• 沒有找到結果。

Comparing miRNA target prediction databses to miRTarBase

Chapter 5 miRNAMap – integrated database of microRNA-target interactions

5.4 Improvement

5.6.2 Comparing miRNA target prediction databses to miRTarBase

In order to evaluate the performance of miRNA target prediction tools and our proposed method, we collected 1,524 experimentally validated miRNA-target interactions in human, including 204 non-functional MTIs and 1,320 functional MTIs. The detail list is shown in Appendix I. This data set is based on our manually curated MTIs with strong evidence support in miRTarBase (177). The following formulas of predictive performance are defined:

Precision (Pre) = 𝑇𝑃 𝑇𝑃 + 𝐹𝑃 , Sensitivity (Sn) = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , Specificity(Sp) = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 , Accuracy (𝐴𝑐𝑐) = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 , Performance (PERF) = 𝑆𝑝 × 𝑆𝑛

In the equation, TN represents true negative, TP true positive, FN false negative and FP false positive. The performance of individual prediction MTI database is displayed in

Table 19. We found that the top three in performance (PERF) are TargetScan

(Conserved), microRNA.org (2010_aug_S_0) and miRTar (overlapping 4 tools) and.

Table 19. Predictive performance across miRNA-target interaction databases by using experimentally verified MTIs with strong evidence support in miRTarBase.

Integrated

Databases Dataset Number of

positive data Number of

negative data Precision Sensitivity Specificity Accuracy PERF

TargetScan Conserved 1,189 185 90.8% 57.2% 62.7% 57.9% 0.359

Chapter 6 Conclusion

MicroRNA plays important roles in post-translational gene regulation among various species. Nowadays many miRNA-target interactions are revealed by experimental approach and miRNA target site prediction tools. This thesis spotlights the miRNA-target interactions whether they are validated or predicted. It is composed of miRTarBase, miRTar, miRNAMap and HomoloMTI (Figure 9).

Firstly, we construct a more comprehensive database of miRNA-target interactions, miRTarBase, which were experimentally validated. The biological features of miRNA/target duplex were observed based on largest collection of human miRNA-target interactions currently available. Various web interfaces are designed to facilitate the presentation of miRNA-target interactions. A pipeline combining text-mining and manual review was established to extract MTI information from research articles.

Second of all, miRTar adopts various analyzing scenarios to identify putative miRNA target sites of the gene transcripts and elucidates the biological functions of miRNAs toward their targets in biological pathways. The system has three major features. First, the prediction system considers various analyzing scenarios (1 miRNA:1 gene, 1:N, N:1, N:M, all miRNAs:N genes, and N miRNAs: genes involved in a pathway) to easily identify the regulatory relationships between interesting miRNAs and their targets, in 3’UTR, 5’UTR and coding regions. Second, miRTar can analyze and highlight a group of miRNA-regulated genes that participate in particular KEGG pathways to elucidate the biological roles of miRNAs in biological pathways. Third, miRTar can provide further information for elucidating the miRNA regulation, i.e., miRNA-target interactions, affected by alternative splicing.

Thirdly, miRNAMap integrates miRNA-target interactions databases to elucidate accurate MTIs. We make the focus on the investigation of miRNA-target interaction. To make miRNAMap more comprehensive, we integrate the experimentally verified MTIs, the MTIs predicted by 11 predicted miRNA target databases and more expression

The homologous MTIs profiles could reveal the homologous genes regulated by miRNA with at least one experimental validation in one of the homologous genes and predicted miRNA target interactions. The novel miRNA target interactions could be pioneer studied by HomoloMTI. HomoloMTI aims to provide a comprehensive comparative perspective analysis on the various species of miRNA target interactions to find homologous miRNA target sites.

References

1. Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.

elegans. Cell, 75, 855-862.

2. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. and Enright, A.J.

(2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic

Acids Res, 34, D140-144.

3. Hsu, S.D., Chu, C.H., Tsou, A.P., Chen, S.J., Chen, H.C., Hsu, P.W., Wong, Y.H., Chen, Y.H., Chen, G.H. and Huang, H.D. (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res, 36, D165-169.

4. Hsu, P.W., Huang, H.D., Hsu, S.D., Lin, L.Z., Tsou, A.P., Tseng, C.P., Stadler, P.F., Washietl, S. and Hofacker, I.L. (2006) miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res, 34, D135-139.

5. Hsu, S.D., Lin, F.M., Wu, W.Y., Liang, C., Huang, W.C., Chan, W.L., Tsai, W.T., Chen, G.Z., Lee, C.J., Chiu, C.M. et al. (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic acids research, 39, D163-169.

6. Hsu, J.B., Chiu, C.M., Hsu, S.D., Huang, W.Y., Chien, C.H., Lee, T.Y. and Huang, H.D.

(2011) miRTar: an integrated system for identifying miRNA-target interactions in Human. BMC Bioinformatics, 12, 300.

7. Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function.

Cell, 116, 281-297.

8. Ambros, V. (2001) microRNAs: tiny regulators with great potential. Cell, 107, 823-826.

9. Llave, C., Xie, Z., Kasschau, K.D. and Carrington, J.C. (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science,

297, 2053-2056.

10. Lai, E.C. (2002) Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 30, 363-364.

11. Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M. et al. (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A, 102, 13944-13949.

12. Gupta, A., Gartner, J.J., Sethupathy, P., Hatzigeorgiou, A.G. and Fraser, N.W. (2006) Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature, 442, 82-85.

13. Jovanovic, M. and Hengartner, M.O. (2006) miRNAs and apoptosis: RNAs to die for.

Oncogene, 25, 6176-6187.

14. Guo, L. and Ding, Z.H. (2007) [Advances in the studies of miRNAs and cell apoptosis]. Sheng Li Ke Xue Jin Zhan, 38, 331-335.

15. Matsubara, H., Takeuchi, T., Nishikawa, E., Yanagisawa, K., Hayashita, Y., Ebi, H.,

18. Adlakha, Y.K. and Saini, N. (2011) MicroRNA-128 downregulates Bax and induces apoptosis in human embryonic kidney cells. Cellular and molecular life sciences :

CMLS, 68, 1415-1428.

19. Zhang, H., Cai, X., Wang, Y., Tang, H., Tong, D. and Ji, F. (2010) microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep, 24, 1363-1369.

20. Yu, F., Deng, H., Yao, H., Liu, Q., Su, F. and Song, E. (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells.

Oncogene.

21. Xu, J., Liao, X. and Wong, C. (2010) Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer, 126, 1029-1035.

22. Wang, K. and Li, P.F. (2010) Foxo3a regulates apoptosis by negatively targeting miR-21. J Biol Chem.

23. Subramanian, S. and Steer, C.J. (2010) MicroRNAs as gatekeepers of apoptosis. J

Cell Physiol, 223, 289-298.

24. Erson, A.E. and Petty, E.M. (2008) MicroRNAs in development and disease. Clin

Genet, 74, 296-306.

25. Callis, T.E., Chen, J.F. and Wang, D.Z. (2007) MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol, 26, 219-225.

26. Bruneau, B.G. (2005) Developmental biology: tiny brakes for a growing heart.

Nature, 436, 181-182.

27. Bruneau, B.G. (2008) The developmental genetics of congenital heart disease.

Nature, 451, 943-948.

28. Graveley, B.R., Brooks, A.N., Carlson, J.W., Duff, M.O., Landolin, J.M., Yang, L., Artieri, C.G., van Baren, M.J., Boley, N., Booth, B.W. et al. (2011) The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473-479.

29. Hammoud, S.S., Nix, D.A., Zhang, H., Purwar, J., Carrell, D.T. and Cairns, B.R. (2009) Distinctive chromatin in human sperm packages genes for embryo development.

Nature, 460, 473-478.

30. Hornstein, E., Mansfield, J.H., Yekta, S., Hu, J.K., Harfe, B.D., McManus, M.T., Baskerville, S., Bartel, D.P. and Tabin, C.J. (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature, 438, 671-674.

31. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R. and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901-906.

32. Scheres, B. (2010) Developmental biology: Roots respond to an inner calling.

Nature, 465, 299-300.

33. Schratt, G.M., Tuebing, F., Nigh, E.A., Kane, C.G., Sabatini, M.E., Kiebler, M. and Greenberg, M.E. (2006) A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283-289.

34. West, J.A., Viswanathan, S.R., Yabuuchi, A., Cunniff, K., Takeuchi, A., Park, I.H., Sero, J.E., Zhu, H., Perez-Atayde, A., Frazier, A.L. et al. (2009) A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature, 460, 909-913.

35. Yoo, A.S., Staahl, B.T., Chen, L. and Crabtree, G.R. (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature,

460, 642-646.

36. Ucar, A., Vafaizadeh, V., Jarry, H., Fiedler, J., Klemmt, P.A., Thum, T., Groner, B. and

Chowdhury, K. (2010) miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nature genetics.

37. Slominski, A. (2008) Cooling skin cancer: menthol inhibits melanoma growth.

Focus on "TRPM8 activation suppresses cellular viability in human melanoma".

Am J Physiol Cell Physiol, 295, C293-295.

38. Tivnan, A., Foley, N.H., Tracey, L., Davidoff, A.M. and Stallings, R.L. (2010) MicroRNA-184-Mediated Inhibition of Tumour Growth in an Orthotopic Murine Model of Neuroblastoma. Anticancer research, 30, 4391-4395.

39. Yan, L.X., Wu, Q.N., Zhang, Y., Li, Y.Y., Liao, D.Z., Hou, J.H., Fu, J., Zeng, M.S., Yun, J.P., Wu, Q.L. et al. (2011) Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast cancer

research : BCR, 13, R2.

40. Hu, G., Chen, D., Li, X., Yang, K., Wang, H. and Wu, W. (2010) miR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther, 10.

41. Ma, Y., Yu, S., Zhao, W., Lu, Z. and Chen, J. (2010) miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2.

Cancer Lett.

42. Li, Y., Guessous, F., Zhang, Y., Dipierro, C., Kefas, B., Johnson, E., Marcinkiewicz, L., Jiang, J., Yang, Y., Schmittgen, T.D. et al. (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res, 69, 7569-7576.

43. Abdelmohsen, K., Kim, M.M., Srikantan, S., Mercken, E.M., Brennan, S.E., Wilson, G.M., Cabo, R. and Gorospe, M. (2010) miR-519 suppresses tumor growth by reducing HuR levels. Cell Cycle, 9, 1354-1359.

44. Esquela-Kerscher, A., Trang, P., Wiggins, J.F., Patrawala, L., Cheng, A., Ford, L., Weidhaas, J.B., Brown, D., Bader, A.G. and Slack, F.J. (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7, 759-764.

45. Green, D. and Karpatkin, S. (2010) Role of thrombin as a tumor growth factor. Cell

Cycle, 9, 656-661.

46. Slack, F. (2009) let-7 microRNA reduces tumor growth. Cell Cycle, 8, 1823.

47. Braun, T. and Gautel, M. (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nature reviews. Molecular cell

biology, 12, 349-361.

48. Si, M.L., Zhu, S., Wu, H., Lu, Z., Wu, F. and Mo, Y.Y. (2007) miR-21-mediated tumor growth. Oncogene, 26, 2799-2803.

49. Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23, 4051-4060.

50. Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M. and Pagano, A. (2007) The expanding RNA polymerase III transcriptome. Trends Genet, 23, 614-622.

51. Borchert, G.M., Lanier, W. and Davidson, B.L. (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 13, 1097-1101.

52. Yeom, K.H., Lee, Y., Han, J., Suh, M.R. and Kim, V.N. (2006) Characterization of

55. Tijsterman, M. and Plasterk, R.H. (2004) Dicers at RISC; the mechanism of RNAi.

Cell, 117, 1-3.

56. Kurihara, Y. and Watanabe, Y. (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A, 101, 12753-12758.

57. Melo, S.A., Ropero, S., Moutinho, C., Aaltonen, L.A., Yamamoto, H., Calin, G.A., Rossi, S., Fernandez, A.F., Carneiro, F., Oliveira, C. et al. (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet, 41, 365-370.

58. Filipowicz, W. (2005) RNAi: the nuts and bolts of the RISC machine. Cell, 122, 17-20.

59. Gregory, R.I., Chendrimada, T.P., Cooch, N. and Shiekhattar, R. (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123, 631-640.

60. Wang, H.W., Noland, C., Siridechadilok, B., Taylor, D.W., Ma, E., Felderer, K., Doudna, J.A. and Nogales, E. (2009) Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol, 16, 1148-1153.

61. Kim, V.N., Han, J. and Siomi, M.C. (2009) Biogenesis of small RNAs in animals. Nat

Rev Mol Cell Biol, 10, 126-139.

62. Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K. et al. (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.

Proc Natl Acad Sci U S A, 99, 15524-15529.

63. Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R. and Pasquinelli, A.E.

(2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation.

Cell, 122, 553-563.

64. Carrington, J.C. and Ambros, V. (2003) Role of microRNAs in plant and animal development. Science, 301, 336-338.

65. Bartel, D.P. (2009) MicroRNAs: target recognition and regulatory functions. Cell,

136, 215-233.

66. Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15-20.

67. Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P. and Bartel, D.P.

(2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 27, 91-105.

68. Ellwanger, D.C., Buttner, F.A., Mewes, H.W. and Stumpflen, V. (2011) The sufficient minimal set of miRNA seed types. Bioinformatics.

69. Hofacker, I.L. (2009) RNA secondary structure analysis using the Vienna RNA package. Curr Protoc Bioinformatics, Chapter 12, Unit12 12.

70. Rehmsmeier, M., Steffen, P., Hochsmann, M. and Giegerich, R. (2004) Fast and effective prediction of microRNA/target duplexes. RNA, 10, 1507-1517.

71. Robins, H., Li, Y. and Padgett, R.W. (2005) Incorporating structure to predict microRNA targets. Proc Natl Acad Sci U S A, 102, 4006-4009.

72. Long, D., Lee, R., Williams, P., Chan, C.Y., Ambros, V. and Ding, Y. (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol, 14, 287-294.

73. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R. and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs.

Nature, 455, 58-63.

74. Griffiths-Jones, S., Saini, H.K., van Dongen, S. and Enright, A.J. (2008) miRBase:

tools for microRNA genomics. Nucleic Acids Res, 36, D154-158.

75. Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., Grosse, I., Sellis, T. and Hatzigeorgiou, A.G. (2010) miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res, 38, D137-141.

76. Nam, S., Kim, B., Shin, S. and Lee, S. (2008) miRGator: an integrated system for functional annotation of microRNAs. Nucleic Acids Res, 36, D159-164.

77. Wang, X. (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA, 14, 1012-1017.

78. Betel, D., Wilson, M., Gabow, A., Marks, D.S. and Sander, C. (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res, 36, D149-153.

79. Papadopoulos, G.L., Reczko, M., Simossis, V.A., Sethupathy, P. and Hatzigeorgiou, A.G. (2009) The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res, 37, D155-158.

80. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X. and Li, T. (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res, 37, D105-110.

81. Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G. and Liu, Y.

(2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res, 37, D98-104.

82. Naeem, H., Kuffner, R., Csaba, G. and Zimmer, R. (2010) miRSel: Automated extraction of associations between microRNAs and genes from the biomedical literature. BMC Bioinformatics, 11, 135.

83. Kruger, J. and Rehmsmeier, M. (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res, 34, W451-454.

84. Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M. et al. (2005) Combinatorial microRNA target predictions. Nat Genet, 37, 495-500.

85. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. and Segal, E. (2007) The role of site accessibility in microRNA target recognition. Nat Genet, 39, 1278-1284.

86. Dweep, H., Sticht, C., Pandey, P. and Gretz, N. (2011) miRWalk - Database:

Prediction of possible miRNA binding sites by "walking" the genes of three genomes. Journal of biomedical informatics.

87. Wu, C.H., Apweiler, R., Bairoch, A., Natale, D.A., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R. et al. (2006) The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res, 34, D187-191.

88. Tsai, W.C., Hsu, P.W., Lai, T.C., Chau, G.Y., Lin, C.W., Chen, C.M., Lin, C.D., Liao, Y.L., Wang, J.L., Chau, Y.P. et al. (2009) MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology,

49, 1571-1582.

89. Okuda, S., Yamada, T., Hamajima, M., Itoh, M., Katayama, T., Bork, P., Goto, S. and Kanehisa, M. (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res, 36, W423-426.

Genome Browser database: update 2010. Nucleic Acids Res, 38, D613-619.

93. Wu, C., Orozco, C., Boyer, J., Leglise, M., Goodale, J., Batalov, S., Hodge, C.L., Haase, J., Janes, J., Huss, J.W., 3rd et al. (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol, 10, R130.

94. Fernandez, J.M., Hoffmann, R. and Valencia, A. (2007) iHOP web services. Nucleic

Acids Res, 35, W21-26.

95. Bruford, E.A., Lush, M.J., Wright, M.W., Sneddon, T.P., Povey, S. and Birney, E. (2008) The HGNC Database in 2008: a resource for the human genome. Nucleic Acids Res,

36, D445-448.

96. Friedman, R.C., Farh, K.K., Burge, C.B. and Bartel, D.P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19, 92-105.

97. Lall, S., Grun, D., Krek, A., Chen, K., Wang, Y.L., Dewey, C.N., Sood, P., Colombo, T., Bray, N., Macmenamin, P. et al. (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol, 16, 460-471.

98. Stark, A., Brennecke, J., Russell, R.B. and Cohen, S.M. (2003) Identification of Drosophila MicroRNA targets. PLoS Biol, 1, E60.

99. Gaidatzis, D., van Nimwegen, E., Hausser, J. and Zavolan, M. (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC

Bioinformatics, 8, 69.

100. Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C. and Rajewsky, N. (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol, 1, e13.

101. Hsu S.D., L.F.-M., Wei-Yun Wu, Chao Liang, Wei-Chih Huang, Wen-Ling Chan, Wen-Ting Tsai, Goun-Zhou Chen, Chia-Jung Lee, Chih-Min Chiu, Chia-Hung Chien, Ming-Chia Wu, Chi-Ying Huang, Ann-Ping Tsou and Hsien-Da Huang. (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Research, (in press).

102. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. and Burge, C.B. (2003) Prediction of mammalian microRNA targets. Cell, 115, 787-798.

103. Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C. and Marks, D.S. (2003) MicroRNA targets in Drosophila. Genome Biol, 5, R1.

104. Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z.

and Hatzigeorgiou, A. (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev, 18, 1165-1178.

105. Megraw, M., Sethupathy, P., Corda, B. and Hatzigeorgiou, A.G. (2007) miRGen: a database for the study of animal microRNA genomic organization and function.

Nucleic Acids Res, 35, D149-155.

106. Roubelakis, M.G., Zotos, P., Papachristoudis, G., Michalopoulos, I., Pappa, K.I., Anagnou, N.P. and Kossida, S. (2009) Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application. BMC

Bioinformatics, 10 Suppl 6, S20.

107. Zhang, Y. (2005) miRU: an automated plant miRNA target prediction server.

Nucleic Acids Res, 33, W701-704.

108. Rusinov, V., Baev, V., Minkov, I.N. and Tabler, M. (2005) MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res, 33, W696-700.

109. Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., Lim, B. and Rigoutsos, I. (2006) A pattern-based method for the identification of MicroRNA

binding sites and their corresponding heteroduplexes. Cell, 126, 1203-1217.

110. Nam, S., Li, M., Choi, K., Balch, C., Kim, S. and Nephew, K.P. (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res, 37, W356-362.

111. Place, R.F., Li, L.C., Pookot, D., Noonan, E.J. and Dahiya, R. (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl

Acad Sci U S A, 105, 1608-1613.

112. Easow, G., Teleman, A.A. and Cohen, S.M. (2007) Isolation of microRNA targets by miRNP immunopurification. RNA, 13, 1198-1204.

113. Kloosterman, W.P., Wienholds, E., Ketting, R.F. and Plasterk, R.H. (2004) Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids

Res, 32, 6284-6291.

114. Stark, A., Lin, M.F., Kheradpour, P., Pedersen, J.S., Parts, L., Carlson, J.W., Crosby, M.A., Rasmussen, M.D., Roy, S., Deoras, A.N. et al. (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 450, 219-232.

115. Nakamoto, M., Jin, P., O'Donnell, W.T. and Warren, S.T. (2005) Physiological identification of human transcripts translationally regulated by a specific microRNA. Hum Mol Genet, 14, 3813-3821.

116. Duursma, A.M., Kedde, M., Schrier, M., le Sage, C. and Agami, R. (2008) miR-148 targets human DNMT3b protein coding region. RNA, 14, 872-877.

117. Forman, J.J., Legesse-Miller, A. and Coller, H.A. (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A, 105, 14879-14884.

118. Orom, U.A., Nielsen, F.C. and Lund, A.H. (2008) MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell, 30, 460-471.

119. Tay, Y., Zhang, J., Thomson, A.M., Lim, B. and Rigoutsos, I. (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124-1128.

120. Zhou, X., Duan, X., Qian, J. and Li, F. (2009) Abundant conserved microRNA target sites in the 5'-untranslated region and coding sequence. Genetica.

121. Papadopoulos, G.L., Alexiou, P., Maragkakis, M., Reczko, M. and Hatzigeorgiou, A.G.

(2009) DIANA-mirPath: Integrating human and mouse microRNAs in pathways.

Bioinformatics, 25, 1991-1993.

122. Maragkakis, M., Reczko, M., Simossis, V.A., Alexiou, P., Papadopoulos, G.L., Dalamagas, T., Giannopoulos, G., Goumas, G., Koukis, E., Kourtis, K. et al. (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res, 37, W273-276.

123. Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Schroth, G.P. and Burge, C.B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470-476.

124. Chen, L. and Zheng, S. (2009) Studying alternative splicing regulatory networks

127. Srebrow, A. and Kornblihtt, A.R. (2006) The connection between splicing and cancer. J Cell Sci, 119, 2635-2641.

128. Brinkman, B.M. (2004) Splice variants as cancer biomarkers. Clin Biochem, 37, 584-594.

129. Wang, G.S. and Cooper, T.A. (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet, 8, 749-761.

130. Cartegni, L., Chew, S.L. and Krainer, A.R. (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet, 3, 285-298.

131. Cui, Q., Yu, Z., Purisima, E.O. and Wang, E. (2006) Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol, 2, 46.

132. Iliopoulos, D., Malizos, K.N., Oikonomou, P. and Tsezou, A. (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One, 3, e3740.

133. Koscielny, G., Le Texier, V., Gopalakrishnan, C., Kumanduri, V., Riethoven, J.J., Nardone, F., Stanley, E., Fallsehr, C., Hofmann, O., Kull, M. et al. (2009) ASTD: The Alternative Splicing and Transcript Diversity database. Genomics, 93, 213-220.

134. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Sayers, E.W. (2009) GenBank. Nucleic Acids Res, 37, D26-31.

135. Sayers, E.W., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Edgar, R., Federhen, S. et al. (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 37, D5-15.

136. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. and Hirakawa, M. (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res, 38, D355-360.

137. Brennecke, J., Stark, A., Russell, R.B. and Cohen, S.M. (2005) Principles of microRNA-target recognition. PLoS Biol, 3, e85.

138. John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C. and Marks, D.S. (2004) Human MicroRNA targets. PLoS Biol, 2, e363.

139. Wang, Y., Sheng, G., Juranek, S., Tuschl, T. and Patel, D.J. (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature, 456, 209-213.

140. Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S. et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res,

15, 1034-1050.

141. Bernhart, S.H., Hofacker, I.L. and Stadler, P.F. (2006) Local RNA base pairing probabilities in large sequences. Bioinformatics, 22, 614-615.

142. Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M. and Miller, W. (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome

Res, 8, 967-974.

143. Kapustin, Y., Souvorov, A., Tatusova, T. and Lipman, D. (2008) Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct, 3, 20.

144. Wheelan, S.J., Church, D.M. and Ostell, J.M. (2001) Spidey: a tool for mRNA-to-genomic alignments. Genome Res, 11, 1952-1957.

145. Huang, H.D., Horng, J.T., Lin, F.M., Chang, Y.C. and Huang, C.C. (2005) SpliceInfo: an information repository for mRNA alternative splicing in human genome. Nucleic

Acids Res, 33, D80-85.

146. Wang, Y. and Lee, C.G. (2009) MicroRNA and cancer--focus on apoptosis. J Cell Mol

Med, 13, 12-23.

147. Sengupta, S., den Boon, J.A., Chen, I.H., Newton, M.A., Stanhope, S.A., Cheng, Y.J., Chen, C.J., Hildesheim, A., Sugden, B. and Ahlquist, P. (2008) MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A, 105, 5874-5878.

148. Lin, Y.C., Hsieh, L.C., Kuo, M.W., Yu, J., Kuo, H.H., Lo, W.L., Lin, R.J., Yu, A.L. and Li, W.H. (2007) Human TRIM71 and its nematode homologue are targets of let-7 microRNA and its zebrafish orthologue is essential for development. Mol Biol Evol,

24, 2525-2534.

149. Hsu, S.D., Lin, F.M., Wu, W.Y., Liang, C., Huang, W.C., Chan, W.L., Tsai, W.T., Chen, G.Z., Lee, C.J., Chiu, C.M. et al. (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res, 39, D163-169.

150. Kozomara, A. and Griffiths-Jones, S. (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 39, D152-157.

151. Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Muller, P. et al. (2000) Conservation of the

151. Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Muller, P. et al. (2000) Conservation of the

相關文件