• 沒有找到結果。

Diversity of the bacterial community in SNAD system

Chapter 4 Result and Discussion

4.5 Diversity of the bacterial community in SNAD system

Biotechnological analysis such as FISH and real-time quantitative PCR (qPCR) were conducted to verify the presence of microbial community in SNAD system. Real-time polymerase chain reaction, also called quantitative real time polymerase chain reaction, is a laboratory technique based on the PCR, which is used to amplify and simultaneously quantify a targeted DNA molecule. For one or more specific sequences in a DNA sample, real time-PCR enables both detection and quantification. The quantity can be either an absolute number of copies or a relative amount when normalized to DNA input or additional normalizing genes. The procedure follows the general principle of PCR; its key feature is that the amplified DNA is detected as the reaction progresses in real time. This is a new approach compared to standard PCR, where the product of the reaction is detected at its end. Two common methods for detection of products in real-time PCR are: (1) non-specific fluorescent dyes that intercalate with any double-stranded DNA, and (2) sequence-specific DNA probes consisting of oligonucleotides that are labeled with a fluorescent reporter which permits detection only after hybridization of the probe with its complementary DNA target.

The seed sludge was inoculated from a landfill leachate treatment plant. Figure 10 (a) shows the red granules from aeration tank which found to be typical in Anammox reactor s [10]. Fig. 10 (b) shows the attached growth of Anammox bacteria on the aeration tank wall.

46

(a)

(b)

Fig. 10 Pictures of red granules from aeration tank (a) Granules in the aeration tank, (b) attached growth of Anammox bacteria on the aeration tank wall.

Red granules taken from landfill leachate treatment plant were analyzed by FISH to confirm the occurrence of Anammox bacteria. Fig.11 (a) shows that all bacterial cells were stained with DAPI;Fig 11 (b) shows that all Anammox bacteria hybridized with probe Amx820.

(a) (b)

Fig. 11. Fluorescence micrographs of bacteria granules collected from the aeration tank (a) DAPI, (b) Amx820

Moreover, 16S rRNA clone analysis revealed that all clones from aeration tank were related to Kuenenia stuttgartiensis, Candidatus Kuenenia Stuttgartiensis and Anaerobic ammonium oxidizing planctomycete KOLL2a with 99% sequence similarity (Table 9).

Similarities with other species are also listed in Table 9. Furthermore, the presence of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were confirmed by using qPCR and Terminal Restriction Fragment Length Polymorphism (TRFLP or sometimes T-RFLP). TRFLP is a molecular biology technique for profiling of microbial communities based on the position of a restriction site closest to a labeled end of an amplified gene. The method is based on digesting a mixture of PCR

10μm 10μm

48

amplified variants of a single gene using one or more restriction enzymes and detecting the size of each of the individual resulting terminal fragments using a DNA sequencer.

The result is a graph image where the X axis represents the sizes of the fragment and the Y axis represents their fluorescence intensity.

The R2 value of qPCR is greater than 0.97 for all curves and amplification efficiencies with slopes of -3.44 and -3.17. Two standard curves were constructed using cloned 16S rDNA sequence of eubacteria and Anammox bacteria into pGEM-T (Promega, USA) cloning vector respectively.

Table 10 and 11 provide the detail experimental outcomes of qPCR and the ratio of different bacteria to eubacteria and Anammox bacteria. The relatively quantification percentage of different bacteria to eubacteria are shown in Table 12.

Table 10. Outcomes of Sequence analysis [10].

Species Identified Similarity (%) NCBI No. Reference

Kuenenia stuttgartiensis 99 CT573071.1 [50]

Candidatus Kuenenia Stuttgartiensis

99 AF375995.1 [51]

Anaerobic ammonium oxidizing planctomycete KOLL2a

99 AJ250882.1 [52]

Candidatus Brocadia fulgida 93 EU478693.1 [53]

Planctomycete KSU-1 93 AB057453.1 [40]

Candidatus Brocadia fulgida 93 DQ459989.1 [54, 55]

Candidatus Jettenia asiatica 92 DQ301513.1 [56]

Table 11. Detail outcomes of qPCR.

Average Ct of eubacteria 18.54 23.20 17.32

Copy number 2.63*106 1.17*105 5.93*106

Average Ct of total Anammox bacteria

16.69 22.42 18.46

Copy number 7.90*105 1.24*104 2.19*105

Each value was calculated from triplet

Table 12. Relatively quantification of different bacteria to eubacteria

DNA Red granule

AOB /EB 0.075198236 0.019569671 0.227247028

Average Ct (NOB) 22.01 23.90 18.84

SD (NOB) 0.2735 0.1180 0.2828

NOB /EB 0.0896855 0.613658437 0.348210915

Average Ct (KS) 0.0897 0.6137 0.3482

SD (KS) 0.4494 0.0394 0.1800

KS / TA 0.828922332 18.0136671 0.040009267

*AOB: ammonium oxidizing bacteria; EB: eubacteria; NOB: nitrite oxidizing bacteria

Table 13. Relatively quantification of different microbial community in SNAD system

*BA: Brocadia anammoxidans

Red granule (LWP/fresh)

KS / EB AOB / EB NOB / EB BA / EB

Ratio (SD) 65.25 (2.78) 7.42 (1.12) 9.71 (2.88) 11.05 (4.1)

50

TRFLP with primers amoA-1F and amoA-2R was also carried out to confirm the presence of AOB. The results of TRFLP analyses obtained are shown in the figure 12 which indicated the presence of Nitrosomonas europaea and Nitrosomonas oligotropha.

Fig.12. The experimental outcomes of TRFLP analysis.

Chapter 5 Conclusion

The SNAD process was successfully developed in the SBR and the effect of HRTs on the performance of SNAD system were investigated. Around 96% NH4+

-N removal and 87% COD removal were achieved under the NLR and OLR of 22.2 and 11.1 g/m3-d, respectively. The increases in NLR and OLR up to 66.7 and 33.3 g/m3-d have produced little impact on the performance of the reactor; whereas, the sudden reduction/shock in the operating DO, pH and temperature has produced a major drop in the SNAD performance. However, the performance was able to recover from disturbances when NLR and OLR were decreased to 33 g/m3-d and 16 g/m3-d, respectively. The removal of nitrogenous compounds in each of the SNAD process was modeled using the stoichiometric relationship. The presence of Anammox bacteria in the SNAD process was confirmed using FISH, qPCR and TRFLP. Overall, SNAD process has potential to successfully remove the nitrogen and carbon compounds from wastewater that can be applied in industrial application for the future.

52

References

1. Fernandez, I., Vazquez-Padin, J. R., Mosquera-Corral, A., Campos, J. L., and Mendez, R., (2008) Biofilm and granular systems to improve Anammox biomass retention. Biochemical Engineering Journal. Vol. 42, No. 3, pp.

308-313.

2. Hellinga, C., Schellen, Aajc, Mulder, J. W., Van Loosdrecht, M. C. M., and Heijnen, J. J., (1998) The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology. Vol. 37, No. 9, pp. 135-142.

3. Van Dongen, U., Jetten, M. S. M., and Van Loosdrecht, M. C. M., (2001) The SHARON((R))-Anammox((R)) process for treatment of ammonium rich wastewater. Water Science and Technology. Vol. 44, No. 1, pp. 153-160.

4. Sliekers, A. O., Derwort, N., Gomez, J. L. C., Strous, M., Kuenen, J. G., and Jetten, M. S. M., (2002) Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research. Vol. 36, No. 10, pp. 2475-2482.

5. Kuai, L. P.andVerstraete, W., (1998) Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Applied and Environmental Microbiology. Vol. 64, No. 11, pp. 4500-4506.

6. Jetten, M. S., Strous, M., Van De Pas-Schoonen, K. T., Schalk, J., Van Dongen, U. G., Van De Graaf, A. A., Logemann, S., Muyzer, G., Van Loosdrecht, M. C.

And Kuenen, J., (1998) The anaerobic oxidation of ammonium. FEMS Microbiology Reviews. Vol. 22, No. 5, pp. 421–437.

7. Strous, M., Kuenen, J. G., and Jetten, M. S. M., (1999) Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology.

Vol. 65, No. 7, pp. 3248-3250.

8. Kumar, M.andLin, J. G., (2010) Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues. Journal of Hazardous Materials. Vol. 178, No. 1-3, pp. 1-9.

9. Chen, H. H., Liu, S. T., Yang, F. L., Xue, Y., and Wang, T., (2009) The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal.

Bioresource Technology. Vol. 100, No. 4, pp. 1548-1554.

10. Wang, C. C., Lee, P. H., Kumar, M., Huang, Y. T., Sung, S. W., and Lin, J. G., (2010) Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant.

Journal of Hazardous Materials. Vol. 175, No. 1-3, pp. 622-628.

11. Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M., (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology. Vol. 50, No. 5, pp. 589-596.

12. Strous, M., Vangerven, E., Kuenen, J. G., and Jetten, M., (1997) Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Applied and Environmental Microbiology. Vol. 63, No. 6, pp. 2446-2448. treat high nitrogen load wastewaters. Journal of Chemical Technology and Biotechnology. Vol. 83, No. 3, pp. 233-241.

15. Joss, A., Salzgeber, D., Eugster, J., Konig, R., Rottermann, K., Burger, S., Fabijan, P., Leumann, S., Mohn, J., and Siegrist, H., (2009) Full-Scale Nitrogen Removal from Digester Liquid with Partial Nitritation and Anammox in One SBR. Environmental Science & Technology. Vol. 43, No. 14, pp.

5301-5306.

16. Vandegraaf, A. A. , Debruijn, P., Robertson, L. A., Jetten, M. S. M., and Kuenen, J. G., (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-Uk. Vol. 142, No. pp.

2187-2196.

17. Camargo, Julio A.andAlonso, Alvaro, (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International. Vol. 32, No. 6, pp. 831-849.

18. Guo, X., Kim, J. H., Behera, S. K., and Park, H. S., (2008) Influence of dissolved oxygen concentration and aeration time on nitrite accumulation in partial nitrification process. International Journal of Environmental Science and Technology. Vol. 5, No. 4, pp. 527-534.

19. Sabumon, P. C., (2008) Development of a novel process for anoxic ammonia removal with sulphidogenesis. Process Biochemistry. Vol. 43, No. 9, pp.

984-991.

20. Chen, J. W., Zheng, P., Yu, Y., Tang, C. J., and Mahmood, Q., (2009) Promoting sludge quantity and activity results in high loading rates in Anammox UBF. Bioresource Technology. Vol. 101, No. 8, pp. 2700-2705.

54

21. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A., (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science. Vol. 320, No. 5878, pp. 889-892.

22. Duce, R. A., Laroche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., and Zamora, L., (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science. Vol. 320, No. 5878, pp. 893-897.

23. Bruce E.R. And Perry, L.M. , (2001) Environmental Biotechnology: Principles and Applications. McGraw-Hill, New York.

24. Gradly, C.P.L and Lim, H., (1980) Biological Wastewater Treatment. Dekker, New York.

25. Jetten, M. S. M., Wagner, M., Fuerst, J., Van Loosdrecht, M., Kuenen, G., and Strous, M., (2001) Microbiology and application of the anaerobic ammonium oxidation ('anammox') process. Current Opinion in Biotechnology. Vol. 12, No.

3, pp. 283-288.

26. Mulder, A., Vandegraaf, A. A., Robertson, L. A., and Kuenen, J. G., (1995)

ANAEROBIC AMMONIUM OXIDATION DISCOVERED IN A

DENITRIFYING FLUIDIZED-BED REACTOR. Fems Microbiology Ecology.

Vol. 16, No. 3, pp. 177-183.

27. Vandegraaf, A. A., Mulder, A., Debruijn, P., Jetten, M. S. M., Robertson, L. A., and Kuenen, J. G., (1995) ANAEROBIC OXIDATION OF AMMONIUM IS A BIOLOGICALLY MEDIATED PROCESS. Applied and Environmental Microbiology. Vol. 61, No. 4, pp. 1246-1251.

28. Broda, E. , ( 1977) Two kinds of lithotrophs missing in nature. Zeitschrift für allgemeine Mikrobiologie. Vol. Vol. 17, No. No. 6, pp. pp. 491-493.

29. Kuenen, J. G., (2008) Anammox bacteria: from discovery to application.

Nature Reviews Microbiology. Vol. 6, No. 4, pp. 320-326.

30. Schalk, J., Oustad, H., Kuenen, J. G., and Jetten, M. S. M., (1998) The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. Fems Microbiology Letters. Vol. 158, No. 1, pp. 61-67.

31. Delong, E.F., (2002) All in the packaging. Nature, Vol. 419, pp. 676-677.

32. Vlaeminck, S. E., Cloetens, L. F. F., Carballa, M., Boon, N., and Verstraete, W., (2009) Granular biomass capable of partial nitritation and anammox (vol 58, pg 1113, 2008). Water Science and Technology. Vol. 59, No. 3, pp. 609-617.

33. Trigo, C., Campos, J. L., Garrido, J. M., and Mendez, R., (2006) Start-up of the Anammox process in a membrane bioreactor. Journal of Biotechnology.

Vol. 126, No. 4, pp. 475-487.

34. Helmer, C., Tromm, C., Hippen, A., Rosenwinkel, K. H., Seyfried, C. F., and Kunst, S., (2001) Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems. Water Science and Technology. Vol. 43, No. 1, pp. 311-320.

35. Third, K. A., Sliekers, A. O., Kuenen, J. G., and Jetten, M. S. M., (2001) The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. Systematic and Applied Microbiology. Vol. 24, No. 4, pp. 588-596.

36. Strous, M., (2000) Microbilogy of anaerobic ammonium oxidation.Ph D.

Kluyver Laboratory. TU Delft University Delft.

37. Sliekers, A. Olav, Third, K. A., Abma, W., Kuenen, J. G., and Jetten, M. S. M., (2003) CANON and Anammox in a gas-lift reactor. FEMS Microbiology Letters. Vol. 218, No. 2, pp. 339-344.

38. Poth, M., (1986) DINITROGEN PRODUCTION FROM NITRITE BY A NITROSOMONAS ISOLATE. Applied and Environmental Microbiology. Vol.

52, No. 4, pp. 957-959.

39. Amann, R. I., Ludwig, W., and Schleifer, K. H., (1995) PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION. Microbiological Reviews.

Vol. 59, No. 1, pp. 143-169.

40. Fujii, T., Sugino, H., Rouse, J. D., and Furukawa, K., (2002) Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biomass carrier. Journal of Bioscience and Bioengineering. Vol. 94, No. 5, pp. 412-418.

41. Schmid, M. C., Maas, B., Dapena, A., De Pas-Schoonen, K. V., De Vossenberg, J. V., Kartal, B., Van Niftrik, L., Schmidt, I., Cirpus, I., Kuenen, J. G., Wagner, M., Damste, J. S. S., Kuypers, M., Revsbech, N. P., Mendez, R., Jetten, M. S.

M., and Strous, M., (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Applied and Environmental Microbiology. Vol. 71, No. 4, pp. 1677-1684.

42. Amann, R. I., Krumholz, L., and Stahl, D. A., (1990) Fluorescent-Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic, and Environmental Studies in Microbiology. Journal of Bacteriology. Vol. 172, No. 2,

43. Helmer, ChristineandKunst, Sabine, (1998) Simultaneous

56

nitrification/denitrification in an aerobic biofilm system. Water Science and Technology. Vol. 37, No. 4-5, pp. 183-187.

44. Fdz-Polanco, Fernando, Fdz-Polanco, Maria, Fernandez, Neivy, Urue 鎙, Miguel A., Garcia, Pedro A., and Villaverde, Santiago, (2001) New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions.

Water Research. Vol. 35, No. 4, pp. 1111-1114.

45. Guven, Didem, Dapena, Ana, Kartal, Boran, Schmid, Markus C., Maas, Bart, Van De Pas-Schoonen, Katinka, Sozen, Seval, Mendez, Ramon, Op Den Camp, Huub J. M., Jetten, Mike S. M., Strous, Marc, and Schmidt, Ingo, (2005) Propionate Oxidation by and Methanol Inhibition of Anaerobic Ammonium-Oxidizing Bacteria. Applied and Environmental Microbiology.

Vol. 71, No. 2, pp. 1066-1071.

46. Ahn, Y. H., (2006) Sustainable nitrogen elimination biotechnologies: A review.

Process Biochemistry. Vol. 41, No. 8, pp. 1709-1721.

47. Sabumon, P. C., (2009) Effect of potential electron acceptors on anoxic ammonia oxidation in the presence of organic carbon. Journal of Hazardous Materials. Vol. 172, No. 1, pp. 280-288.

48. Sabumon, P. C., (2007) Anaerobic ammonia removal in presence of organic matter: A novel route. Journal of Hazardous Materials. Vol. 149, No. 1, pp.

49-59.

49. Jing, C., Ping, Z., and Mahmood, Q., (2009) Simultaneous sulfide and nitrate removal in anaerobic reactor under shock loading. Bioresource Technology.

Vol. 100, No. 12, pp. 3010-3014.

50. Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M. W., Horn, M., Daims, H., Bartol-Mavel, D., Wincker, P., Barbe, V., Fonknechten, N., Vallenet, D., Segurens, B., Schenowitz-Truong, C., Medigue, C., Collingro, A., Snel, B., Dutilh, B. E., Op Den Camp, H. J. M., Van Der Drift, C., Cirpus, I., Van De Pas-Schoonen, K. T., Harhangi, H. R., Van Niftrik, L., Schmid, M., Keltjens, J., Van De Vossenberg, J., Kartal, B., Meier, H., Frishman, D., Huynen, M. A., Mewes, H. W., Weissenbach, J., Jetten, M. S. M., Wagner, M., and Le Paslier, D., (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature. Vol. 440, No. 7085, pp. 790-794.

51. Schmid, M., Schmitz-Esser, S., Jetten, M., and Wagner, M., (2001) 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environmental Microbiology. Vol. 3, No. 7, pp. 450-459.

52. Egli, K., Fanger, U., Alvarez, P. J. J., Siegrist, H., Van Der Meer, J. R., and

Zehnder, A. J. B., (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology. Vol. 175, No. 3, pp. 198-207.

53. Woebken, D., Lam, P., Kuypers, M. M. M., Naqvi, S. W. A., Kartal, B., Strous, M., Jetten, M. S. M., Fuchs, B. M., and Amann, R., (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology. Vol. 10, No. 11, pp. 3106-3119.

54. Kartal, B., Van Niftrik, L., Sliekers, O., Schmid, M.C., Schmidt, I., Van De Pas-Schoonen, K., Cirpus, I., Van Der Star, W., Van Loosdrecht, M., Abma, W., Kuenen, J.G., Mulder, J.-W., Jetten, M.S.M., Den Camp, H.O., Strous, M. And Van De Vossenberg, J., (2004) Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria. . Reviews in Environmental Science and Biotechnology. Vol. 3, No. pp. 255-264.

55. Kartal, Boran, Van Niftrik, Laura, Sliekers, Olav, Schmid, Markus C., Schmidt, Ingo, Van De Pas-Schoonen, Katinka, Cirpus, Irina, Van Der Star, Wouter, Van Loosdrecht, Mark, Abma, Wiebe, Kuenen, J. Gijs, Mulder, Jan-Willem, Jetten, Mike S. M., Den Camp, Huub Op, Strous, Marc, and Van De Vossenberg, Jack, (2004) Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria. Reviews in Environmental Science and Biotechnology. Vol. 3, No. 3, pp. 255-264.

56. Quan, Z. X., Rhee, S. K., Zuo, J. E., Yang, Y., Bae, J. W., Park, J. R., Lee, S. T., and Park, Y. H., (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor.

Environmental Microbiology. Vol. 10, No. 11, pp. 3130-3139.

相關文件