• 沒有找到結果。

Chapter 6 Conclusions And Future Works

6.1 Conclusions

With the dimension(s) of materials shrinking to 1 to 100 nm, especially close to their Bohr radii, they can exhibit special identities. We can employ them in our thin films or devices to accomplish specific purposes. In this dissertation, we utilize three kinds of ultrathin oxide layers to realize three green devices: an OBD with an interfacial Al-O compound layer, an OBD with a MoOx nanoclusterlike layer, and a high Voc MIS solar cell using a stacking structure.

In the beginning, an OBD with an n-Si/Alq3/Al structure is fabricated and its characteristics are also analyzed. We find that the bistability of the OBD results from the charge trapping in the Al-O compound layer, which is formed at the Alq3/Al interface. We can also tune the electrical features of the OBD, which are affected by the surface roughness of the Alq3 thin film, by controlling the deposition rate of the Alq3 thin film.

After that, we pay attention to another OBD, p+-Si/Alq3/nanostructured MoOx/Alq3/Al.

The MoOx nanoclusterlike layer (the nanostructured MoOx layer) behaves as trap sites in the OBD, and the resistance switching of the OBD can be observed in the I-V curves as charges occupy or leave the trap sites. After the OBD is switched into the high conductance state, the current keeps increasing with voltage, and no NDR exhibits in the I-V curves. This is because the effective polarized field generated by the MoOx nanoclusterlike layer is not large enough to repel the injected carriers.

In addition, a high Voc MIS solar cell using a stacking structure is reported. We stack an n-type MIS solar cell and a p-type one to form a stacking MIS solar cell. The stacking cell

67

provides 0.71 V Voc, greater than those of other reported MIS solar cells. It is worthy to mention that the stacking structure has great potential to carry out converting solar energy for hydrogen generation.

Finally, we deeply believe that the reported green devices will make a great influence on the future green technology.

6.2 Future Works

In the near future, we will/can focus on further promoting the performance of the three green devices.

In the case of the OBDs, the retention time of the OBDs is a key identity of memory.

However, the retention time of both OBDs has not fitted the requirements of the next generation nonvolatile memory yet. We can introduce deeper trap states in the OBDs (e.g., changing the shape of the MoOx layer) or barriers adjacent to the original tap sites to prevent trapped charges from escaping, and thus their retention time is raised.

In addition, we find that the failure of the OBDs occurs after several write-read-erase-read cycle tests. The failure probably attributes to many factors, such as device degradation due to the measurement environment, and leakage paths which result from particles introduced during fabrication. However, the failures of organic memory have not caused much attention. If we can recognize the failure mechanisms, we can figure out how to tackle the causes of the failure and then can uplift the stability and endurance of the OBDs, and even perhaps can understand the mechanisms responsible for the resistance switching.

With regard to the stacking MIS solar cell, it is evident that the stacking MIS solar cell offers higher Voc than other published MIS solar cells. But the stacking MIS solar cell can donate more superior performance as long as we can cut down its power losses. For example, we can modify (or change) our fabrication processes and then can optimize the processes for

68

the requirement of current matching and for obtaining the excellent bonding interface and high quality MIS junctions. After that, we can use a surface passivation layer (such as AlOx) instead of the semitransparent metal layer to raise the amount of photons incident into the cell, and to induce an inversion layer for arguing the diffusion length and collection efficiency of carriers. Furthermore, from the point of view of energy collection, the performance of the stacking solar cell (such as conversion efficiency) can be further upgraded using two MIS solar cells with different bandgaps (such as Si/Ge, and Si/III-V).

69

References

[1] G. A. Meeh, W. M. Washington, W. D. Collins, J. M. Arblaster, A. Hu, L. E. Buja, W. G. Strand, and H. Teng, “How much more global warming and sea level rise?,”

Science, vol. 307, no. 5716, pp. 1769-1772, Mar. 2005.

[2] T. L. Root, J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A.

Pounds, “Fingerprints of global warming on wild animals and plants,” Nature, vol.

421, no. 6918, pp. 57-60, Jan. 2002.

[3] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell,” IEEE Electron. Dev. Lett., vol.

21, no. 11, pp. 543-545, Nov. 2000.

[4] D. Zhao, Y. Zhu, R. Li, and J. Liu, “Simulation of a cobalt silicide/Si hetero-nanocrystal memory,” Solid-State Electron., vol. 49, no. 12, pp. 1974-1977, Dec. 2005.

[5] C. J. Amsinck, N. H. D. Spigna, D. P. Nackashi, and P. D. Franzon, “Scaling constraints in nanoelectronic random-access memories,” Nanotechnol., vol. 16, no.

10, pp. 2251-2260, Aug. 2005.

[6] S. Lai, “Current status of the phase change memory and its future,” Proc. IEEE Int.

Electron Devices Meeting, 2003, pp. 10.1.1-4.

[7] R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, “Polyaniline nanofiber/gold nanoparticle nonvolatile memory,” Nano Lett., vol. 5, no.6, pp.

1077-1080, May 2005.

[8] D. Prime and S. Paul, “Overview of organic memory devices,” Phil. Trans. R. Soc.

A, vol. 367, no. 1095, pp. 4141-4157, Oct. 2009.

[9] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,” J.

Appl. Phys., vol. 33, no. 9, pp. 2669-2682, Sept. 1962.

[10] J. G. Simmons and R. R. Verderber, “New conduction and reversible memory phenomena in thin insulating films,” Proc. R. Soc. Lond. A, vol. 301, no. 1464, pp.

77-102, Oct. 1967.

[11] R. R. Sutherland, “Theory for negative resistance and memory effects in thin insulating films and its application to Au-ZnS-Au devices,” J. Phys. D Appl. Phys., vol. 4, no. 3, pp. 468-479, Mar. 1971.

[12] A. Ansari and A. Qadeer, “Memory switching in thermally grown titanium-oxide films,” J. Phys. D Appl. Phys., vol. 18, no. 5, pp. 911-917, May 1985.

[13] C. A. Hogarth and M. Zor, “Some observations of voltage-induced conductance changes in thin films of evaporated polyethylene.” Thin Solid Films, vol. 27, no. 1, pp. L5-L7, May 1975.

[14] C. Barriac, P. Pinard, and F. Davoine, “Study of the electrical properties of

70

Al-Al2O3-metal Structures,” Phys. Status Sol., vol. 34, no. 2, pp. 621-633, Aug.

1969.

[15] G. Dearnaley, D. V. Morgan, and A. M. Stoneham, “A model for filament growth and switching in amorphous oxide films,” J. Non-Cryst. Solids, vol. 4, pp. 593-612, Apr. 1970.

[16] R. Blessing, K. H. Gurtler, and H. Pagnia, “Switching of point-contact diodes consisting of discontinuous gold films,” Phys. Lett. A, vol. 84, no. 6, pp. 341-344, Aug.1981.

[17] R. E. Thurstans and D. P. Oxley, “The electroformed metal-insulator-metal structure: a comprehensive model,” J. Phys. D Appl. Phys., vol. 35, no. 8, pp.

802-809, Apr. 2002.

[18] L. V. Gregor, “Electrical conductivity of polydivinylbenzene films,” Thin Solid Films, vol. 2, no. 3, pp. 235-246, Sept. 1968.

[19] L. V. Gregor, “Polymer dielectric films,” IBM J. Res. Dev., vol. 12, no. 2, pp.

140-162, Mar. 1968.

[20] H. Carchano, R. Lacoste, and Y. Segui, “Bistable electrical switching in polymer thin films,” Appl. Phys. Lett., vol. 19, no. 10, pp. 414-415, Nov. 1971.

[21] L. F. Pender and R. J. Fleming, “Memory switching in glow discharge polymerized thin films,” J. Appl. Phys., vol. 46, no. 8, pp. 3426-3431, Aug. 1975.

[22] A. Szymanski, D. C. Larson, and M. M. Labes, “A temperature‐independent conducting state in tetracene thin film,” Appl. Phys. Lett., vol. 14, no. 3, pp. 88-90, Feb. 1969.

[23] J. Kevorkian, M. M. Labes, D. C. Larson, and D. C. Wu, “Bistable switching in organic thin films,” Discuss. Faraday Soc., vol. 51, pp. 139-143, Apr. 1971.

[24] L. P. Ma, J. Liu, S. Pyo, Q. Xu, and Y. Yang, “Organic bistable devices,” Mol.

Cryst. Liq. Cryst., vol. 378, no. 1, pp.185-192, Jan. 2002.

[25] L. P. Ma, J. Liu, S. Pyo, Q. Xu, and Y. Yang, “Organic bistable light-emitting devices,” Appl. Phys. Lett., vol. 80, no. 3, pp. 362-364, Jan. 2002.

[26] L. P. Ma, J. Liu, Q. Xu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett., vol. 80, no. 16, pp. 2997-2999, 2002.

[27] L. Ma, S. Pyo, J. Ouyang, Q. Xu, and Y. Yang, “Nonvolatile electrical bistability of organic/metal-nanocluster/organic system,” Appl. Phys. Lett., vol. 82, no. 9, pp.

1419-1421, Mar. 2003.

[28] J. C. Scott and L. D. Bozano, “Nonvolatile Memory Elements Based on Organic Materials,” Adv. Mater., vol. 19, no. 11, pp. 1452-1463, Jun. 2007.

[29] A. R. Elsharkawi and K. C. Kao, “Switching and memory phenomena in anthracene thin films,” J. Phys. & Chem. of Solids, vol. 38, no. 1, pp 95-96, Jan. 1977.

[30] J. Chen, L. Xu, J. Lin, Y. Geng, L. Wang, and D. Ma, “Negative differential

71

resistance effect in organic devices based on an anthracene derivative,” Appl. Phys.

Lett., vol. 89, no. 8, p. 083 514, Aug. 2006.

[31] D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery, and G. Haas,

“Metal∕organic∕metal bistable memory devices,” Appl. Phys. Lett., vol. 85, no. 23 , pp. 5763-5765, Oct. 2004.

[32] A. K. Mahapatro, R. Agrawal, and S. Ghosh, “Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3),” J. Appl. Phys., vol. 96, no. 6, pp. 3583-3585, Sept. 2004.

[33] C. -H. Tu, Y. -S. Lai, and D. -L. Kwong, “Memory effect in the current-voltage characteristic of 8-hydroquinoline aluminum salt films,” IEEE Elec. Dev. Lett., vol.

27, no. 5, pp. 354-356, May 2006.

[34] W. Tang, H. Z. Shi, G. Xu, B. S. Ong, Z. D. Popovic, J. C. Deng, J. Zhao, and G. H.

Rao, “Memory effect and negative differential resistance by electrode-induced two-dimensional single-electron tunneling in molecular and organic electronic devices,” Adv. Mater., vol.17, no. 19, pp. 2307-2311, Oct. 2005.

[35] M. Cölle, M. Büchel, and D. M. de Leeuw, “Switching and filamentary conduction in non-volatile organic memories,” Org. Electron., vol. 7, no. 5, pp. 305-312, Oct.

2006.

[36] M. Terai, K. Fujita, and T. Tsutsui, “Electrical bistability of organic thin-film device using Ag electrode,” Jpn. J. Appl. Phys., vol. 45, no. 4B, pp. 3754-3757, Apr.

2006.

[37] A. Bandyopadhyay and A. J. Pal, “Key to design functional organic molecules for binary operation with large conductance switching ,” Chem. Phys. Lett., vol. 371, switching phenomena and H-like aggregates in squarylium dye Langmuir-Blodgett films,” Thin Solid Films, vol. 509, no. 1-2, pp. 149-153, Jun. 2006.

[40] H. K. Henisch and W. R. Smith, “Switching in organic polymer films,” Appl. Phys.

Lett., vol. 24, no. 12, pp. 589-591, Jun. 1974.

[41] Y. Segui, B. Ai, and H. Carchano, “Switching in polystyrene films: Transition from on to off state,” J. Appl. Phys., vol. 47, no. 1, pp. 140-143, Jan. 1976.

[42] Y. -S. Lai, C. -H. Tu, D. -L. Kwong, and J. S. Chen, “Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications,” Appl. Phys.

Lett., vol. 87, no. 12, p. 122 101, Sept. 2005,

[43] H. S. Majumdar, A. Bandyopadhyay, A. Bolognesi, and A. J. Pal, “Memory device

72

applications of a conjugated polymer: Role of space charges,” J. Appl. Phys., vol.

91, no. 4, pp. 2433-2437, Nov. 2002.

[44] H. S. Majumdar, A. Bolognesi, and A. J. Pal, “Switching and memory devices based on a polythiophene derivative for data-storage applications ,” Synth. Met., vol.

140, no. 2-3, pp. 203-206, Feb. 2004.

[45] M. Lauters, B. McCarthy, D. Sarid, and G. E. Jabbour, “Multilevel conductance switching in polymer films,” Appl. Phys. Lett., vol. 89, no. 1, p. 013 507, Jul. 2006.

[46] D. Ma, M. Aguiar, J. A. Freire, and I. A. Hümmelgen, “Organic reversible switching devices for memory applications,” Adv. Mater., vol. 12, no. 14, pp.

1063-1066, Jul. 2000.

[47] H. S. Majumdar, A. Bandyopadhyay, and A. J. Pal, “Data-storage devices based on layer-by-layer self-assembled films of a phthalocyanine derivative,” Org. Electron., vol. 4, no. 1, pp. 39-44, Jun. 2003.

[48] A. Bandyopadhyay and A. J. Pal, “Large conductance switching and memory effects in organic molecules for data-storage applications,” Appl. Phys. Lett., vol.

82, no. 8, pp. 1215-1217, Feb. 2003.

[49] J. Chen, L. Xu, J. Lin, Y. Geng, L. Wang, and D. Ma, “Negative differential resistance effect in organic devices based on an anthracene derivative,” Appl. Phys.

Lett., vol. 89, no. 8, p. 083 514, Aug. 2006.

[50] R. S. Potember, T. O. Poehler, and D. O. Cowan, “Electrical switching and memory phenomena in Cu‐TCNQ thin films,” Appl. Phys. Lett., vol. 34, no. 6, pp. 405-407, Mar. 1979.

[51] M. Ouyang, S. M. Hou, H. F. Chen, K. Z. Wang, and Z. Q. Xue, “A new organic-organic complex thin film with reproducible electrical bistability properties,” Phys. Lett. A, vol. 235, no. 4, pp. 413-417, Nov. 1997.

[52] J. Fang, H. You, J. Chen, J. Lin, and D. Ma, “Memory devices based on lanthanide (Sm3+, Eu3+, Gd3+) complexes,” Inorg. Chem., vol. 45, no. 9, pp. 3701-3704, Apr.

2006.

[53] B. Pradhan, S. K. Batabyal, and A. J. Pal, “Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes,” J. Phys. Chem. B, vol.110, no. 16, pp. 8274-8277, Apr. 2006.

[54] C. W. Chu, J. Ouyang, J. -H. Tseng, and Y. Yang, “Organic donor-acceptor system exhibiting electrical bistability for use in memory devices,” Adv. Mater., vol. 17, no.

11, pp. 1440-1443, Jun. 2005.

[55] Q. Ling, Y. Song, S. J. Ding, C. Zhu, D. S. H. Chan, D. -L. Kwong, E. -T. Kang, and K. -G. Neoh, “Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate,” Adv. Mater., vol.

17, no. 4, pp. 455-459, Feb. 2005.

73

[56] Q. -D. Ling, Y. Song, S. -L. Lim, E. Y. -H. Teo, Y. -P. Tan, C. Zhu, D. S. H. Chan, D. -L. Kwong, E. -T. Kang, and K.- G. Neoh, “A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties,”

Angew. Chem. Int. Ed., vol. 45, no. 18, pp. 2947-2951, Apr. 2006.

[57] Y. Song, Q. D. Ling, C. Zhu, E. T. Kang, D. S. H. Chan, Y. H. Wang, and D. -L.

Kwong, “Memory performance of a thin-film device based on a conjugated copolymer containing fluorene and chelated europium complex,” IEEE Electron Device Lett., vol. 27, no. 3, pp. 154-156, Mar. 2006.

[58] L. Ma, Q. Xu, and Y. Yang, “Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer,” Appl. Phys. Lett., vol. 84, no. 24, pp. 4908-4910 , May 2004.

[59] J. H. Krieger, S. V. Trubin, S. B. Vaschenko, and N. F. Yudanov, “Molecular analogue memory cell based on electrical switching and memory in molecular thin films,” Synth. Met., vol. 122, no. 1, pp. 199-202, May 2001.

[60] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, “Electronic memory effects in a sexithiophene-poly(ethylene oxide) block copolymer doped with NaCl. combined diode and resistive switching behavior,” Chem. Mater., vol. 18, no. 11, pp 2707-2712, May 2006.

[61] Q. Lai, Z. Zhu, Y. Chen, S. Patil, and F. Wudl, “Organic nonvolatile memory by dopant-configurable polymer,” Appl. Phys. Lett., vol. 88, no. 13, p.133 515, Mar.

2006.

[62] L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott,

“Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles,” Adv. Funct. Mater., vol. 15, no. 12, pp. polymer thin film and non-volatile memory device,” Nat. Mater., vol. 3, no. 12, pp.

918-922, Nov. 2004.

[65] A. Prakash, J. Ouyang, J. -L. Lin, and Y. Yang, “Polymer memory device based on conjugated polymer and gold nanoparticles,” J. Appl. Phys., vol.100, no. 5, pp.

054309-054314, Sept. 2006.

[66] H. -T. Lin, Z. Pei, and Y. –J. Chan, “Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device,” IEEE Electron Device Lett., vol. EDL-28, no. 7, pp. 569-571, Jul. 2007.

[67] J. Ouyang, C. -W. Chu, D. Sieves, and Y. Yang, “Electric-field-induced charge

74

transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells,” Appl. Phys. Lett., vol. 86, no. 12, p. 123 507, Mar. 2005.

[68] H. J. Gao, Z. Q. Xue, Q. D. Wu, and S. J. Pang, “Structure and electrical properties of Ag‐ultrafine‐particle–polymer thin films,” J. Vac. Sci. Technol. B, vol. 13, no. 3, pp. 1242-1246, May-Jun. 1995.

[69] A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles,” J. Appl. Phys., vol. 94, no.

10, pp. 6988-6990, Nov. 2003. device based on tobacco mosaic virus conjugated with nanoparticles,” Nat.

Nanotechnol., vol. 1, no.1, pp. 72-77, Oct. 2006.

[73] F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, “Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material,” Appl. Phys.

Lett., vol. 89, no. 10, p. 102 103, Sept. 2006.

[74] S. Yook, S. O. Jeon, C. W. Joo, J. Y. Lee, S. H. Kim, and J. Jang, “Organic bistable memory device using MoO3 nanocrystal as a charge trapping center,” Org.

Electron., vol. 10, no. 1, pp. 48-52, Feb. 2009.

[75] T. -Y. Chang, Y. -W. Cheng, and P. -T. Lee, “Electrical characteristics of an organic bistable device using an Al/Alq3/nanostructured MoO3/Alq3/p+-Si structure,”

Appl. Phys. Lett., vol. 96, no. 4, p. 043 309, Jan. 2010.

[76] C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M.

Raymo, J. F. Stoddart, and J. R. Heath, “A [2]catenane-based solid state electronically reconfigurable switch,” Science, vol. 289. no. 5482, pp. 1172-1175, Aug. 2000.

[77] Y. Liu, N. Li, X. Xia, Q. Xu, J. Ge, and J. Lu, “WORM memory devices based on conformation change of a PVK derivative with a rigid spacer in side chain,” Mater.

Chem. and Phys., vol.123, no. 2-3, pp. 685-689, Oct. 2010.

[78] P. Mark and W. Helfrich, “Space‐charge‐limited currents in organic crystals,” J.

Appl. Phys., vol. 33, no. 1, pp. 205-215, Jun. 1962.

[79] J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys., vol. 34, no. 6, pp.

1793-1803, Jun. 1963.

[80] M. Lenzlinger and E. H. Snow, “Fowler‐Nordheim tunneling into thermally grown

75

SiO2,” J. Appl. Phys., vol. 40, no. 1, pp. 278-283, Jan. 1969.

[81] A. Schenk and G. Heiser, “Modeling and simulation of tunneling through ultra-thin gate dielectrics,” J. Appl. Phys., vol. 81, no. 12, pp. 7900-7908, Jun. 1997.

[82] D. M. Chapin, C. S. Fuller, and G. L. Pearsonv, “A new silicon p‐n junction

“High‐efficiency Cr‐MIS solar cells on single and polycrystalline silicon,” Appl.

Phys. Lett., vol. 33, no. 7, pp. 588-590, Oct. 1978.

[85] W. E. Spear, P. G. Le Comber, S. Kinmond, and M. H. Brodsky, “Amorphous silicon p‐n junction,” Appl. Phys. Lett., vol. 28, no. 2, pp. 105-107, Jan. 1976.

[86] S. M. Bedair, M. F. Lamorte, and J. R. Hauser, “A two‐junction cascade solar‐cell structure,” Appl. Phys. Lett., vol. 34, no. 1, pp. 38-39, Jan. 1979.

[87] I. Hagemann, “PV in buildings - The influence of PV on the design and planning process of a building,” Renew. Energ., vol. 8, no. 1-4, pp. 467-470, May-Aug.

1996.

[88] A. Metz and R. Hezel, “Record efficiencies above 21% for MIS-contacted diffused junction silicon solar cells,” Proc. IEEE 26th Photovolt. Specialist Conf., 1997, pp.

283-286.

[89] J. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates” Prog. Photovol. : Res.

Appl., vol. 7, no. 6, pp. 471-474, Nov.-Dec. 1999.

[90] R. Hezel, “High-efficiency OECO Czochralski-silicon solar cells for mass production,” Sol. Energy Mater. Sol. Cells, vol. 74, no. 1-4, pp. 25-33, Oct. 2002.

[91] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb”

textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys.

Lett., vol. 73, no. 14, pp. 1991-1993, Oct. 1998.

[92] R. Lüdemann, “Hydrogen passivation of multicrystalline silicon solar cells,” Mater.

Sci. Eng. B, vol. 58, no. 1-2, pp. 86-90, Feb. 1999.

[93] O. Schultz, S. W. Glunz, and G. P. Willeke, “Multicrystalline silicon solar cells exceeding 20% efficiency,” Prog. Photovol. : Res. Appl., vol. 12, no. 7, pp. 553-558, Nov. 2004.

[94] H. J. Möller, C. Funke, M. Rinio, and S. Scholz, “Multicrystalline silicon for solar cells,” Thin Solid Films, vol. 487, no.1-2, pp. 179-187, Sept. 2005.

[95] M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future

76

potential,” Sol. Energy, vol. 74, no. 3, pp. 181-192, Mar. 2003.

[96] M. Taguchi, H. Sakata, Y. Yoshimine, E. Maruyama, A. Terakawa, M. Tanaka, and S. Kiyama, “An approach for the higher efficiency in the HIT cells,” Proc. IEEE 31th Photovolt. Specialist Conf., 2005, pp. 866 - 871.

[97] R. B. Bergmann, T. J. Rinke, T. A. Wagner, and J. H. Werner, “Thin film solar cells on glass based on the transfer of monocrystalline Si films,” Sol. Energy Mater. Sol.

Cells, vol. 65, no.1-4, pp. 355-361, Jan. 2001.

[98] M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S.

Jarnason, M. Keevers, P. Lasswell, J. O. Sullivan, U. Schubert, A. Turner, S. R.

Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy, vol. 77, no. 6, pp. 857-863, Dec. 2004.

[99] K. Yamamoto, A. Nakajima, T. Suzuki, M. Yoshimi, H. Nishio, and M. Izumina,

“Thin-film polycrystalline Si solar cell on glass substrate fabricated by a novel low temperature process,” Proc. IEEE 24th Photovolt. Specialist Conf., 1994, pp. 1575- 1578.

[100] K. Yamamoto, “Very thin film crystalline silicon solar cells on glass substrate fabricated at low temperature,” IEEE Trans. on Electron Devices, vol. 46, no. 10 pp.

2041-2047, Oct. 1999.

[101] R. R. Arya, A. Catalano, and R. S. Oswald, “Amorphous silicon p‐i‐n solar cells with graded interface,” Appl. Phys. Lett., vol. 49, no. 17, pp.1089-1091, Oct. 1986.

[102] J. Meier, R. Flückiger, H. Keppner, and A. Shah, “Complete microcrystalline p‐i‐n solar cell-Crystalline or amorphous cell behavior?,” Appl. Phys. Lett., vol. 65, no. 7, pp. 860-862, Aug. 1994.

[103] J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett., vol. 70, no. 22, pp. 2975-2977, Jun. 1997.

[104] K. Yamamoto, M. Yoshimi, Y. Tawada, S. Fukuda, T. Sawada, T. Meguro, H. Takata, T. Suezaki, Y. Koi, K. Hayashi, T. Suzuki, M. Ichikawa, and A. Nakajima, “Large area thin film Si module,” Sol. Energy Mater. Sol. Cells, vol. 74, no. 1-4, pp.

449-455, Oct. 2002.

[105] D. A. Jenny, J. J. Loferski, and P. Rappaport, “Photovoltaic effect in GaAs p-n junctions and solar energy conversion,” Phys. Rev., vol. 101, no. 3, pp. 1208-1209, Feb. 1956.

[106] R. R. King, P. C. Colter, D. E. Joslin, K. M. Edmondson, D. D. Krut, N. H. Karam, and S. Kurtz, “High-voltage, low-current GaInP/GaInP/GaAs/GaInNAs/Ge solar cells,” Proc. EEE 29th Photovolt. Specialist Conf., 2002, pp. 852-855.

[107] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R.

A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge

77

multijunction solar cells,” Appl. Phys. Lett., vol. 90, vol. 5, p.183 516, May 2007.

[108] W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E.

Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys.

Lett., vol. 94, no. 22, p. 223 504, Jun. 2009.

[109] R. Venkatasubramanian, B. C. O'Quinn, J. S. Hills, P. R. Sharps, M. L. Timmons, J.

A. Hutchby, H. Field, R. Ahrenkiel, and B. Keyes, “18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate” Proc.IEEE 25th Photovolt.

Specialist Conf., 1996, pp. 31-36.

[110] G. J. Bauhuis, P. Mulder, E. J. H. Kamp, J. C. C. M. Huijben, and J. J. Schermer,

“26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol.

Cells, vol. 93, no. 9, pp. 1488-1491, Sept. 2009.

[111] T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J.

Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, and M.

Murozono, “16.0% efficient thin-film CdS/CdTe solar cells,” Jpn. J. Appl. Phys., vol. 36, no. 10, pp. 6304-6305, Oct. 1997.

[112] D. H. Rose, F. S. Hasoon, R. G. Dhere, D. S. Albin, R. M. Ribelin, X. S. Li, Y.

Mahathongdy, T. A. Gessert, and P. Sheldon, “Fabrication procedures and process sensitivities for CdS/CdTe solar cells,” Prog. Photovol. : Res. Appl., vol.7, no. 5, pp.

331-340, Sept.-Oct. 1999.

[113] X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy, vol. 77, no. 6, pp. 803-814, Dec. 2004.

[114] X. Mathew, J. P. Enriquez, A. Romeo, and A. N. Tiwari, “CdTe/CdS solar cells on flexible substrates,” Sol. Energy, vol. 77, no. 6, pp. 831-838, Dec. 2004.

[115] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline

[115] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline

相關文件