• 沒有找到結果。

Since most economic relationships predicted by economic theory are unknown, one has to count on a particular parametric form, which may lead to a biased estimation due to invalid parameterization. The importance of nonparametric and semiparametric regression techniques has drawn much attention from the econometricians and applied researchers recently. These techniques allow the functional form to be determined at least partially by the data. Fan et al. (1996) and Deng and Huang (2008) generalized the conventional linear stochastic frontier model to a semiparametric stochastic production frontier model. On the basis of previous works, this article adds to the current literature by considering both TE and AE in the context of a semiparametric stochastic cost frontier model using panel data.

This paper has solved two major problems faced by applied researchers. First, the cost system must be estimated simultaneously, suffering from computational difficulties. Second, the log-likelihood function of the expenditure equation cannot be maximized due to the presence of the nonparametric component. Even worse, the nonparametric function is unable to be estimated by existing nonparametric regression methods. We propose a five-step procedure to cope with these problems. Evidence from a set of Monte Carlo simulations tends to support the superiority of Model A at least for a moderate sample size, while the performance of Model B’s estimators is nearly as good as that of Model A’s, particularly when the time period of the panel data is long. In other words, Model B is appropriate for long panel data.

The first step estimators of the cost share equations perform reasonably well. We thus advocate using these estimates to compute the AE measure and treat the estimated allocative parameters as given in the following steps. It is noticeable that despite the uselessness of the parameter estimates obtained in the third step, this step is necessary to yield the residuals and to concentrate out variance 2. Otherwise, estimators of Step 5 will perform poorly. Moreover, Models A and B are robust to include additional explanatory variables to both parametric and nonparametric portions of the cost function. When cross sectional data are available, the foregoing conclusions continue to hold in general, except that the bias of the estimated TE measure does not decrease as the sample size increases.

The three models are applied to investigate the TE and AE measures of the financial sectors of 14 East European countries over the period of 1993-2004. As expected, the average TE scores obtained by Models A and B are close to each other.

Model C underestimates the average TE scores, but exaggerates the rate of improvement on the TE. Financial deregulation appears to successfully prompt the TE of the sample banks over the transition period. Since the TI dominates the AI, bank managers are suggested to promote their managerial ability in such a way as to reduce the production costs for a given level of outputs, followed by adjusting for their input mix given the ratios of input prices.

Reference

Aigner, D.J., C.A.K. Lovell and P. Schmidt (1977) “Formulation and estimation of stochastic frontier production function models,” Journal of Econometrics, 6, 21-37.

Altunbas, Y., E.P.M. Gardener, P. Molyneux, and B. Moore (2001) “Efficiency in European banking,” European Economic Review, 45, 1931-1955.

Atkinson, S.E. and C. Cornwell (1994) “Parametric estimation of technical and allocative inefficiency with panel data,” International Economic Review, 35, 231- 243.

Battese, G.E. and T.J. Coelli (1992) “Frontier production functions, technical efficiency and panel data:with application to paddy farmers in India,” Journal of Productivity Analysis, 3, 153-169.

Bauer, P.W. (1990) “Recent development in the econometric estimation of frontiers,”

Journal of Econometrics, 46, 39-56.

Berger, A.N., G.A. Hancock, and D.B. Humphrey (1993) “Bank efficiency derived from the profit function,” Journal of Banking and Finance, 17, 317-347.

Bonin, J.P., I. Hasan and P. Wachtel (2005a) “Bank performance, efficiency and ownership in transition countries,” Journal of Banking and Finance, 29, 31-53.

Bonin, J.P., I. Hasan and P. Wachtel (2005b) “Privatization matters: Bank efficiency in transition countries,” Journal of Banking and Finance, 29, 2155-2178.

Bos, J.W.B. and H. Schmiedel (2007) “Is there a single frontier in a single European banking market?” Journal of Banking and Finance, 31, 2081-2102.

Deng, W.S. and T.H. Huang (2008) “A semiparametric approach to the estimation of the stochastic frontier model with time-variant technical efficiency,” Academia Economic Papers, 36, 167-193.

Fan, Y. and Q. Li (1992) “The asymptotic expansion of kernel sum of square residuals and its application in hypotheses testing,” discussion paper, University of Windsor, Department of Economics.

Fan, Y., Q. Li and A. Weersink (1996) “Semiparametric estimation of stochastic production frontier models,” Journal of Business and Economic Statistics, 14, 460-468.

Ferrier, G.D. and C.A.K. Lovell (1990) “Measuring cost efficiency in banking,”

Journal of Econometrics, 46, 229-245.

Fries, S. and A. Taci (2005) “Cost efficiency of banks in transition: Evidence from 289 banks in 15 post-communist,” Journal of Banking and Finance, 29, 55- 81.

Härdle, W. (1990), Applied Nonparametric Regression, U.K.: Cambridge University Press.

Härdle, W and T.M. Stoker (1989) “Investigating smooth multiple regression by the method of average derivatives,” Journal of the American Statistical Association, 84, 986-995.

Hasan, I. and K. Marton (2003) “Development and efficiency of the banking sector in a transitional economy: Hungarian experience,” Journal of Banking and Finance,

27, 2249-2271.

Huang, T.H. (2000) “Estimating X-efficiency in Taiwanese banking using a Translog shadow profit function,” Journal of Productivity Analysis, 14, 225- 245.

Huang, T.H. and M.H. Wang (2004) “Comparisons of economic inefficiency between output and input measures of technical inefficiency using Fourier flexible cost frontiers,” Journal of Productivity Analysis, 22, 123-142.

Jemric, I. and B. Vujcic (2002) “Efficiency of banks in Croatia: a DEA approach,”

Comparative Economic Studies, 44, 169-193.

Kraft, E. and D. Tirtiroglu (1998) “Bank efficiency in Croatia: A stochastic frontier analysis,” Journal of Comparative Economics, 26, 282- 300.

Kumbhakar, S.C. (1991) “The measurement and decomposition of cost inefficiency:

The translog cost system,” Oxford Economic Papers, 43, 667-683.

Kumbhakar, S.C. (1996a) “A parametric approach to efficiency measurement using a flexible profit function,” Southern Economic Journal, 473-487.

Kumbhakar, S.C. (1996b) “Efficiency measurement with multiple outputs and multiple inputs,” Journal of Productivity Analysis, 7, 225-256.

Kumbhakar, S.C. (1997) “Modeling allocative inefficiency in a translog cost function and cost share equations: An exact relationship,” Journal of Econometrics, 76, 351-356.

Kumbhakar, S.C. and C.A.K. Lovell (2000), Stochastic Frontier Analysis, Cambridge University Press.

Kumbhakar, S.C. and H.J. Wang (2006a) “Pitfalls in the estimation of a cost function that ignores allocative inefficiency: A Monte Carlo analysis,” Journal of Econometrics, 134, 317-340.

Kumbhakar, S.C. and H.J. Wang (2006b) “Estimation of technical and allocative inefficiency: a primal system approach,” Journal of Econometrics, 134, 419-440.

Meeusen, W., and J. Van Den Broeck (1977) “Efficiency estimation from Cobb-Douglas production functions with composed error,” International Economic Review, 18, 435-444.

Nadaraya, E.A. (1964) “On estimating regression,” Theory of Probability and Its Applications, 10, 186-190.

Nikiel, E.M. and T.P. Opiela (2002) “Customer type and bank efficiency in Poland implications for emerging market banking,” Contemporary Economic Policy, 20, 255-271.

Olson, J.A., P. Schmidt, and D.M. Waldman (1980) “A Monte Carlo study of estimators of stochastic frontier production,” Journal of Econometrics, 13, 67-82.

Robinson, P.M. (1988), “Root-N-Consistent semiparametric regression,”

Econometrica, 56, 931-954.

Schmidt P. and R.C. Sickles (1984),“Production frontiers and panel data,"Journal of Business and Economic Statistics, 2, 367-374.

Wand, M.P. and M.C. Jones (1995), Kernel smoothing, New York:Chapman and Hall Press.

Watson, G..S. (1964) “Smooth regression analysis,” Sankhya, Series A, 26, 359-372.

Weill, L. (2004) “Measuring cost efficiency in European banking: A comparison of frontier techniques,” Journal of Productivity Analysis, 21, 133-152.

Wheelock, D.C. and P.W. Wilson (2001) “New evidence on returns to scale and product mix among U.S. commercial banks,” Journal of Monetary Economics, 47, 653-674.

Yatchew, A. (1998) “Nonparametric regression techniques in economics,” Journal of Economic Literature, 36, 669-721.

Yatchew, A. (2003), Semiparametric Regression for the Applied Econometrician, U.K.:

Cambridge University Press.

Yildirim, H.S. and G.C. Philippatos (2007), Efficiency of banks: Recent evidence from the transition economics of Europe — 1993-2000, European Journal of Finance, 13, 123-143.

Appendix

Table II. The performance of the estimators of lnG, AE and TE for the case of ( ,  2, )= (-0.025 , 1.88 ,

Table III. The performance of the allocative parameter estimates setting M(‧)=2 ln(1y1) as N=30

Table V. The performance of the parameter estimates from the third-stage setting M(‧)=2 ln(1y1) as N=30 Model A

Table VI. The performance of the estimators of ( ,  2, ) setting M(‧)=2 ln(1y1) as N=30

Table VII. The performance of estimated function lnG setting M(‧)=2 ln(1y1) as N=30

Model A Model B

Table X. The performance of the first-stage parameter estimates using cross-sectional data assuming (2, ) =

Table XI. The performance of the third-stage parameter estimates using cross-sectional data assuming ( 2, )= (1.88,1.66)

Table XII. The performance of the estimators of ( 2, ) and M(‧) using cross-sectional data assuming ( 2, )=(1.88,1.66) 1000 -0.0318 0.0621 -0.0609 0.0336 0.0231 0.0190

Model B 1000 -0.0339 0.0615 -0.0619 0.0335 0.0229 0.0298

Model C

 2 M(‧)

N Bias MSE Bias MSE Bias MSE

100 -1.1114 135.0659 11.9583 532.0402 0.8387 3.0253 300 -0.7597 18.1286 3.7948 50.6329 0.6325 1.4538 500 -0.7224 5.8017 1.8657 13.0069 0.5125 0.9517

1000 -0.5412 3.2962 0.9885 4.4140 0.3775 0.6153

Table XIII. The performance of the estimated lnG using cross-sectional data assuming ( 2, )=(1.88,1.66)

Model A Model B

Table XIV. The performance of the estimated AE using cross-sectional data assuming ( 2, )=(1.88,1.66)

Model A Model B

Table XV. The performance of the estimated TE score using cross-sectional data assuming ( 2, )=(1.88,1.66)

Table XVI. The performance of the parameter estimates in Step 1 setting M(‧)= y1 ln(1y1)

Table XVII. The performance of the parameter estimates from the third-stage setting M(‧)= y1 ln(1y1)

Translog

Table XVIII. The performance of the estimators of ( ,  2, ) setting M(‧)= y1 ln(1y1)

Table XIX. The performance of estimated function lnG setting M(‧)= y1 ln(1y1) ( ,  2, )= (0.025 , 1.88 , 1.66)

Table XX. The performance of estimated AE setting M(‧)= y1 ln(1y1) ( ,  2, )= (0.025 , 1.88 , 1.66)

Model A Translog

AE1 AE2A AE2T

( N , T ) Bias MSE Bias MSE Bias MSE ( 50 , 6 ) 0.0031 0.0027 0.0149 0.3992 0.0082 0.4110 ( 50 , 10 ) 0.0010 0.0015 0.0038 0.0008 0.0020 0.0012 ( 50 , 20 ) 0.0002 0.0007 0.0014 0.0004 -0.0006 0.0006 ( 100 , 6 ) 0.0004 0.0012 0.0030 0.0007 0.0011 0.0011 ( 100 , 10 ) 0.0002 0.0007 0.0013 0.0004 0.0002 0.0006 ( 100 , 20 ) 2.89E-06 0.0003 0.0009 0.0002 -0.0001 0.0003 (200, 6) 0.0001 0.0006 0.0013 0.0003 0.0004 0.0005 (200, 10) 2.89E-06 0.0003 0.0007 0.0002 0.0001 0.0003 (200, 20) 0.0004 0.0002 0.0006 0.0001 0.0001 0.0001

Table XXI. The performance of estimated TE scores setting M(‧)= y1 ln(1y1) ( ,  2, )= (0.025 , 1.88 , 1.66)

Model A Translog

( N , T ) Bias MSE Bias MSE ( 50 , 6 ) 0.0030 0.0093 0.0649 0.0833

( 50 , 10 ) 0.0048 0.0033 0.0508 0.0672 ( 50 , 20 ) 0.0214 0.0018 -0.2723 0.2523 ( 100 , 6 ) 0.0015 0.0065 0.0263 0.0452 ( 100 , 10 ) 0.0024 0.0029 0.0288 0.0342 ( 100 , 20 ) 0.0204 0.0017 -0.1862 0.2019 (200, 6) -0.0003 0.0060 0.0022 0.0111 (200, 10) 0.0009 0.0026 0.0044 0.0073 (200, 20) 0.0200 0.0016 0.0145 0.0722

Table XXII. Parameter estimates of the Translog model

Parametric Estimate Standard Error

Intercept 0.0086 0.2602

Table XXIII. Average AE and TE scores of the Translog model

Mean St. Dev.

AE (%) 89.21 0.1013

TE (%) 61.15 0.2033

國科會補助計畫衍生研發成果推廣資料表

日期:2011/07/18

國科會補助計畫

計畫名稱: A study of the economic efficiencies in East European countries using semiparametric approaches

計畫主持人: 陳冠臻

計畫編號: 98-2420-H-004-174-DR 學門領域: 財務與金融

無研發成果推廣資料

98 年度專題研究計畫研究成果彙整表

計畫主持人:陳冠臻 計畫編號:98-2420-H-004-174-DR

計畫名稱:A study of the economic efficiencies in East European countries using semiparametric approaches

其他成果

(無法以量化表達之成

果如辦理學術活動、獲 得獎項、重要國際合 作、研究成果國際影響 力及其他協助產業技 術發展之具體效益事 項等,請以文字敘述填 列。)

成果項目 量化 名稱或內容性質簡述

測驗工具(含質性與量性) 0

課程/模組 0

電腦及網路系統或工具 0

教材 0

舉辦之活動/競賽 0

研討會/工作坊 0

電子報、網站 0

目 計畫成果推廣之參與(閱聽)人數 0

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)、是否適 合在學術期刊發表或申請專利、主要發現或其他有關價值等,作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估

■達成目標

□未達成目標(請說明,以 100 字為限)

□實驗失敗

□因故實驗中斷

□其他原因 說明:

2. 研究成果在學術期刊發表或申請專利等情形:

論文:□已發表 ■未發表之文稿 □撰寫中 □無 專利:□已獲得 □申請中 ■無

技轉:□已技轉 □洽談中 ■無 其他:(以 100 字為限)

3. 請依學術成就、技術創新、社會影響等方面,評估研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)(以 500 字為限)

相關文件