.1um 1.8um

/ (MSG/MAG) 10

/

40 50 60 70 80 90 100

channel length=0.1um channel width =1.8um number of finger = ?

3-7 60GHz 0.1um 1.8um

/ 4

channel length=0.1um channel width =1.8um number of finger = ? NFmin(dB) MSG / MAG(dB)

Number of Finger

NFmin MSG/ MAG

3-7 60GHz MSG & MAG & NFmin

0.1um 1.8um 10

3-8 0.1um 1.8um 10

(MSG) 60GHz 7.844 dB

60GHz 2.682dB

0 2 4 6 8 10 12 14 16 18 20

channel length=0.1um channel width =1.8um number of finger = 10

120 140 80 100

40 60 20 NFmin(dB) MSG / MAG(dB)

Frequency(GHz)

MSG / MAG NFmin

0

3-8 MSG & MAG& & NFmin

3.2.2

7.921 dB 2.678dB

0

channel length=0.1um channel width =2um number of finger = 8

140

NFmin(dB) MSG / MAG(dB)

Frequency(GHz)

MAG NFmin

0

3-9 (M1) MSG & MAG

& MAG

3-10

3-11 3-12

(M1) (M2)

/

channel length=0.1um channel width =2um number of finger = ?

M2 Number of finger

MSG / MAG(dB)

channel length=0.1um channel width =2um number of finger = ? MSG/MAG(dB) NFmin (dB)

Number of finger

MAG NFmin

3-12 60GHz MSG & MSG & NFmin

3-13 M1 M2 0.1um 2um

MAG(dB) NFmin(dB)

Frequency(GHz)

MSG / MAG(dB) NFmin(dB)

Frequency(GHz)

cascode MSG/MAG cascode NFmin

CS MSG/MAG

CS NFmin

3-15 MSG & MAG & NFmin

3-1

6.56 dB 1.51dB

3-1

Configuration Cascode Common source

Power consumption(mW) 7.248 3.912

MSG (@60GHz)(dB) 14.41 7.844

NFmin(@60GHz)(dB) 4.198 2.682

Supply Voltage(v) 2.4 1.2

3.3 60GHz 3.3.1

V 3-16

[18]

[16] 3.2 /

?

3-16

1. : n (3-1)

Gain(dB) = Gain1(dB)+Gain2(dB)+……+Gainn(dB) (3-1)

2. : Friiss’s Formula (3-2)

n

2 1

1 1 1

1 1 ...

...

− −

= + + + n

n

NF NF NF NF

Gain Gain Gain (3-2)

3. :

Pdc =Pdc1+Pdc2+…..+Pdc(n) (3-3)

Friiss’s Formula (3-2)

? 20dB

20dB 3-2

3-1 3-1 3-3

( )

7 dB 2 3 4

2 3 2 3 ? Friiss’s

Formula 3-2

3-17 V

V

3-2 MSG Pdc

MSG(dB) Pdc(mW)

1 Cs Cs Cs 23.53 11.73

2 Cs Cs cascode 30 15.07

3 Cs Cascode Cs 30 15.07

4 Cs Cascode cascode 36.6 21.74

3-17 V

3.3.2

(Thin Film Microstrip Line , TFMS line) TSMC 90 RF 1P9M CMOS

50 10 um

3-1凃 3-18

(conjugate match) (noise match)

.

-(Noise circle) 60GHz

(source degeneration

line)TLd1 3-19 3-20 / (MSG /MAG)

60GHz

0 20 40 60 80 100 120

0 5 10 15 20 25 30

MSG / MAG (dB)

Frequency (GHz)

without source degeneration line with source degeneration line

3-19 3-20 TLd1 MSG/MAG

3-22 NFmin

Port1 50 NFmin 3-21

T TL1 RF Pad

TL2 TL3

3-22

3-21 3-22

.

-3-23(a)(b) 3-24

(S22)

T 3-25

3-24

3.3. 3-23 (a)

3-23 (b) 3-24

(S22) (TL4~TL8)

3-25

.

-3-26 3-27

(S22) (S11*)

T 3-28 3-27

3-26 (a)

3-26 (b) 3-27

(S22) (TL9~TL13)

(S11*)

3-28

.

-3-30

(S22*) Port2 50Ω

T 3-31 3-30

3-29 3-30

Port2 50Ω (TL14~TL18)

(S22*)

3-31

3-34

3.3.3

10K

15Ω

3-32

R1

R1 10K V

C1 C2 R2 C1 V

C1 3-4 fc C

1PF 1PF 60GHz 2.65 C2

15

C2 5.8PF

1 1 ~ 5

2π f Cc = ………(3-4)

V

- (K factor)

3-33

(a璇

(b) SB2 of 1st and 2st stage & MP1 of 3nd stage

(c) SB1 of 3nd stage & MP2 of 1st and 2st stage

3-33 (a)(b)(c)

3.3.4

3-34 60GHz

3-34 60GHz

TSMC CMOS 90nm RF S

(Advanced Design System , ADS) SONNET

1.2V 0.75V

2.4V 0.75V 1.95V 15.07mW

3-35 S (S21) 55.2~62.7GHz 20dB

(S11) 55.9~64GHz -10dB 61.7GHz -19dB (S22)

60GHz -8.3dB 3-35(b) 59~65GHz

5.7dB 62.3 5.5dB 3-35(e) P-1dB

-22.5Bm 1dB 3-35(f)

-11.25dBm

40 50 60 70 80

Noise Figure(dB)

Frequency(GHz)

noise figure

(a) (b)

S11(Input return loss)

Frequency(GHz)

S22(Output return loss)

Frequency(GHz)

Output power(dBm)

Gain(dB)

Input power(dBm)

-22

Output Power(dBm)

Input Power(dBm) Fundamental Third-order

IIP3=-11.25dBm

(e) (f)

3-35 60GHz

(a) (b) (c) (d) (e)1-dB (f)IIp3

3.3.5

(a) (b)

3-36 60GHz (a) (b)

3-36 60GHz (a) (b)

Pad 0.564 x 0.815 mm2 on wafer

G-S-G RF S

IP1dB IIP3

3-3 3-3

S Network Analyzer Agilent E8361A (10MHz~67GHz)

Noise Source Aglient 346C K01/Noise Com NC5115 (50GHz~75GHz)

Noise Figure Analyzer Agilent N8975A (10MHz~26.5GHz ) Noise Down Converter Agilent K40/K50/K63/K75 (26.5GHz~75GHz) IP1dB

OP1dB

Signal Generator Agilent E8257D (250KHz~67GHz )

Psat Spectrum Analyzer Agilent E4440A+Agilent11974V (3Hz~75GHz)

3-37 60GHz

(a) (S21) 56.6GHz peak Gain 13.13dB 3dB 51.8~60.5

GHz 8.7GHz (b) NF 54.5~58GHz 6dB

55.5GHz 5.4dB (c) (S11) 52~56.5GHz -10dB

(d) (S22) 58.7GHz -15.4dB (e) P1dB

-23dBm 1dB 3-5

4GHz

40 45 50 55 60 65

-50 -40 -30 -20 -10 0 10 20

S21 Gain (dB)

Frequency(GHz)

Measurement Simulation

(a)

52 54 56 58 60 62

NF Noise Figure(dB)

Frequency (GHz)

simulation measurement

(b)

S11Input Return Loss(dB)

Frequency(GHz)

Measurement Simulation

(c)

40 45 50 55 60 65

S22 Output Return Loss(dB)

Frequency(GHz) Measurement

Simulation

(d)

Gain (dB)

Input Power(dBm) simulation

-25 -20 -15 -10 -5 0

Output Power (dBm)

Input Power (dBm)

Fundamental Third-order

OIP3=5.62dBm

(f)

3-37 60GHz (a) (b) (c)

(d) (e)P1dB (f)IIP3

3-4

Simulation Measurement

Frequency (GHz) 60 60

3dB Bandwidth(GHz) 55.1~63(7.9) 51.8~60.5(8.7)

Gain (dB) 20.8@59.4GHz 13.13@56.6GHz

Input Return Loss(dB) <-15 <-10(52~56.5)

Output Return Loss(dB) <-5 -15@58.7

Noise Figure(dB) 5.5@62.3GHz 5.4@55.5

Input P1dB(dBm) -22.5 -23

Power Consumption(mW) 15.07 14.88

3.4

60GHz

0.56×0.815mm2 1.2 V

2.4v 14.88 mW S

(DC block) S 3-38

Sonnet 25um×25um 1pF

S2p ADS S 3-41(a)

S 3-39

15um

3-40 EM

3-41(b) S

T 3-37(d)

3-4

(a) (b)

3-38 Sonnet (a) (b)

3-39

10 20 30 40 50 60 70 80 90 100

-8.00E-011 -6.00E-011 -4.00E-011 -2.00E-011 0.00E+000 2.00E-011 4.00E-011 6.00E-011 8.00E-011 1.00E-010 1.20E-010 1.40E-010

capacitance(f)

Frequency (GHz) EM

equivalent model

3-40

40 45 50 55 60 65

S Parameter(dB)

Frequency (GHz) M-S21 M: measurement S: simulation

40 45 50 55 60 65

S Parameter(dB)

Frequency (GHz) M-S21 M: measurement S: simulation

(a) (b) Topology 2-stage

cs+lstage cascode

3-stages Cascode

3-stages CS 2-stages cascode+1stage

cs

3-stages CS consumption

(mw)

14.88@1.2/2.4 15.1 72 43.29 29

Chip Area(mm2)

0.46 1.06 0.6 0.42 0.7

BW:bandwidth. NF:noise figure

CMOS 90nm CMOS 90nm CMOS 90nm CMOS 90nm

60GHz

4-1 S22

T

4-1 3.3.2 S11,S22

4-2 3.3.2 /

(MSG / MAG) &NFmin

(M1) device size

( )

(M1)device size (MSG / MAG)&

NFmin (M2)

device size

( )

4-2 MSG & NFmin

20 40 60 80 100 120 -5

0 5 10 15 20 25 30 35 40

MSG / MAG (dB)

Frequency (GHz) 12/24

16/16 18/36 24/24 24/48 M1/M2

4-3 MSG/MAG

4-3 (M1,M2)

/

( V band LNA M1,M2 24/48 )

[14][15][16][17][20]

4-4

[12][13]

(M1) (M2)

4.3

60GHz 4-1

4-4

4-1 cascode cascode

1. NFmin

2.

3.

4.

5.

1. NFmin 2.

3.

4.

5.

4.1

-/

(M1) (M2) 8:16

4-5

Γout 1

0 20 40 60 80 100 120

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

Reflection Coefficient

Frequency(GHz)

S22 S11

4-5

(Γout) 1

4-6 4-2 60GHz

(K factor)

4-2 &

Frequncy stabfact S(1,1) S(2,2)

60GHz 0.716 0.318 0.163 0.898

4-1 (K<1,

<1) 4-6 50

1(Γout>1)

Γout

Γin

4-6

4-7(a) (Γin)

( ) 1(Γin<1) 4-7(b)

(Γout) 1 (Γout<1)

1 (Γout>1) (M1) (S22)

(M2) 1

(Γout>1)

(a) (b)

4-7 (a)output stability circle(b)input stability circle

(S22) 60GHz

(S22) 4-8

1 15

1 (M1) (drain)

1(Γout<1)

4-8

1

1. (power amplifier) :

/ /

1. (low noise amplifier)

/

4.2

VDD

Vg 2 0.1um x 2um x 16

Port1

Port2

Γ

out

Γ

in

Γ

S

M2

0.1um*2um*8

cs

Γ

S M1

vdd

M1

Vg 1 DC block

DC block DC feed

4-9

1

? 4-9

(4-1) (bilateral)

12 0

S ≠ Γ ≠out S22 (S S12 21Γs) / (1− ΓS11 L)

S22

without inductor with inductor

(a)

(band pass) 4-11 (a)

S21 0 (4-1)

22

out S

Γ ≈ <1

(S21) Γs Γo u t 1

S21 gain (dB)

Frequency(GHz)

MSG/MAG

K<1

(b)

4-11 (a) (b) /

4-11(b) 60GHz /

4-10

60GHz k>1 (MAG)

k<1 (MSG) 4-11(b)

4.3

(M1 M2) (L)

4-12

(vg) 0.75 (V) (vdd)1.2

(v) 2um /

4-13 /

(id) 60GHz

17 7.974 dB 8

2.813 dB (id)

10 20 30 40 50 60 3

4 5 6 7 8

MSG / MAG(dB) NFmin(dB)

Number of Finger

NFmin MSG/MAG

0.000 0.005 0.010 0.015 0.020 0.025

Drain Current (mA)

4-13 MSG/MAG & NFmin ids

4-3 (a) (8,17)MSG NFmin id

MSG(dB) NFmin(dB) id(mA)

17 7.974 3.019 6.21

8 7.921 2.813 2.92

4-3 (b) (8,17)

MSG(dB) NFmin(dB) id(mA)

( ) 0.053 0.206 3.29

4-3 (a)(b) 17 8 0.053dB

8 17 0.206dB

3.29 mA 0.1um 2um

8

Dc feed

4-14

/

4-15 /

60GHz / 6

14.894 dB 17 4.183 dB

10 20 30 40 50 60

4 5 6 7 8 9 10 11 12 13 14 15

MSG/MAG(dB) NFmin(dB)

Number of Finger

MSG/MAG NFmin

4-15 MSG & MAG & NFmin

4-4 (a) (6,17) MSG& NFmin

MSG(dB) NFmin(dB)

6 14.894 4.892

17 14.216 4.183

4-4 (b) (6,17)

MSG(dB) NFmin(dB)

( ) 0.678 0.709

4-4 (a)(b) 6 17 0.6783dB

17 6 0.709 dB

6~22

(trade off) 6~22

(M2) 0.1um 2um

16

4-16 1~64 (a)

4-16 1~64 (b)

4-16(a) 8 4-16(b)

6~22 8

4-15

( , )

/ (MSG/MAG)

4-17(b) (57~65GHz)

1(K>1) 4.198 dB

3.397 dB 4-5

20 40 60 80 100 120 0

5 10 15 20 25 30 35 40

MSG/MAG (dB) NFmin (dB)

Frequency(GHz)

MSG/MAG NFmin

4-17 (a) 4-17 (b) MSG&MAG&NFmin

4-5

MSG/MAG(dB) NFmin(dB)

13,4(MAG) 3.397

14.216(MSG) 4.198

/

4-18 60GHz

(S22) (S11)

4-19 S22 S11

(M2) 6~22

4-16 6~10

M2 8 0.6 nH

M2 10~22

4-18 4-19

S11 S22 4-20

0.1nH~0.6nH

0.05nH 0.35nH ~0.4 nH

0.36nH Friiss’s

Formula 3-2 (M1) (M2)

55 56 57 58 59 60 61 62 63 64 65

NFmin (dB)

Frequency (GHz)

0.1nH

4.4 60GHz 4.4.1

4.3

4.3 (M1 M2)

(L) 0.1um 2um M1:M2

8:20 0.375 nH 4-21

vg1 0.75 v vg2 1.95 v vdd 2.4 v 14.496

mW

4-21 60GHz

(Thin Film Microstrip Line , TFMS line) TSMC 90 RF 1P9M CMOS

60 6 um

TSMC 90 RF 1P9M CMOS 4-22(a)(b)

Sonnet (spiral inductor)

3um 4-22(c) V

60GHz 0.375nH

Q 4-22(d) Q (60)

Q

60GHz Q 8.624

Inductance (H)

Frequency (GHz) inductance

54 56 58 60 62 64

NFmin (dB)

Frequency(GHz)

4.4.2

.

-4-23 (b) noise circle gain circle

Port1 50Ω

4-23(a) RF PAD

TL1 TL2 TL3 gain circle noise circle

4-23 (a) 4-23 (b)

.

-4-24

(b) (S22)

gain Circle 4-24(a) TL4 TL5

Gain Circle TL6

L

4-24 (a)

4-24 (b)

.

-4-25(b) 50

RF Pad TL9 TL8 TL7

4-25 (a)

4-25 (b)

. - gate line

K=1

K>1(5~15) 4-26

TLG1 TLG2

4-27(g) gate line k factor 6.675 gate line

k factor 5.5 4-27(h) gate line

4-26 60 GHz

4.4.3

60 GHz 4-26

TSMC CMOS 90nm RF S

Advanced Design System(ADS) SONNET

4-27(a)(b)(c) S (S21) 56~62GHz

19dB 58.5GHz 19.84dB (S11)

56~62GHz -15dB 58.1GHz -22dB (S22) 56~64GHz

-10dB 62.1GHz -37.4dB 4-27(d)

58~65GHz 6 dB 63.5 5.3dB 4-27(e)

P-1dB -21dBm

1dB 4-27(f) -10dBm

40 45 50 55 60 65

-20 -10 0 10 20

S21 Gain (dB)

Frequency (GHz)

simulation

40 45 50 55 60 65

-25 -20 -15 -10 -5 0

S11 Input Return Loss (dB)

Frequency (GHz)

simulation

(a) (b)

40 45 50 55 60 65

S22 Output Return Loss (dB)

Frequency (GHz)

simulation

50 55 60 65

4 6 8 10

Noise Figure (dB)

Frequency (GHz)

simulation

(c) (d)

Gain (dB)

InputPower (dBm)

-12

OutputPower (dBm)

-40 -35 -30 -25 -20 -15 -10 -5 0 5

Output Power(dBm)

Input Power (dBm)

fundamental Third-order IIP3= -10dBm

(e) (f)

K factor

Frequency (GHz)

without gate line with gate line

40 45 50 55 60 65

S parameter (dB)

Frequency (GHz) G-S(2,1) G- with gate line without gate line

(g) (h)

4-27

(a) S21(b) S11(c) S22 (d)

NF(e)P-1dB(f)IIP3(g)k factor(h)s parameter

(interstage stability

circle) 4-28

(a)

(b) SB2 of 1st stage & MP1 of 2nd stage

(c) SB1 of 2nd stage & MP2 of 1st stage

4-2凃

4.4.4

(a) (b)

4-29 (a) (b)

4-29(a)(b) Pad

0.505600 x 0.55633 mm2 60GHz on-wafer

3.3.5 P-G-P

(vdd) 2.4V vg 1 = 0.75V vg2=1.95

V 4-6 0.18 mA

4-6

Simulation Measurement

First stage-Id1(mA) 3.02 3.2

Second satge-Id2(mA) 3.02 3.2

4-30 60GHz

(a) (S21) 56.9GHz peak Gain 18.95dB 3dB

54.7~63.1 GHz 8.4GHz (b) NF 59~67GHz

5.82dB 65.5GHz 4.7dB (c) (S11)

-15dB (d) (S22) -15dB

(e) P1dB -20dBm 1dB

4-7 60GHz

40 45 50 55 60 65

-30 -20 -10 0 10 20

S21 Gain (dB)

Frequency(GHz)

simulation measurement

(a)

50 52 54 56 58 60 62 64 66

4 5 6 7 8 9 10 11 12 13 14

Noise Figure(dB)

Frequency (GHz)

measurement-chip1 simulation

measurement-chip2

(b)

40 45 50 55 60 65 -30

-25 -20 -15 -10 -5 0

S11 Input Return Loss (dB)

Frequency (GHz)

simulation measurement

(c)

40 45 50 55 60 65

-40 -35 -30 -25 -20 -15 -10 -5 0

S22 Output Return Loss (dB)

Frequency (GHz)

simulation measurement

(d)

-30 -25 -20 -15 -10

Input Power(dBm)

line : simulation

line+symbol : measurement -12

Output Power(dBm)

(e) 4-30 60GHz

(a) S21(b) NF(c) S11(d) S22(e)P1dB

4-7 60GHz

Simulation Measurement

Frequency (GHz) 60 60

3dB Bandwidth(GHz) 10.3(54.8~65.1) 8.4 (54.7~63.1)

Gain (dB) 19.85@58.5GHz 18.95@56.9GHz

Input Return Loss(dB) <-10 <-10

Output Return Loss(dB) <-10 <-10

Noise Figure(dB) 5.5@63GHz 4.7@65.5GHz

5.82(avg.)

Input P1dB(dBm) -21 -20

Power Consumption(mW) 14.59 15.396

4.5

60GHz TSMC CMOS 90-nm RF

M1 M2 /

0.505600 x 0.55633 mm2 2.4V 15.36

mW 56.9GHz 18.95dB 3dB 8.4GHz 59~67GHz

5.82dB 65.5GHz 4.7dB

4-8

(figure of merit , FOM) 4-2 FOM 2.8

4-8

Ref This work [12] [18] [19] [10] [15]

Process 90nm CMOS

(LP)

90nm CMOS (GP)

90nm CMOS(LP)

90nm CMOS(GP)

0.13um CMOS

0.13um CMOS

Topology 2-stage cascode 2-stage cascode 3-stage cs Tline

2-stage cs CPW

2-stage cascode +1stage cs

3-stage cascode

Frequency(GHz) 60 58 60 58 60 60

BW(GHz) 54.7~63.1(8.4) 53~62(9) 54~62(8) 57~59(2) 57~64(7) 55~62(7)

Gain(dB) 18.95@56.9GHz 14.6 13 15 15.83 20.4

NF(dB) 4.7@65.5GHz

5.82(avg.)

<5.5@58~59GHz 6.3@64GHz 4.4 5.71@63GHz 8.6@60GHz

IIP3 (dBm) N/A -6.8 N/A N/A -4.8 N/A

IP1dB (dBm) -20 N/A -7 N/A N/A N/A

Power consumption (mw)

V CMOS

TSMC CMOS 90nm RF

V

T

L

60GHz

18.95dB 3dB 8.4GHz 65.5GHz

4.7dB 15.396mW

figure of merit(FOM) (2.8)

EM 5-1

S 5-2

5-1 60GHz

45 50 55 60 65 70 75 80

-25 -20 -15 -10 -5 0 5 10 15 20 25

Noise figure(dB) S parameter(dB)

Frequency(GHz)

s11 s22 s21 nf

5-2 60GHz

5-1

4-26 TLG1,2 K 2

S 5-3

45 50 55 60 65 70 75 80

-25 -20 -15 -10 -5 0 5 10 15 20 25

Noise figure(dB) S parameter(dB)

Frequency (GHz)

s11 s22 s21 nf

5-3 60 GHz

5-2 5-3 60GHz

2

K≈ 22dB

T

1dB 10GHz(57~67GHz) L

5.2dB 14.88mW

15.3mW

[1] IEEE P802.15-05-0596-01-003c.pdf

[2] B. Johnson, “Thermal agitation of electric charge in conductors,” Phys. Rev. , vol. 32, pp.

97-109,jul. 1928

[3] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. , vol. 32, pp.

97-109,jul. 1928

[4] K. Chang, I. Bahl and V. nair, “RF and Microwave Circuit and component Design for Wireless System,” A John Wiley & Sons, INC. 2002

[5] G. Gonzalez, “Microwave Transistor Amplifier-Analysis and Design, 2nd Ed.,” Prentice Hall,Inc., 1984

[6] B. Razavi, “RF Microelectronics,” Prentice-Hall, 1997

[7] _

[8 ] C. –C. Hung, H. –C. Kuo, T. –H. Hung, “low-power, high gain CMOS low noise amplifier for microwave radiometer applications” IEEE microwave and wireless components letters, vol. 21, no.2, pp. 104-106, February 2011.

[9] M. Varonen, M. Karkkainen, M. Kantanen, and K. A. I. Halonen, "Millimeter-wave integrated circuits in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 43, no. 9, pp.

1991-2002, Sept. 2008.

[10] H. –K. Chiou, K. –Z. Lee, and S. –J. Wu, “a high performance V-band low noise amplifier using thin-film microstrip(TFMS)line 0.13um CMOS technology” in Proc.

Asia-Pacific Microwave Conf, pp. 1513-1516, Dec 2010.

[11] K. Kang, J. Brinkhoff, and F. Lin, “a 60GHz LNA with 18.6dB gain and 5.7dB NF in 90-nm CMOS” ICMMT, 2010 International Conference, pp. 164-168, May 2010.

[12] T.Yao, M. Q.Gordon,K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan and S. P.

Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60GHz radio” IEEE Journal solid state circuit, vol, 42, no. 5, May 2007

[13] Bo-Jr Huang, Kun-You Lin, and Huei Wang, “Millimeter-Wave Low Power and Miniature CMOS Multi-Cascode Low Noise Amplifier with Noise Reduction Topology,” appear in IEEE Trans. Microwave Theory and Tech., vol. 57,no. 12,pp.

3049-3059, Dec. 2009

[14] H. K. Chiou, K. Z. Lee, S. J. Wu, “A High Performance V Band Low Noise Amplifier Using Thin-film Microstrip(TFMS) Lines in 0.13um CMOS Technology,” Asia Pacific Microwave Conference 2010

[15] Bo-Jr Huang, Chi-Hsueh Wang, Chung-Chun Chen, Ming-Fong Lei, Pin-Cheng Huang, Kun-You Lin, and Huei Wang, “Design and analysis for a 60GHz low noise amplifier with RF ESD protection,” IEEE trans. Microwave Thoeory and Tech., vol. 57, no.2, pp 298-305,Feb. 2009.

[16] Chieh-Min. Lo, Chin-Shen. Lin, and Huei. Wang, “A miniature v band 3-stage cascode LNA in 0.13um CMOS” IEEE International Solid-State Circuits Conference, pp.

1254-1263, Feb. 2006.

[17] Chun-Chieh. Huang, Hsin-Chih. Kuo, Tzuen-Hsi. Huang, and Huey-Ru. Chuang, “low power high gain v band CMOS low noise amplifier for microwave radiometer applications” IEEE microwave and wireless components letters, vol.21, no.2,pp.

104-106, Feb.2011

[18] Wei-Heng. Lin, Jeng-Han. Tsai, Yung-Nien. Jen, Tian-Wei. Huang, and Huei. Wang,“a 0.7v 60GHz low power LNA with forward body bias technique in 90nm CMOS process”

proceedings of the 39th European microwave conference., pp. 393-396, Oct 2009

[19] E. Cohen, S. Ravid, and D. Ritter, “An ultra low power LNA with 15dBgain and 4.4dB NF in 90nm CMOS process for 60 GHz phase array radio,”Proc. RFIC IEEE Symp., pp.

61-64, June 2008.

[20] S. Pellerano, Y. Palaskas, and K. Soumyanath, "A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1542-1552, July 2008.

相關文件