• 沒有找到結果。

CRP and LRP probably play a role for the PhgS/PhgM-independent

Regulation of expression of type 3 fimbriae in Klebsiella pneumoniae CG43

4.2.5 CRP and LRP probably play a role for the PhgS/PhgM-independent

expression of type 3 fimbriae

The expression of a certain genes promoted by two separate condition-controlled promoters is not uncommon in bacteria (Heroven et al., 2004). The identification of PhgS/PhgM-dependent and PhgS/PhgM-independent promoters implies different transcripts are produced. In order to map the transcription start site of mrkA, RT-PCR analysis using different pairs of primers were carried out. As shown in Fig. 13, the transcripts extended to 5’-end of pA5 or pA6 were detected and confirmed by

Southern blotting hybridization using the PCR product amplified with primer pair pA2 and pA3 as a probe. No transcript was obtained while the primer pA5 replaced with pA4 indicating that the transcription start site of mrkA could be assigned to the sequence between pA4 and pA5. Analysis of the sequences upstream of pA4 revealed a conserved LRP and CRP binding elements, 5’-YAGHAWATTWTDCTR-3’ (Y=C or T, H≠G, W=A or T, D≠C, R=A or G) (Cui et al., 1995) and 5’-TGTGA -N6-TCATC-3’ (Kolb et al., 1993), respectively. We speculate that other than the regulation of PhgS/PhgM, LRP or CRP also plays a role on the expression of type 3 fimbriae.

CRP, cAMP receptor protein, has been reported to function both aspositive and negative effector to influence many gene expression (Botsford and Harman, 1992).

LRP, leucine-responsive regulatory protein, regulates the expression of more than 40 genes and proteins in E. coli (Calvo and Matthews, 1994). To determine if CRP and LRP play a regulatory role on the expression of type 3 fimbriae, RT-PCR is being employed to analyze the effect of addition of glucose or leucine on the expression of type 1 and type 3 fimbriae. It is probably that the PhgS/PhgM-independent promoter PL-mrkA is under control by CRP or/ and LRP, which had been shown to affect the expression of type 1 fimbriae or P pili (Baga et al., 1985; Kelly et al., 2006) The hypothesis is that, in the presence of certain level of glucose or leucine, CRP or LRP

determines the cross-regulation of the expression of type 1 and type 3 fimbriae. While in the presence of a lot of PhgS and PhgM regulatory proteins, PL-mrkA is under a negative control and PhgS and PhgM play a major role to positively regulate the expression of type 3 fimbriae. However, the possibility remains to be verified.

Overall, a cross-talk regulation was demonstrated between the expression of type 1 fimbriae and type 3 fimbriae. In addition, PhgS/PhgM appeared to be able to regulate positively the activity of PS-mrkA, which is probably leading to the expression of type 3 fimbriae. On the other hand, the deletion of either phgS or phgM had no effect on the activity of PL-mrkA, PfimB orB PfimE. In addition, a PhgS/PhgM-independent regulation was also observed indicating a complicated regulatory mechanism is involved for the expression of type 3 fimbriae.

Chapter V

Summary

The incidence of Klebsiella infection is found to increase in the recent years.

Antibiotics are usually used to cure K. pneumoniae infections. However, misuse of antibiotics caused the nosocomial Klebsiella infections even more severe because of the emergence of muti-drug resistance strains. Therefore, to find new targets for drug intervention to the muti-drug resistance strains is important.

Attachment of pathogens to their host is a prerequisite step of infection and adhesin is one of the major virulence factors involved in K. pneumoniae infections.

Expression of type 3 fimbriae has been correlated with several Klebsiella infections.

However, little is known about the roles of the fimbriae in K. pneumoniae pathogenesis. In part I, to rule out the possibility that other factors resided in K.

pneumoniae interfere with the activity of type 3 fimbriae, an E. coli type 3 fimbriae

display system was established. By using this display system, we have demonstrated that the proper growth of the filament and fimbrial morphology were MrkD adhesin dependent. The changes of fimbrial morphology in turn affected the fimbrial activity as assessed by collagen binding, cell adherence, and biofilm formation. In addition, E.

coli JM109[pmrkABCDV3F] was found to have the highest level of fimbrial activity and the adhesion to HCT-8 cells was probably due to the interaction of RGD sequence on MrkDV3 with integrin. Overall, MrkD adhesin appeared to play a major role in determining the activity of type 3 fimbriae and hence the MrkD is a potent drug

target.

Since only one study (Allen et al., 1991) of a possible role to stabilize type 3 fimbriae the function, how MrkF stables the type 3 fimbirae and the other function roles of MrkF is not known. As determined previously using the recombinant E. coli display system, MrkF was shown to be able to serve as an initiator for the growth of the filament and likely a regulator for the length and the activity of the fimbriae. The demonstration of an operon structure further supported MrkF is a component of the fimbriae. The possibility is investigated by construction of a mrkF deletion mutant and the fimbrial morphology and activity of the mutant will be compared to that of wild-type bacteria. The result provide us the information of how MrkF maintains the stability of type 3 fimbirae.

It is generally believed that coordinate expression of multiple fimbriae is required for the establishment of a systemic infection. In part II, a cross regulation of the expression of type 1 and type 3 fimbriae was demonstrated. Both PhgS/PhgM-dependent and PhgS/PhgM-independent promoters of type 3 fimbriae were identified, indicating a complex regulatory system is involved for the expression of type 3 fimbriae. The promoter for fim operon transcription is carried on a 314-bp invertible DNA and is catalyzed by FimB and FimE sitespecific recombinases (Abraham et al., 1985). In addition to the inversion of the DNA by recombinases,

LRP protein also acts to determine the expression of type 1 fimbriae (Kelly et al., 2006). Although the CRP has not been found to affect the expression of type 1 fimbrial, CRP-depedent expression of P fimbriae has been reported (Baga et al., 1985). The presence of consensus binding elements of LRP and CRP in the putative promoter PL-mrk suggested the involvement of the two regulators in modulating the expression of type 3 fimbriae.

References:

呂文鈴,國立清華大學碩士論文,克雷白氏肺炎菌 CG43 第三型纖毛黏附因子的 鑑定,中華民國九十年六月。

陳美甄,國立交通大學碩士論文,克雷白氏肺炎菌 CG43 第三型纖毛黏附蛋白特 性,中華民國九十一年六月。

廖心瑋,國立交通大學碩士論文,克雷白氏肺炎菌 CG43 第三型纖毛組成蛋白 MrkD 與 MrkF 之功能探討,中華民國九十五年六月。

Abraham J. M., C. Freitag, J. R. Clements, and B. I. Eisenstein. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 82:5724-5727.

Allen, B.L., G. –F. Gerlach, and S. Clegg. 1991. Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J. Bacteriol. 173:916-920.

Baga, M., M. Goransson, S. Normark, and B. E. Uhlin. 1985. Transcriptional activation of a pap pilus virulence operon from uropathogenic Escherichia coli.

EMBO J. 4:3887-3893.

Bergogne-Berezin, E. 1995. Treatment and prevention of nosocomial pneumonia.

Chest 108:26S-34S.

Blattner, F. R., G. 3rd. Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J.

Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453-1474.

Blomfield, I. C. 2001. The regulation of pap and type 1 fimbriation in Eacherichia coli. Adv. Microbiol. Physicol. 45:1-49.

Blumer, C., A. Kleefeld, D. Lehnen, M. Heintz, U. Dobrindt, G. Nagy, K.

Michaelis, L. Emody, T. Polen, R. Rachel, V. F. Wendisch, and G. Unden. 2005.

Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology 151:3287-3298.

Boddicker, J. D., R. A. Anferson, J. Jagnow, and S. Clegg 2006. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect. Immun. 74:4590-4597.

Botsford, J. L., and J. G. Harman. 1992. Cyclic AMP in prokaryotes. Microbiol.

Rev. 56:100-122.

Calvo, J. M., and R. G. Matthews. 1994. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol. Rev. 58:466-490.

Chang, F. Y., and M. Y. Chou. 1995. Comparison of pyogenic liver abscesses caused by Klebsiella pneumoniae and non-K. pneumoniae pathogens. J. Formos. Med. Assoc.

Chang, H. Y., W. L. Deng, J. H. Lee, T. F. Fu, and H. L. Peng. 1996. Virulence and outer membrane properties of a Klebsiella pneumoniae galU mutant. Microb. Pathog.

20:255-261.

Cheng, H. P., L. K. Siu, and F. Y. Chang. 2003. Extended-spectrum cephalosporin compared to cefazolin for treatment of Klebsiella pneumoniae-caused liver abscess.

Antimicrob. Agents Chemother. 47:2088-2092.

Clegg, S., and G. F. Gerlach. 1987. Enterobacterial fimbriae. J. Bacteriol.

169:934-938.

Cui, Y., Q. Wang, G. D. Stormo, and J. M. Calvo. 1995. A consensus sequence for binding of Lrp to DNA. J. Bacteriol. 177:4872-4880.

de Lorenzo, V., and K. N. Timmis. 1994. Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons.

Methods Enzymol. 235:386-405.

Di Martino, P., Y. Bertin, J. P. Girardeau, V. Livrelli, B. Joly, and A.

Darfeuille-Michaud. 1995. Molecular characterization and adhesive properties of CF29K, an adhesin of Klebsiella pneumoniae strains involve in nosocomial infections.

Infect. Immun. 63:4336-4344.

Di Martino, P, N. Cafferini, B. Joly, and A. Darfeuille-Michaud. 2003. Klebsiella

Res. Microbiol. 154:9-16.

Di Martino, P., V. Livrelli, D. Sirot, B. Joly, and A. Darfeuille-Michaud. 1996. A new fimbrial antigen harbored by CAZ-5/SHV-4-producing Klebsiella pneumoniae strains involved in nosocomial infections. Infect. Immun. 64:2266-2273.

Dobrindt, U., G. Blum-Oehler, G. Nagy, G. Schneider, A. Johann, G. Gottschalk, and J. Hacker. 2002. Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect.

Immun. 70:6365-6372.

Favre-Bonte, S., A. Darfeuille-Michaud, and C. Forestier. 1995. Aggregative adherence of Klebsiella pneumoniae to human intestine-407 cells. Infect. Immun.

63:1318-1328.

Firon, N., S. Ashkenazi, D. Mirelman, I. Ofek, and N. Sharon. 1987. Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect. Immun.

55:472-476.

Gally, D. L., J. Leathart, and I. C. Blomfield. 1996. Interaction of FimB and FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol. Microbiol. 21:725-738.

Gerlach, G. F., B. L. Allen, and S. Clegg. 1989. Type 3 fimbriae among

Immun. 57:219-224.

Gerlach, G. F., and S. Clegg. 1988. Characterization of two genes encoding antigenically distinct type-1 fimbriae of Klebsiella pneumoniae. Gene 64:231-240.

Girardeau, J. P., and Y. Bertin. 1995. Pilins of fimbrial adhesins of different member species of Enterobacteriaceae are structurally similar to the C-terminal half of adhesin proteins. FEBS Lett. 357:103-108.

Girardeau, J. P., Y. Bertin, and I. Callebaut. 2000. Conserved structural features in class I major fimbrial subunits (Pilin) in gram-negative bacteria. Molecular basis of classification in seven subfamilies and identification of intrasubfamily sequence signature motifs which might be implicated in quaternary structure. J. Mol. Evol. 50:

424-442.

Han, S. H. 1995. Review of hepatic abscess from Klebsiella pneumoniae. An association with diabetes mellitus and septic endophthalmitis. West. J. Med.

162:220-224.

Heroven, A. K., G. Nagel, H. J. Tran, S. Parr, and P. Dersch. 2004. RovA is autoregulated and antagonizes H-NS-mediated silencing of invasin and rovA expression in Yersinia pseudotuberculosis. Mol. Microbiol. 53:871-888.

Holden, N. J., M. Totsika, E. Mahler, A. J. Roe, K. Catherwood, K. Lindner, U.

Dobrindt, and D. L. Gally. 2006. Demonstration of regulatory cross-talk between P

152:1143-1153.

Hornick, D. B., B. L. Allen, M. A. Horn, and S. Clegg. 1992. Adherence to respiratory epithelia by recombinant Escherichia coli expressing Klebsiella pneumoniae type 3 fimbrial gene products. Infect. Immun. 60:1577-1588.

Hornick, D. B., J. Thommandru, W. Smits, and S. Clegg. 1995. Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect. Immun.

63:2026-2032.

Humphries, A. D., M. Raffatellu, S. Winter, E. H. Weening, R. A. Kingsley, R.

Droleskey, S. Zhang, J. Figueiredo, S. Khare, J. Nunes, L. G. Adams, R. M. Tsolis, and A. J. Baumler. 2003. The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol.

Microbiol. 48:1357-1376.

Ishibashi, Y., D. A. Relman, and A. Nishikawa. 2001. Invasion of human respiratory epithelial cells by Bordetella pertussis: possible role for a filamentous hemagglutinin Arg-Gly-Asp sequence and alpha5beta1 integrin. Microb. Pathog. 30:279-288.

Iwahi, T., Y. Abe, M. Nakao, A. Imada, and K. Tsuchiya. 1983. Role of type 1 fimbriae in the pathogenesis of ascending urinary tract infection induced by Escherichia coli in mice. Infect. Immun. 39:1307-1315.

Jacob-Dubuisson, F., J. Heuser, K. Dodson, S. Normark, and S. Hultgren. 1993.

depend on two specialized tip proteins. EMBO J. 12:837-847.

Jagnow, J., and S. Clegg. 2003. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149:2397-2405.

Jones, C. H., P. N. Danese, J. S. Pinkner, T. J. Silhavy, and S. J. Hultgren. 1997.

The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J. 16:6394-6406.

Kelly, A., C. Conway, T. O. Croinin, S. G. Smith, and C. J. Dorman. 2006. DNA supercoiling and the Lrp protein determine the directionality of fim switch DNA inversion in Escherichia coli K-12. J. Bacteriol. 188:5356-5363.

Klemm, P., and G. Christiansen. 1987. Three fim genes required for the regualtion of length and mediation of adhesin of Escherichia coli type 1 fimbriae. Mol. Gen.

Genet. 208:439-445.

Kolb, A., S. Busby, H. Buc, S. Garges, and S. Adhya. 1993. Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62:749-795.

Krogfelt, K. A., and P. Klemm. 1988. Investigation of minor components of Escherichia coli type 1 fimbriae: protein chemical and immunological aspects.

Microb. Pathog. 4:231-238.

biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J. Bacteriol. 185:788-800.

Lai, Y. C., H. L. Peng, and H. Y. Chang. 2001. Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect. Immun. 69:7140-7145.

Lee, P. Y., W. N. Chang, C. H. Lu, M. W. Lin, B. C. Cheng, C. C. Chien, C. J.

Chang, and H. W. Chang. 2003. Clinical features and in vitro antimicrobial susceptibilities of community-acquired Klebsiella pneumoniae meningitis in Taiwan. J.

Antimicrob. Chemother. 51:957-962.

Liang, M. N., S. P. Smith, S. J. Metallo, I. S. Choi, M. Prentiss, and G. M.

Whitesides. 2000. Measuring the forces involved in polyvalent adhesion of uropathogenic Escherichia coli to mannose-presenting surfaces. Proc. Natl. Acad. Sci.

U. S. A. 97:13092-13096.

Lin, C. T, T. Y. Huang. W. C. Liang, and H. L. Peng. 2006. Homologous response regulators KvgA, KvhA and KvhR regulate the synthesis of capsular polysaccharide in Klebsiella pneumoniae CG43 in a coordinated manner. J. Biochem. (Tokyo).

140:429-438.

Matatov, R, J. Goldhar, E. Skutelsky, I. Sechter, R. Perry, R. Podschun, H. Sahly, K. Thankavel, S. N. Abraham, and I. Ofek. 1999. Inability of encapsulated Klebsiella pneumoniae to assemble functional type 1 fimbriae on their surface. FEMS Microbiol. Lett. 179:123-130.

Mayhall, C. G., V. A. Lamb, C. M. Bitar, K. B. Miller, E. Y. Furse, B. V.

Kirkpatrick, S. M. Jr. Markowitz, J. M. Veazey, and F. L. Marcrina. 1980.

Nosocomial Klebsiella infection in a neonatal unit: identification of risk factors for gastrointestinal colonization. Infect. Control. 1:239-246.

Miller, J. H. 1972. Experiments in molecular genetics. New York: Cold Spring Harbor.

Nasser, W, V. E. Shevchik, and N. Hugouvieux-Cotte-Pattat. 1999. Analysis of three clustered polygalacturonase genes in Erwinia chrysanthemi 3937 revealed an anti-repressor function for the PecS regulator. Mol. Microbiol. 34:641-650.

O'Toole, G. A., and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol. Microbiol. 28:449-461.

Oelschlaeger, T. A, and B. D. Tall. 1997. Invasion of cultured human epithelial cells by Klebsiella pneumoniae isolated from the urinary tract. Infect. Immun.

65:2950-2958.

Old, D. C. 1972. Inhibition of the interaction between fimbrial haemagglutinin and erythrocytes by D-mannose and other carbohydrates. J. Gen. Microbiol. 71:149-157.

Old, D. C., and R. A. Adegbola. 1983. Antigenic relationships among type 3 fimbriae of Enterobacteriaceae revealed by immunoelectron microscopy. J. Med.

Otto, K., J. Norbeck, T. Larsson, K. A. Karlsson, and M. Hermansson. 2001.

Adhesion of type 1-fimbriated Escherichia coli to abiotic surfaces leads to altered composition of outer membrane proteins. J. Bacteriol. 183:2445-2453.

Peng, H. L., P. Y. Wang, C. M. Wu, D. C. Hwang, and H. Y. Chang. 1992. Cloning, sequencing, and heterologous expression of a Klebsiella pneumoniae gene encoding an FAD-independent acetolactate synthase. Gene 117:125-130.

Podschun, R., and U. Ulmann. 1998. Klebsiella spp. as nosocomial pathogens:

epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol.

Rev. 11:589-603.

Praillet, T., S. Reverchon, J. Robert-Baudouy, and W. Nasser. 1997. The PecM protein is necessary for the DNA-binding capacity of the PecS repressor, one of the regulators of virulence-factor synthesis in Erwinia chrysanthemi. FEMS Microbiol.

Lett. 154:265-270.

Pratt, L. A., and R. Kolter. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol.

30:285-293.

Relman, D., E. Tuomanen, S. Falkow, D. T. Golenbock, K. Saukkonen, and S. D.

Wright. 1990. Recognition of a bacterial adhesion by an integrin: macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella

Reverchon, S., W. Nasser, and J. Robert-Baudouy. 1994. pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol.

Microbiol. 11:1127-1139.

Rouanet, C., S. Reverchon, D. A. Rodionov, and W. Nasser. 2004. Definition of a consensus DNA-binding site for PecS, a global regulator of virulence gene expression in Erwinia chrysanthemi and identification of new members of the PecS regulon. J.

Biol. Chem. 279:30158-30167.

Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Annu. Rev.

Cell Dev. Biol. 12:697-715.

Ruoslahti, E., and M. D. Pierschbacher. 1987. New perspectives in cell adhesion:

RGD and integrins. Science 238:491-497.

Sahly, H., R. Podschun, T.A. Oelschlaeger, M. Greiwe, H. Parolis, D. Hasty, J.

Kekow, U. Ullmann, I. Ofek, and S. Sela. 2000. Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infect. Immun. 68:6744-6749.

Schaberg, D. R., D. H. Culver, and R. P. Gaynes. 1991. Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 91:72S-75S.

Schembri, M. A., J. Blom. , K. A. Krogfelt, and P. Klemm. 2005. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect. Immun. 73:4626-4633.

Schembri, M. A., G. Christiansen, and P. Klemm. 2001. FimH-mediated autoaggregation of Escherichia coli. Mol. Microbiol. 41:1419-1430.

Schembri, M. A., D. W. Ussery, C. Workman, H. Hasman, and P. Klemm. 2002.

DNA microarray analysis of fim mutations in Escherichia coli. Mol. Genet. Genomics 267:721-729.

Schurtz, T. A., D. B. Hornick, T. K. Korhonen, and S. Clegg. 1994. The type 3 fimbrial adhesin gene (mrkD) is not conserved among all fimbriate strains. Infect.

Immun. 62:4186-4191.

Schwan, W. R., M. T. Beck, S. J. Hultqren, J. Pinkner, N. L. Woolever, and T.

Larson. 2005. Down-regulation of the kps region 1 capsular assembly operon following attachment of Escherichia coli type 1 fimbriae to D-mannose receptors.

Infect. Immun. 73:1226-1231.

Schwan, W. R., J. L. Lee, F. A. Lenard, B. T. Matthews, and M. Beck. 2002.

Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect. Immun. 70:1391-1402.

Sebghati, T. A., and S. Clegg. 1999. Construction and characterization of mutations within the Klebsiella mrkD1P gene that affect binding to collagen type V. Infect.

Immun. 67:1672-1676.

Sebghati, T. A., T. K. Korhonen, D. B. Kornich, and S. Clegg. 1998.

66:2887-2894.

Seidler, R. J., M.D. Knittel, and C. Brown. C. 1975. Potential pathogens in the environment: cultural reactions and nucleic acid studies on Klebsiella pneumoniae from clinical and environmental sources. Appl. Microbiol. 29:819-825.

Snyder, J. A., B. J. Haugen, C. V. Lockatell, N. Maroncle, E. C. Hagan, D. E.

Johnson, R. A. Welch, and H. L. Mobley. 2005. Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect. Immun. 73:7588-7596.

Sohanpal, B. K., S. El-Labany, M. Lahooti, J. A. Plumbridge, and I. C. Blomfield.

2004. Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12. Proc. Natl. Acad. Sci. U. S. A. 101:16322-16327.

Stromberg, N., P. G. Nyholm, I. Pascher, and S. Normark. 1991. Saccharide orientation at the cell surface affects glycolipid receptor function. Proc. Natl. Acad.

Sci. U. S. A. 15:9340-9344.

Struve, C., C. Forestier, and K. A. Krogfelt. 2003. Application of a novel multi-screening signature-tagged mutagenesis assay for identification of Klebsiella pneumoniae genes essential in colonization and infection. Microbiology 149:167-176.

Switalski, L. M., M. Hook, and E. H. Beachey. 1989. Molecular mechanisms of microbial adhesion. New York: Springer-Verlag.

Tarkkanen, A. M., R. Virkola, S. Clegg, and T. K. Korhonen. 1997. Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect. Immun. 65:1546-1549.

Teng, C. H., Y. Xie, S. Shin, F. Di Cello, M. Paul-Satyaseela, M. Cai, and K. S.

Kim. 2006. Effects of ompA deletion on expression of type 1 fimbriae in Escherichia coli K1 strain RS218 and on the association of E. coli with human brain microvascular endothelial cells. Infect. Immun. 74:5609-5616.

Townsend, S. M., N. E. Kramer, R. Edwards, S. Baker, N. Hamlin, M. Simmonds, K. Stevens, S. Maloy, J. Parkhill, G. Dougan, and A. J. Baumler. 2001. Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences.

Infect. Immun. 69:2894-2901.

Verger, D., E. Miller, H. Remaut, G. Waksman, and S. Hultgren. 2006. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. EMBO Rep.

7:1228-1232.

Wang, J. H., Y. C. Liu, S. S. Lee, M. Y. Yen, Y. S. Chen, J. H. Wang, S. R. Wann, and H. H. Lin. 1998. Primary liver abscess due to Klebsiella pneumoniae in Taiwan.

Clin. Infect. Dis. 26:1434-1438.

Westerlund-Wikstrom, B., and T. K. Korhonen. 2005. Molecular structure of adhesin domains in Escherichia coli fimbriae. Int. J. Med. Microbiol. 295:497-486.

Westerlund, B., I. Van Die, C. Kramer, P. Kuusela, H. Holthofer, A. M.

Tarkkanen, R. Virkola, N. Riegman, H. Bergmans, W. Hoekstra, and K.

Korhonen. 1991. Multifunctional nature of P fimbriae of uropathogenic Escherichia coli: mutations in fsoE and fsoF influence fimbrial binding to renal tubuli and immobilized fibronectin. Mol. Microbiol. 5:2965-2975.

Xia, Y., D. Gally, K. Forsman-Semb, and B. E. Uhlin. 2000. Regulatiory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. EMBO J. 19:1450-1457.

Table 1. Bacterial strains and plasmids used in this study

Strains or plasmids Descriptions Reference or source

K. pneumoniae

VHm1~VHm17 Clinical isolates of K. pneumoniae,

from the Veteran General Hospital, Taipei. This study

CG43 Clinical isolate of K2 serotype (Chang et al., 1996)

CG43S3 CG43, Smr (Lai et al., 2003)

CG43S3mrkA- CG43S3 with deletion in mrkA gene (呂文鈴,民國九十年)

CG43S3phgS- CG43S3 with deletion in phgS gene This study

CG43S3phgM- CG43S3 with deletion in phgM gene This study

CG43S3lacZ- CG43S3 with deletion in lacZ gene (Lin et al., 2006)

CG43S3lacZ-phgfS- CG43S3lacZ- with deletion in phgS gene This study

CG43S3lacZ-phgfS- CG43S3lacZ- with deletion in phgS gene This study

相關文件