• 沒有找到結果。

Part II. Attitude Control Using Pseudowheels

12. Conclusions

This research project investigates the attitude dynamics and control of miniature spacecraft using piezoelectric actuators. The actuator composes multiple bimorphs

and attached on each principal axis of spacecraft. When an external voltage is applied to the bimorph, it would produce a transient vibration due to elastic deformation of bimorph. According to the conservation of angular momentum, this elastic motion can rotate the spacecraft. If the applied voltage switches off, the bimorph will move back to the original situation. However, to produce a net attitude change of spacecraft, one can apply a rotation sequence, which is a sequence of rotation with respect to three axes. This research project is divided into two parts. The first part studies the kineto-dynamics of the bimorph, and the second part proposes the attitude control using the piezoelectric actuator based on the analysis results of the first part. The results show that the attitude control can be achieved by using the piezoelectric actuator and the rotation-sequence-based controller. The main contribution of this research project is to propose an alternative attitude control strategy for miniature spacecraft and to demonstrate the feasibility based on numerical simulations.

References

[1] J. Li, S.K. Koh, G.K. Ananthasuresh, P.S. Ayyaswamy, and S. Ananthakrishnan,

“A Novel Attitude Control Technique for Miniature Spacecraft”, ASME International Mechanical Engineering Congress and Exposition, New York, NY, Nov 11-16, 2001.

[2] J. Jonsmann, O. Sigmund, and S. Bouwstra, “Compliant Electo-thermal Microactuators”, Proceedings of MEMS, pp. 588-593, 1999.

[3] N.D. Mankame and G.K. Ananthasuresh, “Comprehsensive Thermal Modelling and Characterization of an Electro-thermal-compliant Microactuator”, Journal of Micromechanics and Microengineering, Vol. 11, pp. 452-462, 2001.

[4] J.G. Smits, S.I. Dalke, and T.K. Cooney, “The constituent equations of piezoelectric bimorphs”, Sensors and Actuators A: Physical, Vol. 28: pp. 41-61, 1991.

[5] C.K. Lee and F.C. Moon, “Laminated piezopolymer plates for torsion and bending sensors and actuators”, Journal of the Acoustical Society America, Vol.

85, pp. 2432-2439, 1989.

[6] D.B. Koconis, L.P. Kollar, and G.S. Springer, “Shape control of composite plates and shells with embedded actuators I: voltages specified”, Journal of Composite Materials, Vol. 28, pp. 415-458, 1994.

[7] P. Donthireddy and K. Chandrashekhara, “Modeling and shape control of composite beams with embedded piezoelectric actuators”, Composite Structures, Vol. 35, pp. 237-244, 1996.

[8] E. Carrera, “An improved Reissner–Mindlin-type model for the electro-mechanical analysis of multilayered plates including piezolayers”, Journal of Intelligent Material Systems and Structures, Vol. 8 pp. 232-248, 1998.

[9] H. Abramovich, “Deflection control of laminated composite beams with piezoceramic layers – closed form solutions”, Composite Structures, Vol. 43 pp.

217-231, 1998.

[10] H. Abramovitch, “Piezoelectric actuation for smart sandwich structures – closed form solutions”, Journal of Sandwich Structure Materials, Vol. 5, pp. 377-396,

2003.

[11] S.S. Vel and R.C. Batra, “Analysis of piezoelectric bimorphs and plates with segmented actuators”, Journal of Thin-Walled Structures, Vol. 39. pp. 23-44, 2001.

[12] A. Fernandes and J. Pouget, “Analytical and numerical approaches to piezoelectric bimorph.”, International Journal of Solids and Structures, Vol. 40, pp. 4331-4352, 2003.

[13] L.H. He, C.W. Lim, and A.K. Soh, “Three-dimensional analysis of an antiparallel piezoelectric bimorph”, Acta Mechanica, Vol. 145, pp. 189-204, 2000.

[14] C.W. Lim, L.H. He, and A.K. Soh, “3D electromechanical responses of a parallel piezoelectric bimorph”, International Journal of Solids and Structures, Vol. 38, pp. 2833-2849, 2001.

[15] H.S. Tzou, 1989, Development of a lightweight robot end-effector using polymeric piezoelectric bimorph, IEEE Conference of Robotics and Automation, pp. 1704-1709.

[16] H.S. Tzou, C.I. Tseng, 1991, Distributed vibration control and identification of coupled elastic/piezoelectric systems: finite element formulation and applications, Mechanical Systems and Signal Processing, Vol. 5(3), pp. 215-231.

[17] H.S. Tzou, 1993, Piezoelectric shells – Distributed sensing and control of continua, Solid Mechanics and Its Applications, Kluwer Vol. 19, Academic Publishers, Dordrecht, Netherlands.

[18] N.H. Shen, 1994, Analysis of beams containing piezoelectric sensors and actuators, Smart Materials and Structures, Vol. 3, pp. 439-447.

[19] D.A. Saravanos, P.R. Heyliger, and D.A. Hopkins, “Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates”, International Journal of Solids and Structures, Vol. 34, pp. 359-378, 1997.

[20] S.Y. Wang, 2004, A finite element model for the static and dynamic analysis of a piezoelectric bimorph, International Journal of Solids and Structures, Vol. 41, pp.

4075-4096.

[21] L. Meirovitch, 2001, Fundamentals of Vibrations, McGraw-Hill Inc., New York, NY, USA.

[22] J. C. Simo and L. Vu-Quoc, “Finite-strain rods undergoing large motions”, Computer Methods in Applied Mechanics and Engineering, Vol. 66, pp. 125-161, 1988.

[23] J.L. Smith, “Attitude determination and control suitable for micro-spacecraft”, International Symposium on Space Technology and Science, 22nd, Morioka, Japan, pp. 2317-2322. 2000.

[24] G.S. Haag, H.N. Sweeting, and G. Richardson, “Low cost propulsion development for small satellites at the Surrey Space Center”, 13th AIAA/USU Conference on Small Satellites, Logan, UT, 1999.

[25] R. Fleeter, Micro Spacecraft, the Edge City Press, 1995.

[26] S. Cass, “MEMS in space”, IEEE Spectrum, Vol. 88(7), pp. 56-61, 2001.

[27] J. Reiter, K. Bohringre, and M. Campbell, “Control moment gyroscope designing and wafer-based spacecraft chassis study”, the SPIE Symposium on Micromachining and Microfabrication, Santa Clara, CA, 1998.

[28] T. Moulton, and G.K. Anathasuresh, “Micromechanical devices with embedded electo-thermal-compliant actuation”, Sensors and Actuators, Vol. 90, pp. 38-48, 2001.

[29] J. Li, S.K. Koh, G.K. Ananthasuresh, P.S. Ayyaswamy, and S. Ananthakrishnan,

“A novel attitude control technique for miniature spacecraft”, the ASME International Mechanical Engineering Congress and Exposition, New York, pp.

11-16, 2001.

[30] J. Jonsmann, O. Sigmund, and S. Bouwstra, “Compliant electo-thermal microactuators”, Proceedings of MEMS, pp. 588-593, 1999.

[31] S.K. Koh, J.P. Ostrowski, and G.K. Ananthasuresh, “Control of micro-satellite orientation using bounded-input, fully-reversed MEMS actuators”, International Journal of Robotics Research, Vol. 21(5/6), pp. 591-605, 2002.

[32] S.K. Koh and G.K. Anathasuresh, “Motion planning for the axis control of miniature spacecraft using microactuators”, the DETC Mechanisms Conference, 2002.

[33] Y.L. Kuo, K.D. Kumar, K. Behdinan, and Z. Fawaz, “Open-loop optimal attitude control of miniature spacecraft using MEMS actuators”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 44(4), pp. 1381-1390, 2008.

[34] J.L. Junkins and J.D. Turner, Optimal Spacecraft Rotational Maneuvers, Elsevier Science Publishers, 1986.

附件一:國科會補助專題研究計畫成果報告自評表

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)、是否適 合在學術期刊發表或申請專利、主要發現或其他有關價值等,作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估

▉達成目標

□ 未達成目標(請說明,以 100 字為限)

□ 實驗失敗

□ 因故實驗中斷

□ 其他原因 說明:

2. 研究成果在學術期刊發表或申請專利等情形:

論文:▉已發表 ▉未發表之文稿 □撰寫中 □無 專利:□已獲得 □申請中 □無

技轉:□已技轉 □洽談中 □無 其他:(以 100 字為限)

註:請參見附件二-論文發表情形

3. 請依學術成就、技術創新、社會影響等方面,評估研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)(以 500 字為限)

In recent years, micro spacecrafts have been considered as the next logical step in the evolution of capable, low-cost spacecraft systems. Since these spacecrafts are very small in size and weight, they pose unique engineering challenges. This research investigates the attitude dynamics and control of miniature spacecraft under the gravitational effect using the piezoelectric actuator and rotation-sequence-based controller. This research project is divided into two parts. The first part studies the kineto-dynamics of the bimorph, and the second part proposes the attitude control using the piezoelectric actuator based on the analysis results of the first part. The results show that the attitude control can be achieved by using the piezoelectric actuator and the rotation-sequence-based controller. The main contribution of this research project is to propose an alternative attitude control strategy for miniature spacecraft and to demonstrate the feasibility based on numerical simulations.

附件二:論文發表情形

1. Y.L. Kuo, "Attitude Control of Miniature Spacecraft Using a Micro-Actuator", Advanced Science Letters (SCI), in press.

2. Y.L. Kuo, "Attitude Control of Spacecraft Using Pseudowheels", 2011 航太學術 研討會(AASRC 2011), Taichung, Taiwan, Nov 5, 2011.

3. Y.L. Kuo and T.L. Wu, “Nonlinear Modeling and Kineto-Elasto-Dynamic Analysis of a Piezo-Actuator”, submitted to Scientific Research and Essays, under review.

4. Y.L. Kuo and T.L. Wu, “Attitude Control of Spacecraft Using a Serial Manipulator”, submitted to IEEE International Symposium on Computer, Consumer and Control, Taichung (IEEE IS3C 2012), Taiwan, Jun 4-6, 2012. (可 轉投 SCI 期刊)

5. Y.L. Kuo and T.L. Wu, “Open- and Closed-loop Attitude Dynamics and Controls of Miniature Spacecraft Using Pseudowheels”, submitted to IEEE International Symposium on Computer, Consumer and Control (IEEE IS3C 2012), Taichung, Taiwan, Jun 4-6, 2012. (可轉投 SCI 期刊)

國科會補助計畫衍生研發成果推廣資料表

日期:2011/11/23

國科會補助計畫

計畫名稱: 微機電裝置應用於微衛星姿態控制之運動彈性動力學研究 計畫主持人: 郭永麟

計畫編號: 99-2218-E-011-004-MY2 學門領域: 航太科技

無研發成果推廣資料

99 年度專題研究計畫研究成果彙整表

計畫主持人:郭永麟 計畫編號:99-2218-E-011-004-MY2 計畫名稱:微機電裝置應用於微衛星姿態控制之運動彈性動力學研究

其他成果

(

無法以量化表達之成

果如辦理學術活動、獲 得獎項、重要國際合 作、研究成果國際影響 力及其他協助產業技 術發展之具體效益事 項等,請以文字敘述填 列。)

成果項目 量化 名稱或內容性質簡述

測驗工具(含質性與量性) 0

課程/模組 0

電腦及網路系統或工具 0

教材 0

舉辦之活動/競賽 0

研討會/工作坊 0

電子報、網站 0

目 計畫成果推廣之參與(閱聽)人數 0

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性) 、是否適 合在學術期刊發表或申請專利、主要發現或其他有關價值等,作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估

■達成目標

□未達成目標(請說明,以 100 字為限)

□實驗失敗

□因故實驗中斷

□其他原因 說明:

2. 研究成果在學術期刊發表或申請專利等情形:

論文:■已發表 □未發表之文稿 □撰寫中 □無 專利:□已獲得 □申請中 ■無

技轉:□已技轉 □洽談中 ■無 其他:(以 100 字為限)

1. SCI 論文: 1 篇(已接受); 1 篇(已投稿)

2. 研討會論文: 1 篇(已發表); 2 篇(已投稿,可轉投 SCI 期刊)

3. 請依學術成就、技術創新、社會影響等方面,評估研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)(以 500 字為限)

In recent years, micro spacecrafts have been considered as the next logical step in the evolution of capable, low-cost spacecraft systems. Since these spacecrafts are very small in size and weight, they pose unique engineering challenges. This research investigates the attitude dynamics and control of miniature spacecraft under the gravitational effect using the piezoelectric actuator and rotation-sequence-based controller. This research project is divided into two parts. The first part studies the kineto-dynamics of the bimorph, and the second part proposes the attitude control using the piezoelectric actuator based on the analysis results of the first part. The results show that the attitude control can be achieved by using the piezoelectric actuator and the rotation-sequence-based controller. The main contribution of this research project is to propose an alternative attitude control strategy for miniature spacecraft and to demonstrate the feasibility based on numerical simulations.

相關文件