• 沒有找到結果。

V 頻帶CMOS低雜訊放大器設計與分析

N/A
N/A
Protected

Academic year: 2021

Share "V 頻帶CMOS低雜訊放大器設計與分析"

Copied!
95
0
0

加載中.... (立即查看全文)

全文

(1)V. CMOS. Design and Analysis of V Band CMOS Low Noise Amplifier. 100. 09.

(2)

(3) V. CMOS. 60GHz. GHz. 60GHz. CMOS. CMOS. V. CMOS. TSMC 90nm RF CMOS process. V. 55.5GHz 0.46mm2. pad. 5.4dB 56.6GHz. 13.1dB. 56.9GHz 65.5GHz IP1dB. 4.7dB. 3dB. -20dBm. V. 54.7GHz 15.3mW. CMOS I. pad. 18.95dB 63.1GHz. 60GHz 0.308mm2.

(4) Design and Analysis of V Band CMOS Low Noise Amplifier student Yi-Jhang Lin. Advisors Dr.Jeng-Han Tsai. Institute of Applied Electronics Technology National Taiwan Normal University. ABSTRACT With the rapid development of the wireless communication technologies, radio frequency integrated circuit tends to higher frequency, higher data rate, wider bandwidth and higher integration. Unlicensed multi-GHz bandwidth around 60GHz makes very high data rate transmission feasible. The low noise amplifier (LNA) is one of the most important components in the 60GHz front-end transceiver. The low noise amplifier contributes to minimum noise figure when amplifying the weak signal from the antenna. We adopt CMOS technology. It has the advantages of small size, low cost, low power consumption, and high level of integration, all of which are attractive for MMW applications.. In this thesis, tow CMOS low noise amplifiers were designed for V band specifications. They are fabricated in TSMC 90nm RF CMOS process. The first chip, we present a V-band 3-stage LNA that the first and second stages utilizes the common source topology for reduce noise figure and The third stage is adopted cascode topology to boost gain. Therefore our LNA achieves excellent noise figure of 5.4dB at 55.5GHz, with miniature chip size of 0.46 mm2 including testing pads. The maximum gain is 13.1dB at 56.6GHz. The second chip, employs a 2-stage cascode topology. Compared with conventional. II.

(5) cascode device design, the cascode device design we proposed has improved stability, lowered noise figure, contributed to higher gain and consumed lower power. The 2-stage LNA, which achieves a peak gain of 18.95dB at 56.9GHz, a noise figure of 4.7dB at 65.5GHz, a 3dB frequency bandwidth ranging from 54.7 to 63.1 GHz, an input 1dB compression point of -20dBm at 60GHz. Also the LNA consumes only 15.3mW. The total LNA die area with pads is 0.308 mm2. Keywords: low noise amplifier, Noise Figure,transceiver, CMOS, MMW, Cascode. III.

(6) LAB-514. LAB514. LAB LAB514 IV. LAB.

(7) LAB514. LAB514. 2011/9/14 LAB514. V.

(8) .......................................................................................................................І ABSTRACT.................................................................................................................ІІ ....................................................................................................................ІV ....................................................................................................................VІ ..................................................................................................................VІІІ ...................................................................................................................XІІ. .............................................................................................................1 1.1. 60GHz. 1.2. ....................................................................1 ....................................................................................................2 .....................................................................3. 2.1. 60GHz. .........................................................................3. 2.2. .........................................................................................4 2.2.1. ........................................................................................4. 2.2.2. ............................................................................5. 2.2.3. ............................................................................................6. 2.3. .....................................................................7 2.3.1. ....................................................................................................7. 2.3.2. ............................................................................................9. 2.3.3. ......................................................................................11. 2.3.4. ......................................................................................14. CMOS 90nm 3.1 3.2. 60GHz. .......................................15. ...................................................................................15 60GHz 3.2.1. ......................................................17 ..................................................................17 VI.

(9) 3.3. 3.2.2. .....................................................................22. 3.2.3. .............................24. 60GHz. .....................................................................25. 3.3.1. ...........................................................................25. 3.3.2. .................................................................................27. 3.3.3. .........................................................33. 3.3.4. .........................................................................................36. 3.3.5. .........................................................................................38. 3.4. .............................................................................................43 CMOS 90nm. 4.1. .........................46 -. ........................................................................49. 4.2. .........................................................................52. 4.3. .........................................................56. 4.4. 4.5. 60GHz. .....................................63. 4.4.1. .........................................................................................63. 4.4.2. .................................................................................65. 4.4.3. .........................................................................................68. 4.4.4. .........................................................................................71 .............................................................................................75. ................................................................................................................76 .......................................................................................................................79. VII.

(10) 1-1 2-1. 60GHz 60GHz. 2-2 2-3. CMOS. (a). (b). 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11. 1-dB. 2-12 2-13 3-1. 60GHz. 3-2 3-3 3-3. Gm & ids & NFmin. VGS. 3-4. /. 3-5 3-6 3-7 3-8. (MSG/MAG). 60GHz. MSG & MAG & NFmin. MSG&MAG 60GHz. MSG & MAG & NFmin. MSG & MAG& & NFmin VIII.

(11) 3-9. (M1) MSG&MAG&MAG. 3-10 3-11. MSG/MAG. 3-12. 60GHz. MSG & MSG & NFmin. 3-13 3-14. MSG & MAG & NFmin. 3-15. MSG & MAG & NFmin. 3-16 3-17. V. 3-18 3-19 3-20. TLd1. MSG/MAG. 3-21 3-22 3-23. (a). (b). 3-24 3-25 3-26. (a). (b). 3-27 3-28 3-29 3-30 3-31 3-32 3-33. (a)(b)(c). 3-34. 60GHz. IX.

(12) 3-35. 60GHz. (a) (e)1-dB. 3-36. 60GHz. 3-37. 60GHz. (c). (d). (f)iip3 (a). (b) (a). (d) 3-38. (b). (e)P1dB. (b). (c). (f)IIP3. Sonnet. (a). (b). 3-39 3-40 3-41 4-1 4-2. (a) 3.3.2. EM. (b). S11,S22. MSG & NFmin. 4-3. MSG/MAG. 4-4 4-5 4-6 4-7. (a)output stability circle(b)input stability circle. 4-8 4-9 (a) Γ s. 4-10 4-11. (a). (b) Γ out (b). /. 4-12 4-13. MSG/MAG & NFmin. ids. 4-14 4-15. MSG & MAG & NFmin. X.

(13) 4-16. 4-17. 1~64 (a). (a). (b). (b). MSG&MAG&NFmin. 4-18 4-19. S11. 4-20. S22. NFmin. 4-21. 60GHz. 4-22. (a). 4-23. (a). 4-24. (a). 4-25. (a). 4-26. 60 GHz. (b). (c). (d). Q. NFmin. (b) (b) (b). 4-27. (a) S22 (d). S21(b). S11(c). NF(e)P-1dB(f)IIP3(g)k factor(h)s parameter. 4-28 4-29. (a). 4-30. 60GHz. (b) (a) NF(c). 5-1. 60GHz. 5-2. 60GHz. 5-3. S11(d). 60 GHz. XI. S22(e)P1dB. S21(b).

(14) 3-1 3-2. MSG Pdc. 3-3 3-4 3-5. 60GHz. 4-1. cascode. 4-2. cascode &. 4-3. (a). 4-4. (a). (8,17)MSG NFmin. (6,17). MSG& NFmin. 4-5. 4-6 4-7. 60GHz. 4-8. XII. id. (b). (b). (8,17). (6,17).

(15) 1.1 60GHz. (SATA). ( (FCC). ). 60GHz (57~64GHZ). (WPAN). (Wireless HD) (Point to Point 60GHz Link). 60GHz. 1-1. 1-1. 60GHz. 60GHz. [1] (OFDM). OFDM 1. OFDM.

(16) CMOS CMOS 60GHz-CMOS. 1.2 60GHz. :. 60GHz. :. 60GHz :. :. 60GHz. 2.

(17) 60GHz. 2.1 60GHz 60GHz. 2-1. (transceiver). (Switch) (variable gain amplifier , VGA). (up mixer). (power amplifier , PA ). (Antenna). (low noise amplifier , LNA). (down mixer). Base band. 60GHz. 2-1. 60GHz. 3.

(18) 2.2. [2][3]. (thermal noise) (thermal noise) (flicker noise). 2.2.1. (channel thermal noise). MOSFET Nyquist. (available power noise). T. (2-1). T. Pav = KT ∆f. (2-1). K. (2-1). ∆f. T. (2-2). (2-2) γ. gd0 γ. Hz. (2-2). I n 2 ( f ) = 4 K BT γ g do KB. (2-1). 1. 4. 2/3.

(19) I n 2 ( f ) = 4 K BT γ g do. 2-2. 2.2.2. (distributed gate resistance noise). CMOS. 2-3 (poly layer). (2-3). Rg = ( RhW / 3n 2 L) (2-3). (2-3). n. Rh. (multi-finger). L. W Rg. 2-3(a). (Rg). 5.

(20) Drain. Rg Gate. Source (a) 2-3. 2.2.3. (b) CMOS. (a). (b). (Flick noise)[4]. Si O2. 2-4. (2-4). Vn2 = K. K 1 ⋅ CoxWL f. (2-4) 10. 6. 25. V2 F. 1/f.

(21) 20log Vn 2. Log f. 2-5. 2.3. [5][6]. 2.3.1. (Gain). ZS. Input Matching Network. VS. Pin. PA. Output Matching Network. Transist or. ZL. P. Pavo. L. 2-6. 2-6. 1.. (Transducer power gain):. GT =. 傳遞到負載的功率 自信號源的功率. 1 − ΓS P GT = L = PA 1 − Γin Γ S. 2 2. S21. 2. 1 − ΓL. 2. 1 − S 22 Γ L. 2. =. 7. 1 − ΓS. 2. 1 − S11Γ S. 2. S 21. 2. 1 − ΓL. 2. 1 − Γ out Γ L. 2. (2-5).

(22) 2.. (Available power gain):. GA =. 自網路的可用增益 自信號源的功率. 1 − ΓS P GA = avo = PA 1 − S11Γ S. 2. 3.. 2. S 21. 1. 2. 1 − ΓOUT. (2-6). 2. (Operating power gain):. GP =. 傳遞到負載的功率 自輸入網路的功率. P 1 2 1 − ΓL 2 GP = L = S = S21 gl 21 2 2 Pin 1 − Γin 1 − S22 Γ L 2. (S12=0). Γ IN = S11 +. (2-9). S12. 0. S S Γ S12 S 21Γ L Γ OUT = S22 + 12 21 S 1 − S22Γ L 1 − S11Γ S. (2-8) GTu. (2-7). (2-5). Γ IN = S11 Γ Out = S22 (2-8). (Unilateral transducer power gain). GTu. (GS GO GL). GS GL. GO (2-9). GTU = GS GoGL =. 1 − Γs. 2. 1 − S11Γ S. 2. S 21. 2. 1 − ΓL. (dB). (2-10). 2. 1 − S22 Γ L. (2-9). 2. GTU (dB ) = GS (dB ) + Go (dB ) + GL (dB ). (2-10). 8.

(23) ZS. ΓS. GL. GO. GS. VS. S2. S11. 2. ZL. ΓL. 2-7. (maximum unilateral transducer power gain GTU,MAX). ?. ZS VS. Γ S = S11 ∗. |S11| < 1 |S22| < 1 input Matching network. Transist or. Output Matching network. Gs ,max. Go. GL ,max. Γ S = S11∗. S11. S2. ZL. Γ L = S 22∗. 2. 2-8 Γ S = S11 ∗ , Γ L = S 22 ∗. GS ,MAX =. (2-12). 1 1 GL ,MAX = 2 1 − S11 1 − S22 2. GTU , MAX =. 2.3.2. (2-9) (2-11). 1 1 2 S 21 1 − S112 1 − S 22 2. (2-12). (Noise Figure). 2-9. (Noise Figure):. 9. Γ L = S 22 ∗.

(24) 2-13. Si. So. Ni. No. NF =. 輸入端訊號雜訊比 Si/Ni = 輸出端訊號雜訊比 So/No. (2-13). (Gain1). (Na). (2-13). 2-14. NF=. Na Si / N i =1+ Gain1 Si / (Gain1 N i +N a ) Gain1 N i. 2-10. (2-14) No. No (2-15) NF1 = 1 +. Nb. (2-13). Na Nb NF2 = 1 + Gain1 N i Gain 2 N i N O = Gain 2 ( Gain1 Ni + N a ) + N b. Gain 2. Gain1 Na. Gain1 × N i + N a. Nb. 2-10. NF = = 1+. Gain 2 ( Gain1 N i + N a ) + N b Si /Ni Si N o = = So /N o Gain1Gain 2Si Ni Gain1Gain 2 N i. Na Nb NF2 − 1 + = NF1 + Gain1 Ni Gain1Gain 2 Ni G1. (2-15). (2-16). NF = NF1 +. NF3 − 1 NF2 − 1 NF4 − 1 + + + ... (2-16) Gain1 Gain1Gain 2 Gain1Gain 2Gain 3. 10.

(25) 2.3.3 P-1dB : 1-dB. 1-dB. (1 dB Compression Point ). 1 dB. Pl-dB (Minimum detectable signal , MDS): (Dynamic range , DR ). IP1-dB. DR = IP1− dB − MDS. MDS. (2.17). }1 dB OP1dB. Output Power. }1 dB Pout. Input Power 2-11. 1-dB. IP1dB. [7]. IIP3: IP3. 11. Third-order Intercept Point.

(26) IP3. IP3. △P Vin (t). Vout (t). 2ω1 -ω2 ω1 ω2 2ω2 -ω1. ω1 ω2 2-12. (. 2-18). Vout (t)=α1Vin (t)+α 2 Vin (t) 2 +α 3 Vin (t)3. (2-18). Vin (t)=A1cos(ω1t)+A 2 cos(ω2 t). (2-19). (2-19). (2-18). (2-20).  α A 2 +α 2 A 2 2  Vou t (t)=(α1A1cosω1t+α 2 A 2 cosω2 t)+  2 1 + 2   [α 2 A1A 2 cos(ω1 +ω2 )t+α 2 A1A 2 cos(ω1 -ω2 )t]+  3α 3 A13 3α 3 A1A 2 2   3α 3 A 23 3α 3 A12 A 2  + +   cos ω1t+   cos ω2 t+ 2 2  4   4  3α 3 A12 A 2 [cos(2ω1 +ω2 )t+cos(2ω1 -ω2 )t]+ 4 3α 3 A1A 2 2 [cos(2ω2 +ω1 )t+cos(2ω2 -ω1 )t]+..... 4. (2-20). 2. (2-20). VDC. 3. (α 2 A12 + α 2 A2 2 )/2. 12.

(27) (2ω1 ± ω2 ),(2ω1 ± ω2 ). (third-order inter-modulation terms , IM3). 2ω2 -ω1 2ω1 -ω2. ω1 , ω2. ω1 ω2. α1 ≫ 9α 3 A2 / 4. A1 = A2 = AIP 3. α1 AIP 3 =. IP3. 3 α 3 A3 IP 3 4. (2-21). 4 α1 3 α3. AIP 3 =. (2-22). IIP3 Aω1 ,ω2 AIM 3. (2-22). (2-23). α1 Ain 4 α1 1 = 3 3 α 3 Ain / 4 3 α 3 Ain 2. (2-23). (2-24) Aω1 ,ω2 AIM 3. (2-24). ≈. =. AIP 32 Ain 2. dBm. (2-24) (2-25). (2-26). (2-27). 10 log Aω1 ,ω2 − 10 log AIM 3 = 10 log AIP 32 − 10 log Ain 2 1 10 log AIP 3 = (10 log Aω1 ,ω2 − 10 log AIM 3 ) + 10 log Ain 2. IIP3 dBm =. ∆P dB 2. + Pin. dBm. 13. (2-27). (2-25) (2-26).

(28) OIP3. P(2ω1 − ω2 ). P (ω. 1. ). ∆P dB 2 10 log Ain. 2-13. IIP3. [7]. 2.3.4. 1. Rollett’s stability factor (K) k>1. k<1 1 − S11 − S 22 + ∆ 2. K=. 2. 2 S12 S 21. ∆ = S11S22 − S12 S21 < 1. 2. >1. (2(2-2凃璇. (2(2-29璇. 2. (interstage stability circle). 14.

(29) CMOS 90nm. 60GHz. 60GHz 60GHz. TSMC 90nm CMOS RF. 1.2/2.4V. 14.46 mW. 3.1 3-1. (Radio Frequency , RF). (Itermediate frequency , IF). Antenna. RF Down mixer LNA. IF LO. VCO 3-1. 60GHz. (Receiver) (signal to noise ratio , SNR). 15.

(30) 1.. 2.. (Gain):. (Noise Figure): (SNR). 3.. 4.. (Stability):. (Impedance Match). 5.. (Isolation):. 6.. (linearity):. 7.. K. P1dB. IIP3. (Power consumption):. 16.

(31) 3.2 60GHz 3-2 3-3 CS ). (common source ,. (cascode). 3-2. 3-3. 3.2.1 (VDD) (VGS). VGS. (Gm) 3-2. VDD. 1.2. (Gm). VGS VGS VGS. VGS. Gm 0.8. (ids). VGS. 0.8 (NFmin). Gm (Vgs). 17. 0.75. (volt).

(32) 10 0.014. 6. 0.012. ids. 4. NFmin. Gm(i/v). ids (mA) NFmin(dB). 8. 0.010 2. 0 0.5. 0.6. 0.7. 0.8. 0.9. 1.0. 1.1. 1.2. 0.008 1.3. VGS (V) 3-3. (channel length). Gm & ids & NFmin. VGS. (channel width). (number of finger). TSMC CMOS 90nm RF 0.1um. 0.1um. 3-4. / /. 1 (MSG/MAG). 3-4. (MSG/MAG). 1.8um 3-5. 60GHz. (NFmin). (MSG/MAG) 2um. 1.8um. 18. /.

(33) 10. width(um). 9. 1 1.8 2.6 3.4 4.2 5. MSG / MAG (dB). 8 7 6 5 4 3 2. channel length=0.1um. 1 channel width = ?um number of finger = 1. 0. 40. 50. 60. 70. 80. 90. 100. Frequency(GHz). 3-4. /. (MSG/MAG). NFmin MSG/MAG. 8. NFmin(dB) MSG/MAG(dB). 7. 6. 5. channel length=0.1um channel width = ?um number of finger = 1. 4. 3 1. 2. 3. 4. 5. Channel Width(um). 3-5. 60GHz. 3-6. MSG & MAG & NFmin. 0.1um /. 1.8um. (MSG/MAG). 10. /. 19.

(34) 10 9. MSG / MAG(dB). 8 7 6 5 finger. 4. 1 10 19 28 37 46 55 64. 3 2 1 0 40. channel length=0.1um channel width =1.8um number of finger = ?. 50. 60. 70. 80. 90. 100. Frequency(GHz). 3-6. 3-7. finger. MSG&MAG. 60GHz. 0.1um. 1.8um. /. 4. 15 4. 15 10. 8. NFmin(dB) MSG / MAG(dB). 7 6 channel length=0.1um channel width =1.8um number of finger = ?. 5 4 3. NFmin MSG/ MAG. 2 10. 20. 30. 40. 50. 60. Number of Finger. 3-7. 60GHz. MSG & MAG & NFmin. 20.

(35) 0.1um. 1.8um. 10. 3-8. 0.1um (MSG). 60GHz. 1.8um 60GHz. 7.844 dB. 2.682dB. 20 MSG / MAG NFmin channel length=0.1um channel width =1.8um number of finger = 10. 18 16. NFmin(dB) MSG / MAG(dB). 14 12 10 8 6 4 2 0 0. 20. 3-8. 40. 60 80 Frequency(GHz). 100. MSG & MAG& & NFmin. 21. 120. 140. 10.

(36) 3.2.2 / / (M1). (M2). 3.2.1 0.1um 2um. 8. (M1). 7.921 dB. 60GHz. 2.678dB. 20 18. MAG NFmin. 16. M1 channel length=0.1um channel width =2um number of finger = 8. NFmin(dB) MSG / MAG(dB). 14 12 10 8 6 4 2 0 0. 20. 40. 60 80 Frequency(GHz). 3-9. 100. 120. 140. (M1) MSG & MAG. 3-10. & MAG. 3-11 3-12 (M1). (M2). /. / (M2). 8. /. 16 (M2). 8 16. / /. (M2). 0.1um 22. 2um. 16.

(37) MSG / MAG(dB). /. 18 16 14 12 10 8 6 4 M2 Number of finger 2 0 8 -2 16 -4 24 -6 32 -8 40 M2 -10 48 channel length=0.1um -12 56 channel width =2um -14 64 number of finger = ? -16 40 60 80. 100. 120. Frequency(GHz). 3-11. MSG/MAG. 15. MAG NFmin. 14 13. MSG/MAG(dB) NFmin (dB). 12 11 10 9. M2 channel length=0.1um channel width =2um number of finger = ?. 8 7 6 5 4 10. 20. 30. 40. 50. 60. Number of finger. 3-12. 60GHz. MSG & MSG & NFmin. 23.

(38) 3-13. M1 M2 8 16. 0.1um. 2um. / (14.41dB). (4.198 dB). ). MAG NFmin. 30 25. MAG(dB) NFmin(dB). 20 15 10 5 0 20. 40. 60. 80. 100. 120. Frequency(GHz). 3-13. 3-14. MSG & MAG & NFmin. 3.2.3. 30. cascode MSG/MAG cascode NFmin CS MSG/MAG CS NFmin. MSG / MAG(dB) NFmin(dB). 25 20 15 10 5 0 20. 40. 60. 80. 100. 120. Frequency(GHz). 3-15. MSG & MAG & NFmin. 3-1. 24.

(39) 6.56 dB. 1.51dB 3-1. Configuration. Cascode. Common source. Power consumption(mW). 7.248. 3.912. MSG (@60GHz)(dB). 14.41. 7.844. NFmin(@60GHz)(dB). 4.198. 2.682. Supply Voltage(v). 2.4. 1.2. 3.3 60GHz 3.3.1 V. 3-16. [18] [16]. 3.2. /. ?. 3-16. 1.. :. n. (3-1). Gain(dB) = Gain1(dB)+Gain2(dB)+……+Gainn(dB) 2.. :. (3-1). Friiss’s Formula n. 25. (3-2).

(40) NF = NF1 + 3.. NFn − 1 NF2 − 1 + ..... + Gain1 Gain1.....Gainn −1. (3-2). :. Pdc =Pdc1+Pdc2+…..+Pdc(n). (3-3). Friiss’s Formula. (3-2). ?. 20dB 20dB. 3-2. 3-1. 3-1. (. ). 7 dB. 2. 2 3 Formula. 3-3. 3. 2 3. 4 ?. Friiss’s. 3-2 3-17. V V. 3-2. MSG Pdc MSG(dB). Pdc(mW). 1. Cs. Cs. Cs. 23.53. 11.73. 2. Cs. Cs. cascode. 30. 15.07. 3. Cs. Cascode. Cs. 30. 15.07. 4. Cs. Cascode. cascode. 36.6. 21.74. 26.

(41) 3-17. V. 3.3.2. (Thin Film Microstrip Line , TFMS line) 1P9M CMOS 50 Ω. 10 um. 3-1凃. 3-18 (conjugate match) (noise match). 27. TSMC 90 RF.

(42) .. (Noise circle). 60GHz (source degeneration. line)TLd1. 3-19. 3-20. /. (MSG /MAG) 60GHz. 30 without source degeneration line with source degeneration line. 25. MSG / MAG (dB). 20 15 10 5 0 0. 20. 40. 60. 80. 100. 120. Frequency (GHz). 3-19. 3-20. 3-22. TLd1. MSG/MAG. NFmin Port1. 50 Ω. T. NFmin TL1. TL2. TL3. 3-22. 28. 3-21 RF Pad.

(43) 3-21. 3-22. 29.

(44) .. 3-23(a)(b). 3-24 (S22) T. 3-25. 3-24. 3.3.. 3-23. 3-23. (a). (b). 3-24. (S22). (TL4~TL8). 3-25. 30.

(45) .. -. 3-26. 3-27 (S22). T. (S11*). 3-28. 3-26. 3-26. 3-27. (a). (b). 3-27. (S22) (S11*). 31. (TL9~TL13).

(46) 3-28. .. 3-30. (S22*). Port2. T. 50 Ω 3-31. 3-30. 3-29. Port2. 50 Ω. 3-30. (TL14~TL18). (S22*). 32.

(47) 3-31. 3-34. 3.3.3. 10KΩ 15Ω. 3-32. R1 R1. 10K Ω. V. C1 C2. R2. C1. C1 3-4. 1PF. 1PF. fc 60GHz. 15. 33. V C 2.65 Ω. C2.

(48) C2. 5.8PF 1 = 1 ~ 5Ω …………………(3-4) 2π f cC. V -. (K factor). 3-33. 34.

(49) (a璇. (b). SB2 of 1st and 2st stage & MP1 of 3nd stage. (c). SB1 of 3nd stage & MP2 of 1st and 2st stage 3-33. (a)(b)(c). 35.

(50) 3.3.4 3-34. 60GHz. 3-34. 60GHz. TSMC CMOS 90nm RF. S. (Advanced Design System , ADS). SONNET 1.2V. 2.4V 3-35 (S11). 0.75V 1.95V. S. (S21). 55.9~64GHz. 60GHz. 0.75V. -10dB. -8.3dB 5.7dB. 15.07mW. 55.2~62.7GHz. 61.7GHz. 20dB -19dB. 3-35(b). (S22) 59~65GHz. 62.3. 5.5dB. -22.5Bm. 3-35(e) 1dB. -11.25dBm. 36. P-1dB 3-35(f).

(51) 9.0. noise figure. S21. 20. 8.5. 10 8.0. Noise Figure(dB). S21(gain). 0 -10 -20 -30 -40. 7.5 7.0 6.5 6.0 5.5 5.0. -50 40. 50. 60. 70. 54. 80. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. Frequency(GHz). Frequency(GHz). (a). (b). 0. 0. S11. S22. S22(Output return loss). S11(Input return loss). -1 -5. -10. -15. -2 -3 -4 -5 -6 -7 -8 -9. -20. -10 40. 45. 50. 55. 60. 65. 70. 75. 80. 40. 45. 50. Frequency(GHz). (c) 10. 4 2. 0. 10. -10 -12. 5. Output Power(dBm). -6 -8. Output power(dBm). Gain(dB). 8 6. 0 -2 -4. 15. -14 -16 -18. 0 -20. -10. 80. -30 -40 Fundamental Third-order IIP3=-11.25dBm. -35. -30. -25. -20. -15. -10. -5. (f) 3-35. (c). 75. Input Power(dBm). (e). (b). 70. -20. -60 -40. 0. Input power(dBm). (a). 65. -10. -50. -20 -22. IP1dB=-22.5dBm. -30. 60. (d). 20. -40. 55. Frequency(GHz). 60GHz (d). 37. (e)1-dB. (f)IIp3.

(52) 3.3.5. 3-36. 3-36. (a) 60GHz. (b) (b). (a). 60GHz. (a) 0.564 x 0.815 mm2. Pad. (b) on wafer. G-S-G RF IP1dB. S IIP3. 3-3 3-3 S. IP1dB OP1dB. Network Analyzer. Agilent E8361A (10MHz~67GHz). Noise Source. Aglient 346C K01/Noise Com NC5115 (50GHz~75GHz). Noise Figure Analyzer. Agilent N8975A (10MHz~26.5GHz ). Noise Down Converter. Agilent K40/K50/K63/K75 (26.5GHz~75GHz). Signal Generator. Agilent E8257D (250KHz~67GHz ). 38.

(53) Psat. Spectrum Analyzer. 3-37. (a) GHz. Agilent E4440A+Agilent11974V (3Hz~75GHz). 60GHz (S21). 56.6GHz. 8.7GHz. (b). 55.5GHz. 5.4dB. (d). peak Gain 13.13dB NF. (c). (S22). (S11). (e). 4GHz. 20 10. S21 Gain (dB). 0 -10 -20 -30 Measurement Simulation. -50 40. 45. 50. 55. Frequency(GHz) (a). 39. 60. -10dB P1dB. 3-5. -40. 6dB. 52~56.5GHz. -15.4dB. 1dB. 51.8~60.5. 54.5~58GHz. 58.7GHz. -23dBm. 3dB. 65.

(54) 15 simulation measurement. 14 NF Noise Figure(dB). 13 12 11 10 9 8 7 6 5 52. 54. 56. 58. 60. 62. Frequency (GHz). (b). 0 -2 S11 Input Return Loss(dB). -4 -6 -8 -10 -12 -14 -16 Measurement Simulation. -18 -20 40. 45. 50. 55. Frequency(GHz). (c). 40. 60. 65.

(55) S22 Output Return Loss(dB). 0 -2 -4 -6 -8 -10 -12 -14. Measurement Simulation. -16 40. 45. 50. 55. 60. 65. Frequency(GHz). 21 20 19 simulation 18 17 16 15 14 13 12 measurement 11 10 9 8 -26 -24 -22. 4 2 simulation. 0 -2. measurement. -4 -6 -8 -10 -12 -14 -16. -20. -18. -16. Input Power(dBm). (e). 41. -14. -12. -10. Output Power (dbm). Gain (dB). (d).

(56) Output Power (dBm). 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55. OIP3=5.62dBm. Fundamental Third-order. -25. -20. -15. -10. -5. 0. Input Power (dBm). (f) 3-37. 60GHz. (a) (d). (e)P1dB. (b). (c). (f)IIP3. 3-4 Simulation. Measurement. Frequency (GHz). 60. 60. 3dB Bandwidth(GHz). 55.1~63(7.9). 51.8~60.5(8.7). Gain (dB). 20.8@59.4GHz. 13.13@56.6GHz. Input Return Loss(dB). <-15. <-10(52~56.5). Output Return Loss(dB). <-5. -15@58.7. Noise Figure(dB). 5.5@62.3GHz. 5.4@55.5. Input P1dB(dBm). -22.5. -23. Power Consumption(mW). 15.07. 14.88. 42.

(57) 3.4 60GHz. 0.56 × 0.815mm2 2.4v. 1.2 V 14.88 mW. (DC block). S. 3-38 25um × 25um. Sonnet S2p. S. ADS. S. 1pF 3-41(a). S. 3-39 15um. 3-40. 3-41(b). EM. S. T. 3-37(d) 3-4. 43.

(58) (a) Sonnet. 3-38. (b) (a). (b). 3-39. 1.40E-010. EM equivalent model. 1.20E-010 1.00E-010. capacitance(f). 8.00E-011 6.00E-011 4.00E-011 2.00E-011 0.00E+000 -2.00E-011 -4.00E-011 -6.00E-011 -8.00E-011 10. 20. 30. 40. 50. 60. Frequency (GHz). 3-40. 44. 70. 80. 90. 100.

(59) M-S21 S- S21 M-S11 S-S11 10 M-S22 S-S22 M: measurement S: simulation 0. S Parameter(dB). S Parameter(dB). M-S21 S- S21 M-S11 S-S11 10 M-S22 S-S22 M: measurement S: simulation 0. 20. 20. -10. -20. -10. -20 40. 45. 50. 55. 60. 65. 40. 45. 50. Frequency (GHz). (a) (a). 3-5. Topology BW(GHz) Gain(dB) NF(dB) IP1dB (dBm) Power consumption (mw) Chip Area(mm2). 60. 65. (b). 3-41. Ref Process. 55. Frequency (GHz). This work 90nm CMOS. EM. 60GHz [8] 0.13-um CMOS 3-stages Cascode. (b). [10] 0.13-um CMOS 2-stage 2-stages cs+lstage cascode+1stage cascode cs 51.8~60.5(8.7) 51.3~55.8(4.5) N/A 8 13.1@56.6GHz 20(avg) 11.5@60GHz 15.83 5.4@55.5GHz 8.3(avg) 5.6(avg) 5.71@63GHz -23 -25 N/A N/A 14.88@1.2/2.4 15.1 72 43.29 0.46. [9] 65-nm CMOS 3-stages CS. 1.06. 0.6. BW:bandwidth. NF:noise figure. 45. 0.42. [11] 90nm CMOS 3-stages CS 57GHz 18.6 5.7 N/A 29 0.7.

(60) CMOS 90nm. 60GHz. 4-1. S22. T. 4-1. 4-2. 3.3.2. S11,S22. 3.3.2. /. (MSG / MAG) &NFmin (M1) device size ( ). (M1)device size (MSG / MAG)& NFmin (M2) device size ( ). 4-2. MSG & NFmin 46.

(61) 40 35. MSG / MAG (dB). 30 25 20 15 10 5 0 -5. M1/M2 12/24 16/16 18/36 24/24 24/48. 20. 40. 60. 80. 100. 120. Frequency (GHz). 4-3. MSG/MAG. 4-3. (M1,M2). / (. V band LNA. M1,M2. [14][15][16][17][20]. 4-4. [12][13] (M1). (M2). 4.3 47. 24/48 ).

(62) 60GHz. 4-1. 4-4 4-1. cascode. 1. 2. 3.. cascode. NFmin. 4. 5.. 1. NFmin 2. 3. 4. 5.. 48.

(63) 4.1. / (M1). (M2). 8:16 4-5. Γ out. 1. 1.05. Reflection Coefficient. 1.00 0.95 0.90 0.85 0.80 0.75 0.70. S22 S11. 0.65 0. 20. 40. 60. 80. 100. 120. Frequency(GHz). 4-5. ( Γ out ). 1. 4-6. 4-2. 60GHz. (K factor) 4-2. &. Frequncy. stabfact. ∆. S(1,1). S(2,2). 60GHz. 0.716. 0.318. 0.163. 0.898. 4-1. ∆ <1). 4-6. (K<1, 50 1( Γ out >1). 49.

(64) Γ out. Γin 4-6. ( Γin ). 4-7(a) (. 1( Γin <1). ) ( Γ out ). 4-7(b) 1 ( Γ out <1). 1 ( Γ out >1). (M1). (S22). (M2). 1. ( Γ out >1). (a) 4-7. (b) (a)output stability circle(b)input stability circle 50.

(65) (S22). 60GHz (S22). 1. 4-8. 15. 1. (M1). (drain) 1( Γ out <1). 4-8. 1. 1.. (power amplifier). :. / /. 51.

(66) 1.. (low noise amplifier) /. 4.2 Vg 2. DC block 0.1um x 2um x 16. Γin. ΓS Port1. M2. DC feed. DC block. Port2. VDD. Γ out. cs M1. M1 vdd Vg 1. ΓS. 0.1um*2um*8. 4-9. 1 ?. 4-9. (4-1). S12 ≠ 0. (bilateral). Γ out ≠ S 22. ( S12 S21Γ s ) / (1 − S11Γ L ) 52.

(67) S22. S11S 21Γ S. S21. ΓS. S11. (M1). Γ out = S22 +. Γ. 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 s 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15. (M2). S12 S21Γ S …………………..(4-1)[5] 1 − S11Γ S 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.97 out 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89. Γ. without inductor with inductor. 20. 40. 60. 80. 100. 20. 120. 40. 60. 80. (a) (a) Γ s. Γs. 4-10(a)(b). (b) Γ out. Γ out. Γ out. 0.7. Γs. 1 Γs. 60GHz 1 (band pass) S21. 0. (4-1). 120. (b). 4-10. Γ out. 100. Frequency(GHz). Frequency(GHz). 4-11 (a). Γ out ≈ S22 <1. 53. Γ out. 1.

(68) Γs. (S21). Γ out. 1. S21. 20 10. S21 gain (dB). 0 -10 -20 -30 -40 -50 40. 50. 60. 70. 80. Frequency(GHz). (a). MSG/MAG. 35. MAG / MSG(dB). 30. K<1. K>1. K<1. 25. K>1. 20 15 10 5 0 20. 40. 60. 80. 100. 120. 140. Frequency(GHz). (b) 4-11. (a). 4-11(b). (b). /. 60GHz. /. 4-10 60GHz. k>1. (MAG) 54.

(69) k<1. (MSG). 4-11(b). 55.

(70) 4.3 (M1. M2). (L). 4-12. (vg) (v). 2um. 0.75. 17 2.813 dB. (vdd)1.2. / 4-13. (id). (V). /. 60GHz 7.974 dB. 8. (id). 56.

(71) 0.025 8 0.020. 0.015 6 0.010. 5 4. 0.005. 3. NFmin 0.000 MSG/MAG. 10. 20. 30. 40. 50. Drain Current (mA). MSG / MAG(dB) NFmin(dB). 7. 60. Number of Finger. 4-13. MSG/MAG & NFmin. 4-3. (a). id. MSG(dB). NFmin(dB). id(mA). 17. 7.974. 3.019. 6.21. 8. 7.921. 2.813. 2.92. 4-3. ∆(. (8,17)MSG NFmin. ). (b). ids. (8,17). MSG(dB). NFmin(dB). id(mA). 0.053. 0.206. 3.29. 4-3 (a)(b). 17 8. 8 17. 3.29 mA. 0.053dB 0.206dB 0.1um. 8. 57. 2um.

(72) Dc feed. 4-14. /. 4-15. /. 60GHz. /. 14.894 dB. 6. 17. 4.183 dB. 15. MSG/MAG NFmin. 14 13. MSG/MAG(dB) NFmin(dB). 12 11 10 9 8 7 6 5 4 10. 20. 30. 40. 50. 60. Number of Finger. 4-15. MSG & MAG & NFmin. 58.

(73) 4-4. (a). (6,17). MSG& NFmin. MSG(dB). NFmin(dB). 6. 14.894. 4.892. 17. 14.216. 4.183. 4-4. ∆(. (b). (6,17) MSG(dB). NFmin(dB). 0.678. 0.709. ). 4-4 (a)(b). 6. 17. 17. 6. 0.6783dB 0.709 dB. 6~22 (trade off). 6~22 (M2). 0.1um. 16. 4-16. 1~64 (a). 59. 2um.

(74) 4-16. 1~64 (b). 4-16(a) 8 4-16(b) 6~22. 8 4-15. (. ,. ). / 4-17(b). (57~65GHz). 1(K>1) 3.397 dB. (MSG/MAG). 4.198 dB 4-5. 60.

(75) 40. MSG/MAG NFmin. 35. MSG/MAG (dB) NFmin (dB). 30 25 20 15 10 5 0 20. 40. 60. 80. 100. 120. Frequency(GHz). 4-17. (a). 4-17. (b). MSG&MAG&NFmin. 4-5 MSG/MAG(dB). NFmin(dB). 13,4(MAG). 3.397. 14.216(MSG). 4.198. / 4-18 (S22). 60GHz (S11). 4-19. S22 (M2) 4-16. M2. 8. 0.6 nH M2. 10~22. 61. S11 6~22 6~10.

(76) 4-18. 4-19 S11. S22. 4-20 0.1nH~0.6nH 0.05nH. 0.35nH ~0.4 nH. 0.36nH 3-2. (M1). (M2). 4.0 3.9 3.8 3.7. NFmin (dB). Formula. Friiss’s. 0.1nH 0.15nH 0.2nH 0.25nH 0.3nH 0.35nH 0.4nH 0.45nH 0.5nH 0.55nH 0.6nH. 3.6 3.5 3.4 3.3 3.2 3.1 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. Frequency (GHz). 4-20. NFmin 62.

(77) 4.4 60GHz 4.4.1 4.3. 4.3. (M1 M2) (L). 0.1um. 8:20 vg1. 0.375 nH. 0.75 v vg2. 1.95 v. vdd. 2um M1:M2 4-21. 2.4 v. 14.496. mW. 4-21. 60GHz (Thin Film Microstrip Line , TFMS line). TSMC 90 RF 1P9M CMOS 60 Ω. 6 um. TSMC 90 RF 1P9M CMOS Sonnet 3um. 4-22(a)(b) (spiral inductor). 4-22(c). V 60GHz. Q. 0.375nH 4-22(d). Q 63. Q. (60).

(78) 60GHz. Q. 8.624. (a). (b). 3.8. 8.00E-010. 3.7. inductance. 3.6. 6.00E-010. 3.5 NFmin (dB). Inductance (H). 4.00E-010 2.00E-010 0.00E+000. 3.4 3.3 3.2. Q=10 Q=20 Q=30 Q=40 Q=50 Q=60. 3.1. -2.00E-010. 3.0. -4.00E-010. 2.9. -6.00E-010. 54. 20. 40. 60. 80. 100. 56. 58. 60. 62. 64. Frequency(GHz). 120. Frequency (GHz). (c) 4-22(a). (b). (c). (d). 64. (d) Q. NFmin.

(79) 4.4.2 .. 4-23 (b). noise circle. gain circle Port1. 4-23(a) TL1. TL2. 4-23. RF PAD TL3. gain circle. (a). .. 50 Ω. 4-23. noise circle. (b). 4-24. (b). (S22). gain Circle. 4-24(a) Gain Circle. TL4 TL6 L. 65. TL5.

(80) 4-24. 4-24 .. (a). (b). 50 Ω. 4-25(b) RF Pad. 4-25. TL9. (a) 66. TL8. TL7.

(81) 4-25 .. (b). - gate line. K=1 K>1(5~15). 4-26 TLG1 TLG2. 4-27(g) k factor. gate line. 5.5. 4-26. k factor. 4-27(h). 6.675 gate line. 60 GHz. 67. gate line.

(82) 4.4.3 60 GHz. 4-26. TSMC CMOS 90nm RF. S. Advanced Design System(ADS). SONNET. 4-27(a)(b)(c) 19dB 56~62GHz. 62.1GHz. (S11). -22dB -37.4dB. (S22). 63.5. 5.3dB. -10dBm. 20. simulation. S11 Input Return Loss (dB). 0 10 S21 Gain (dB). 4-27(e). -21dBm 4-27(f). 0. -10. -20. simulation. 40. 56~64GHz. 4-27(d). 6 dB. P-1dB. 56~62GHz. 19.84dB. 58.1GHz. 58~65GHz. 1dB. (S21). 58.5GHz -15dB. -10dB. S. 45. 50. 55. 60. 65. -5. -10. -15. -20. -25. Frequency (GHz). 40. 45. 50. 55. Frequency (GHz). (b). (a). 68. 60. 65.

(83) 10 simulation. -5 -10 Noise Figure (dB). S22 Output Return Loss (dB). 0. -15 -20 -25 -30. 8. 6. -35. simulation. 4. -40 40. 45. 50. 55. 60. 50. 65. 55. 60. (d). 6. 18. 4. 16. 2. 14. 0. 12. -2 -4. 10. -6. 8. -8. 6. 10 0 -10 Output Power(dBm). 20. OutputPower (dBm). Gain (dB). (c). -20. -15. -10. -5. -30 -40 -50 -60 -70. -90. -12 -25. -20. -80. -10 4 -30. 65. Frequency (GHz). Frequency (GHz). 0. fundamental Third-order. IIP3= -10dBm. -40. -35. -30. -25. InputPower (dBm). -20. -15. -10. -5. 0. Input Power (dBm). (e). (f). 16 without gate line with gate line. 14. 20. G- with gate line without gate line. 10 S parameter (dB). K factor. 12 10 8. 0 -10 G-S(2,1) G-S(1,1) G-S(2,2) S(2,1) S(2,2) S(1,1). -20 -30. 6 -40. 4 56. 58. 60. 62. 64. 66. 68. 40. 70. (g). (a). 45. 50. 55. Frequency (GHz). Frequency (GHz). (h). 4-27 S21(b) S11(c) S22 (d) NF(e)P-1dB(f)IIP3(g)k factor(h)s parameter. 69. 60. 65. 5.

(84) (interstage stability circle). 4-28. (a). (b). SB2 of 1st stage & MP1 of 2nd stage. (c). SB1 of 2nd stage & MP2 of 1st stage 4-2凃. 70.

(85) 4.4.4. (a). (b) 4-29. (a). (b). 4-29(a)(b). Pad. 0.505600 x 0.55633 mm2. 60GHz. on-wafer 3.3.5. (vdd) V. P-G-P. 2.4V. vg 1 = 0.75V vg2=1.95. 4-6. 0.18 mA 4-6 Simulation. Measurement. First stage-Id1(mA). 3.02. 3.2. Second satge-Id2(mA). 3.02. 3.2. 4-30. 60GHz (a). 54.7~63.1 GHz 5.82dB. (S21). 8.4GHz 65.5GHz. -15dB. 56.9GHz (b). NF. 4.7dB (d). (e). peak Gain 18.95dB 3dB. (c). (S11) (S22). P1dB. -20dBm 71. 59~67GHz. -15dB 1dB.

(86) 4-7 60GHz. 20. 0. -10. -20 simulation measurement. -30 40. 45. 50. 55. 60. 65. Frequency(GHz). (a). 14 measurement-chip1 simulation measurement-chip2. 13 12 11 Noise Figure(dB). S21 Gain (dB). 10. 10 9 8 7 6 5 4 50. 52. 54. 56. 58. 60. Frequency (GHz). (b). 72. 62. 64. 66.

(87) simulation measurement. S11 Input Return Loss (dB). 0 -5 -10 -15 -20 -25 -30 40. 45. 50. 55. 60. 65. Frequency (GHz) (c). S22 Output Return Loss (dB). 0. simulation measurement. -5 -10 -15 -20 -25 -30 -35 -40 40. 45. 50. 55. Frequency (GHz) (d). 73. 60. 65.

(88) 20. Gain(dB). 18. 0. 17. -2. 16. -4. 15. -6. 14 -8. 13. Output Power(dBm). 2. 19. -10. 12. line : simulation line+symbol : measurement. 11 -30. -25. -20. -15. -12 -10. Input Power(dBm) (e) 4-30 (a). 60GHz. S21(b) 4-7. NF(c). S11(d). S22(e)P1dB. 60GHz Simulation. Measurement. Frequency (GHz). 60. 60. 3dB Bandwidth(GHz). 10.3(54.8~65.1). 8.4 (54.7~63.1). Gain (dB). 19.85@58.5GHz. 18.95@56.9GHz. Input Return Loss(dB). <-10. <-10. Output Return Loss(dB). <-10. <-10. Noise Figure(dB). 5.5@63GHz. 4.7@65.5GHz 5.82(avg.). Input P1dB(dBm). -21. -20. Power Consumption(mW). 14.59. 15.396. 74.

(89) 4.5 60GHz. TSMC CMOS 90-nm RF M1 M2 /. 0.505600 x 0.55633 mm2 mW. 56.9GHz. 2.4V 18.95dB. 5.82dB. 15.36. 3dB. 65.5GHz. 8.4GHz. 59~67GHz. 4.7dB 4-8. (figure of merit , FOM). 4-2. FOM. 2.8. 4-8 Ref. This work. [12]. [18]. [19]. [10]. [15]. Process. 90nm CMOS (LP). 90nm CMOS (GP). 90nm CMOS(LP). 90nm CMOS(GP). 0.13um CMOS. 0.13um CMOS. Topology. 2-stage cascode. 2-stage cascode. 3-stage cs Tline. 2-stage cs CPW. 2-stage cascode +1stage cs. 3-stage cascode. Frequency(GHz). 60. 58. 60. 58. 60. 60. BW(GHz). 54.7~63.1(8.4). 53~62(9). 54~62(8). 57~59(2). 57~64(7). 55~62(7). Gain(dB). 18.95@56.9GHz. 14.6. 13. 15. 15.83. 20.4. NF(dB). 4.7@65.5GHz 5.82(avg.). <5.5@58~59GHz. 6.3@64GHz. 4.4. 5.71@63GHz. 8.6@60GHz. IIP3 (dBm). N/A. -6.8. N/A. N/A. -4.8. N/A. IP1dB (dBm). -20. N/A. -7. N/A. N/A. N/A. Power consumption (mw). 15.3. 24. 4.9. 4. 43.29. 65. Chip Area(mm2). 0.308. 0.14. 0.35. 0.14. 0.42. 0.715. FOM. 2.8. 1.21. 4. 2.2. 0.5. 0.28. FOM =. Gain(dB) × BW (GHz ) …………………………...(4-2)[17] [ NF (dB ) − 1] × PdC (mW ). 75.

(90) V. CMOS. TSMC CMOS 90nm RF. V. T. L. 60GHz 18.95dB 3dB 4.7dB. 8.4GHz. 15.396mW. figure of merit(FOM). (2.8). 76. 65.5GHz.

(91) EM 5-1 S. 5-2. 5-1. 60GHz. 25 20 15. Noise figure(dB) S parameter(dB). 10 5 0 -5 -10 s11 s22 s21 nf. -15 -20 -25 45. 50. 55. 60. 65. Frequency(GHz). 5-2. 60GHz. 77. 70. 75. 80.

(92) 5-1 4-26. TLG1,2. K. S. 2. 5-3. 25 20 15. Noise figure(dB) S parameter(dB). 10 5 0 -5 -10 s11 s22 s21 nf. -15 -20 -25 45. 50. 55. 60. 65. 70. 75. 80. Frequency (GHz). 5-3. 5-2. 60 GHz. 5-3. 60GHz K ≈2. 22dB T. 1dB. 10GHz(57~67GHz). 5.2dB. L. 14.88mW 15.3mW. 78.

(93) [1] IEEE P802.15-05-0596-01-003c.pdf [2] B. Johnson, “Thermal agitation of electric charge in conductors,” Phys. Rev. , vol. 32, pp. 97-109,jul. 1928 [3] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. , vol. 32, pp. 97-109,jul. 1928 [4] K. Chang, I. Bahl and V. nair, “RF and Microwave Circuit and component Design for Wireless System,” A John Wiley & Sons, INC. 2002 [5] G. Gonzalez, “Microwave Transistor Amplifier-Analysis and Design, 2nd Ed.,” Prentice Hall,Inc., 1984 [6] B. Razavi, “RF Microelectronics,” Prentice-Hall, 1997 [7]. “. ”. _. [8 ] C. –C. Hung, H. –C. Kuo, T. –H. Hung, “low-power, high gain CMOS low noise amplifier for microwave radiometer applications” IEEE microwave and wireless components letters, vol. 21, no.2, pp. 104-106, February 2011. [9] M. Varonen, M. Karkkainen, M. Kantanen, and K. A. I. Halonen, "Millimeter-wave integrated circuits in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 1991-2002, Sept. 2008. [10] H. –K. Chiou, K. –Z. Lee, and S. –J. Wu, “a high performance V-band low noise amplifier using thin-film microstrip(TFMS)line 0.13um CMOS technology” in Proc. Asia-Pacific Microwave Conf, pp. 1513-1516, Dec 2010. [11] K. Kang, J. Brinkhoff, and F. Lin, “a 60GHz LNA with 18.6dB gain and 5.7dB NF in 90-nm CMOS” ICMMT, 2010 International Conference, pp. 164-168, May 2010.. 79.

(94) [12] T.Yao, M. Q.Gordon,K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60GHz radio” IEEE Journal solid state circuit, vol, 42, no. 5, May 2007 [13] Bo-Jr Huang, Kun-You Lin, and Huei Wang, “Millimeter-Wave Low Power and Miniature CMOS Multi-Cascode Low Noise Amplifier with Noise Reduction Topology,” appear in IEEE Trans. Microwave Theory and Tech., vol. 57,no. 12,pp. 3049-3059, Dec. 2009 [14] H. K. Chiou, K. Z. Lee, S. J. Wu, “A High Performance V Band Low Noise Amplifier Using Thin-film Microstrip(TFMS) Lines in 0.13um CMOS Technology,” Asia Pacific Microwave Conference 2010 [15] Bo-Jr Huang, Chi-Hsueh Wang, Chung-Chun Chen, Ming-Fong Lei, Pin-Cheng Huang, Kun-You Lin, and Huei Wang, “Design and analysis for a 60GHz low noise amplifier with RF ESD protection,” IEEE trans. Microwave Thoeory and Tech., vol. 57, no.2, pp 298-305,Feb. 2009. [16] Chieh-Min. Lo, Chin-Shen. Lin, and Huei. Wang, “A miniature v band 3-stage cascode LNA in 0.13um CMOS” IEEE International Solid-State Circuits Conference, pp. 1254-1263, Feb. 2006. [17] Chun-Chieh. Huang, Hsin-Chih. Kuo, Tzuen-Hsi. Huang, and Huey-Ru. Chuang, “low power high gain v band CMOS low noise amplifier for microwave radiometer applications” IEEE microwave and wireless components letters, vol.21, no.2,pp. 104-106, Feb.2011 [18] Wei-Heng. Lin, Jeng-Han. Tsai, Yung-Nien. Jen, Tian-Wei. Huang, and Huei. Wang,“a 0.7v 60GHz low power LNA with forward body bias technique in 90nm CMOS process” proceedings of the 39th European microwave conference., pp. 393-396, Oct 2009. 80.

(95) [19] E. Cohen, S. Ravid, and D. Ritter, “An ultra low power LNA with 15dBgain and 4.4dB NF in 90nm CMOS process for 60 GHz phase array radio,”Proc. RFIC IEEE Symp., pp. 61-64, June 2008. [20] S. Pellerano, Y. Palaskas, and K. Soumyanath, "A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1542-1552, July 2008.. 81.

(96)

參考文獻

相關文件

“Polysilicon Thin Film Transistors Fabricated at 100℃ on a Flexible Plastic Substrate,” IEEE Electron Device Meeting, p. “Polysilicon Thin Film Transistors

―Low-Temperature Polycrystalline Silicon Thin Film Transistor Nonvolatile Memory Using Ni Nanocrystals as Charge-Trapping Centers Fabricated by Hydrogen Plasma

This thesis focuses on the use of low-temperature microwave annealing of this novel technology to activate titanium nitride (TiN) metal gate and to suppress the V FB

Sugii, “Junction profile engineering with a novel multiple laser spike annealing scheme for 45-nm node high performance and low leakage CMOS technology,” in IEDM

Hsueh (1996), “A Dynamic User-Optimal Route Choice Problem Using a Link-Based Variational Inequality Formulation,”. Paper Presented at The 5th World Congress of the RSAI

Keywords:Micro-array Biological Probes, E-Beam Evaporator, Active RFID, Laser Annealing, Bioelectric Impedance, Thin Film Transistor

Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors. Chi-Chang Hu,

“Feasibility of Using W/TiN as Metal Gate for Conventional 0.13 µm~ CMOS Technology and Beyond” in IEDM Tech. Misra, “Effect of the composition on the electrical properties