• 沒有找到結果。

Competition Between CDW and Superconductivity in Misfit Supercon-

在文檔中 層狀材料中的傳輸性質 (頁 79-91)

In Fig. 3.21, we observed shoulders in the RT curve of (SnS)(TaS2)2 that is possibly due to the incomplete suppression of CDW transition in 1T-TaS2. Comparing with the complete suppression of CDW in (SnS)(TaS2) (see Fig. 3.18), these shoulders imply that CDW is suppressed by decreasing the ratio of TaS2 in the misfit compound. We also note that the critical temperature Tc in (SnS)(TaS2) (2.9K) is higher than (SnS)(TaS2)2

(2.2K). Similar suppression of superconductivity in (SnS)(TaS2)2 is found in the current density and magnetic field dependence of Tc. Figure 4.9 is the critical current Jcvs. the normalized temperature Tc/Tc0 (open circles), where Tc0is the critical temperature mea-sured with the lowest current (100µA). It can be seen that Tc decreased about 14% with current density J=5.6 A/cm2 in (SnS)(TaS2)2, while the decrease of Tc in (SnS)(TaS2) is less than 1%. Figure 4.10(a) and (b) are the critical field Hc vs. the normalized Tc

(open circles) for (SnS)(TaS2) and (SnS)(TaS2)2, respectively, where Tc0 is the critical temperature measured without external field. The red curves are the fittings to the empir-ical formula Hc(T ) ≈ Hc(0)[1− (Tc(H)/Tc(0))2]. The obtained critical field Hc(0) of (SnS)(TaS2) (0.45T) is about twice the value of (SnS)(TaS2)2(0.21T). These comparisons suggest that superconductivity is more fragile in (SnS)(TaS2)2 than in (SnS)(TaS2). This is consistent with the usually adopted picture that superconductivity and CDW are com-peting electronic states at low temperatures [56, 38]. Similar suppression of CDW is also observed in the misfit superconductor (PbSe)(TiSe2)2. No sign of CDW transition can be seen in the RT curve (Fig. 3.24). Figure 4.11 is Hc vs. the normalized Tc(open circles) for (PbSe)(TiSe2)2. The red curve is the fitting to the empirical formula mentioned above, and the obtained Hcis about 0.31T.

We also observed dramatic increase in the carrier concentrations of these misfit super-conductors (see Sec. 3.3), which is usually explained by the rigid band model we intro-duced in Sec. 1.3. This is consistent with the previous observations [38, 57] that charge doping can suppress CDW and induce superconductivity at low temperatures. This may suggests that charge transfer in these misfit compounds are closely related to the compe-tition between CDW and superconductivity. However, the quantitative study on this issue is beyond the scope of this work.

)b* )c*

Figure 4.9: Jc plots against the normalized Tc (Tc0 is the critical temperature measured with the lowest current) (open circles) for (a)(SnS)(TaS2) and (b)(SnS)(TaS2)2.

)b* )c*

Figure 4.10: Hc plot against the normalized Tc (Tc0 is the critical temperature without external field) (open circles) for (a)(SnS)(TaS2) and (b)(SnS)(TaS2)2. The red curves are the fittings to the empirical formula (see main text). The comparison of the fitted Hc(0) indicate that the superconductivity is destroyed at a higher magnetic field in (SnS)(TaS2).

0.0 0.2 0.4 0.6 0.8 1.0 0.0

0.1 0.2 0.3 0.4

H c

(0) ~ 0.31T

(PbSe)(TiSe 2

) 2

0

H C

(T)

(T C

/T C0

) 2

RS1142-B1

Figure 4.11: Hcplot against the normalized Tc(open circles) for (PbSe)(TiSe2)2. The red curve is the fitting to the empirical formula.

Conclusion

The topological insulators are insulators with conducting gapless surface states. In this work, we tried to identify the surface states through transport measurements. We observed prominent quantum oscillations in the MR of bulk Bi2Se3 crystals. The angular depen-dence of the oscillation frequency corresponds to a 3D Fermi surface. This indicates that the Fermi level is in the bulk conduction band and the signals from surface states are too small to be identified. We tried to tune the Fermi level in the exfoliated micro-sized Bi2Se3 crystals by applying top gate and bottom gate voltage. However, the observed field effect is not large enough to bring Fermi level into bulk band-gap, and the quantum oscillations are suppressed in the micro-sized Bi2Se3 crystals. This is possibly due to disorders and defects induced by the exfoliation process. We also tried to tune Fermi level by calcium doping and adding excess selenium. However, the results indicate that they may not be effective methods for tuning Fermi level. In this thesis, we described strategies for iden-tifying the surface states through transport measurements. Our experimental setup can be used to identify the surface states of new topological insulators in the future.

CDW is a special phase of periodic modulation of the electron density and the lattice constants. We studied misfit compounds derived from CDW materials, where supercon-ductivity was observed at temperatures below 5K. We observed evidences showing that CDW and superconductivity are competing electronic orderings in these compounds.

In-69

creasing the ratio of CDW material in misfit compound leads to the lowering of Tcand Hc. The measured carrier concentration in these compounds indicate that interlayer charge transfer is present, which is possibly related to the suppression of CDW. However, the quantitative study on this issue is beyond the scope of this work.

[1] Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang, and Shou-Cheng Zhang. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys., 5:438–442, 2009.

[2] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan. Observation of a large-gap topological-insulator class with a single dirac cone on the surface. Nature Phys., 5:398–402, 2009.

[3] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Y. Cui. Aharonov-Bohm interference in topological insulator nanoribbons. Na-ture Mater., 9:225–229, 2010.

[4] Dong-Xia Qu, Y. S. Hor, Jun Xiong, R. J. Cava, and N. P. Ong. Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi2Te3. Science, 329:821–824, 2010.

[5] Robert E. Thorne. Charge-density-wave conductors. Phys. Today, 49:42–47, 1996.

[6] G. P. Mikitik and Yu. V. Sharlai. Manifestation of berry’s phase in metal physics.

Phys. Rev. Lett., 82:2147–2150, 1999.

[7] A. A. Taskin and Yoichi Ando. Berry phase of nonideal dirac fermions in topological insulators. Phys. Rev. B, 84:035301, 2011.

71

[8] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions.

Phys. Rev. Lett., 98:106803, 2007.

[9] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan. A topological dirac insulator in a quantum spin hall phase. Nature, 452:970–974, 2008.

[10] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen. Ex-perimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Sci-ence, 325:178–181, 2009.

[11] Solid State Physics. Thomson Learning, 1976.

[12] Liang Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys.

Rev. B, 76:045302, 2007.

[13] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan. A tunable topological insulator in the spin helical dirac transport regime. Nature, 460:1101–1105, 2009.

[14] J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B, 75:121306, 2007.

[15] C. L. Kane and E. J. Mele. Z2Topological Order and the Quantum Spin Hall Effect.

Phys. Rev. Lett., 95:146802, 2005.

[16] Y. Zhang and A. Vishwanath. Anomalous Aharonov-Bohm Conductance Oscilla-tions from Topological Insulator Surface States. Phys. Rev. Lett., 105:206601, 2010.

[17] F. Xiu, L. He, Y. Wang, L. Cheng, L.-T. Chang, M. Lang, G. Huang, X. Kou, Y. Zhou, X. Jiang, Z. Chen, J. Zou, A. Shailos, and K. L. Wang. Manipulating surface states in topological insulator nanoribbons. Nature Nano., 6:216–221, 2011.

[18] B. L. Al’Tshuler, A. G. Aronov, and B. Z. Spivak. The Aaronov-Bohm effect in disordered conductors. JETP Lett., 33:94–97, 1981.

[19] D. Shoenberg. Magnetic Oscillation in Metals. Cambridge University Press, 1984.

[20] L. Onsager. Interpretation of the de Haas-van Alphen effect. Phil. Mag., 43:1006 – 1008, 1952.

[21] A. A. Taskin and Yoichi Ando. Quantum oscillations in a topological insulator Bi1−xSbx. Phys. Rev. B, 80:085303, 2009.

[22] Kazuma Eto, Zhi Ren, A. A. Taskin, Kouji Segawa, and Yoichi Ando. Angular-dependent oscillations of the magnetoresistance in Bi2Se3 due to the three-dimensional bulk Fermi surface. Phys. Rev. B, 81:195309, 2010.

[23] James G. Analytis, Jiun-Haw Chu, Yulin Chen, Felipe Corredor, Ross D. McDonald, Z. X. Shen, and Ian R. Fisher. Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison of photoemission and Shubnikov-de Haas measure-ments. Phys. Rev. B, 81:205407, 2010.

[24] N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione. Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals. Phys. Rev. B, 81:241301, 2010.

[25] Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z.

Hasan, N. P. Ong, and R. J. Cava. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B, 79:195208, 2009.

[26] J. G. Checkelsky, Y. S. Hor, M.-H. Liu, D.-X. Qu, R. J. Cava, and N. P. Ong. Quan-tum Interference in Macroscopic Crystals of Nonmetallic Bi2Se3. Phys. Rev. Lett., 103:246601, 2009.

[27] James G. Analytis, Ross D. McDonald, Scott C. Riggs, Jiun-Haw Chu, G. S. Boe-binger, and Ian R. Fisher. Two-dimensional surface state in the quantum limit of a topological insulator. Nature Phys., 6:960–964, 2010.

[28] Zhi Ren, A. A. Taskin, Satoshi Sasaki, Kouji Segawa, and Yoichi Ando. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se.

Phys. Rev. B, 82:241306, 2010.

[29] J. Xiong, A. C. Petersen, D. Qu, R. J. Cava, and N. P. Ong. Quantum Oscil-lations in a Topological Insulator Bi2Te2Se with Large Bulk Resistivity (6 Ωcm).

arXiv:1101.1315, unpublished.

[30] A. A. Taskin, Zhi Ren, Satoshi Sasaki, Kouji Segawa, and Yoichi Ando. Obser-vation of Dirac Holes and Electrons in a Topological Insulator. Phys. Rev. Lett., 107:016801, 2011.

[31] R. Peierls. Regarding the theory of electric and thermal conductibility of metals.

Ann. Phys. (Leipzig), 4:121–148, 1930.

[32] K. Rossnagel. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys.: Condens. Matter, 23:213001, 2011.

[33] S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, D. Evtushinsky, B. B¨uchner, A. N. Yaresko, A. Varykhalov, R. Follath, W. Eberhardt, L. Patthey, and H. Berger. Two Energy Gaps and Fermi-Surface “Arcs” in NbSe2. Phys. Rev. Lett., 102:166402, 2009.

[34] M. Fujita, H. Goka, K. Yamada, and M. Matsuda. Competition between charge- and spin-density-wave order and superconductivity in La1.875Ba0.125−xSrxCuO4. Phys.

Rev. Lett., 88:167008, 2002.

[35] R. Yomo, K. Yamaya, M. Abliz, M. Hedo, and Y. Uwatoko. Pressure effect on com-petition between charge density wave and superconductivity in ZrTe3: Appearance of pressure-induced reentrant superconductivity. Phys. Rev. B, 71:132508, 2005.

[36] R. C. Morris. Charge-Density Waves and Superconductivity in NbSe2. Phys. Rev.

Lett., 34:1164–1166, 1975.

[37] A.M. Gabovich, A.I. Voitenko, and M. Ausloos. Charge- and spin-density waves in existing superconductors: competition between Cooper pairing and Peierls or excitonic instabilities. Phys. Rep., 367:583–709, 2002.

[38] E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava. Superconductivity in CuxTiSe2. Nature Phys., 2:544–550, 2006.

[39] G.A. Wiegers. Charge transfer between layers in misfit layer compounds. J. Alloys Compd., 219:152–156, 1995.

[40] J. Rouxel, A. Meerschaut, and G.A. Wiegers. Chalcogenide misfit layer compounds.

J. Alloys Compd., 229:144–157, 1995.

[41] C. M. Fang, A. R. H. F. Ettema, C. Haas, G. A. Wiegers, H. van Leuken, and R. A.

de Groot. Electronic structure of the misfit-layer compound (SnS)1.17(NbS)2 de-duced from band-structure calculations and photoelectron spectra. Phys. Rev. B, 52:2336–2347, 1995.

[42] N. Giang, Q. Xu, Y. S. Hor, A. J. Williams, S. E. Dutton, H. W. Zandbergen, and R. J. Cava. Superconductivity at 2.3 K in the misfit compound (PbSe)1.16(TiSe2)2 . Phys. Rev. B, 82:024503, 2010.

[43] H. K¨ohler and H. Fischer. Investigation of conduction-band Fermi-surface in Bi2Se3 at high electron concentrations. Phys. Status Solidi B, 69:349–357, 1975.

[44] G.R. Hyde, H.A. Beale, I.L. Spain, and J.A. Woollam. Electronic Properties Of Bi2Se3 Crystals. J. Phys. Chem. Solids, 35:1719–1728, 1974.

[45] S.-Y. Xu, L. A. Wray, Y. Xia, R. Shankar, A. Petersen, A. Fedorov, H. Lin, A. Bansil, Y. S. Hor, D. Grauer, R. J. Cava, and M. Z. Hasan. Discovery of several large fam-ilies of Topological Insulator classes with backscattering-suppressed spin-polarized single-Dirac-cone on the surface. arXiv:1101.1315, unpublished.

[46] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306:666–669, 2004.

[47] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J.

Booth, and A. K. Geim. Making graphene visible. Appl. Phys. Lett., 91:063124, 2007.

[48] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X.

Shen. Graphene thickness determination using reflection and contrast spectroscopy.

Nano. Lett., 7:2758–2763, 2007.

[49] Edward D. Palik. Handbook of optical constants of solids. Academic Press, 1985.

[50] O. Madelung. Semiconductors. Other than group IV elements and III-V compounds.

Springer-Verlag, 1992.

[51] D. Kong, J. J. Cha, K. Lai, H. Peng, J. G. Analytis, S. Meister, Y. Chen, H.-J. Zhang, I. R. Fisher, Z.-X. Shen, and Y. Cui. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3. arXiv:1102.3935, unpublished.

[52] A. A. Abrikosov. Quantum linear magnetoresistance. Europhys. Lett., 49:789, 2000.

[53] S. Nagata, T. Aochi, T. Abe, S. Ebisu, T. Hagino, Y. Seki, and K. Tsutsumi. Super-conductivity in the layered compound 2H-TaS2. J. Phys. Chem. Solids, 53:1259–

1263, 1992.

[54] W. Albers, C. Haas, and F. van der Maesen. The preparation and the electrical and optical properties of SnS crystals. J. Phys. Chem. Solids.

[55] R.S. Allgaier and W.W. Scanlon. Mobility of Electrons and Holes in PbS, PbSe, and PbTe between Room Temperature and 4.2K. Phys. Rev., 111:1029–1037, 1958.

[56] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forro, and E. Tutis. From Mott state to superconductivity in 1T-TaS2. Nature Mater., 7:960–965, 2008.

[57] E. Morosan, K. E. Wagner, Liang L. Zhao, Y. Hor, A. J. Williams, J. Tao, Y. Zhu, and R. J. Cava. Multiple electronic transitions and superconductivity in PdxTiSe2. Phys. Rev. B, 81:094524, 2010.

在文檔中 層狀材料中的傳輸性質 (頁 79-91)

相關文件