• 沒有找到結果。

Enhanced Photocatalytic Activity with Carbon-Modified ZnO Inverse Opals

Chapter 9 Conclusions

9.3 Enhanced Photocatalytic Activity with Carbon-Modified ZnO Inverse Opals

We have successfully demonstrated an easy-to-fabricated route to directly prepare

carbon-modified ZnO inverse opals on the ITO substrate as photoanodes. While

hierarchical inverse-opal nanoarchitectures enthrall the idea of increasing the optical

electron-hole pairs, visible-light absorption, and photostability for ZnO photoanode.

References

[1] M. Z. Jacobson, W. G. Colella, D. M. Golden, Science 2005, 308, 1901.

[2] B. C. H. Steele, A. Heinzel, Nature 2001, 414, 345.

[3] P. Thounthong, B. Davat, S. Rael, P. Sethakul, IEEE Ind. Eletron. Mag. 2009, 3, 32.

[4] A. M. Zainoodin, S. K. Kamarudin, W. R. W. Daud, Int. J. Hydrogen Energy 2010, 35, 4606.

[5] S. Basri, S. K. Kamarudin, W. R. W. Daud, Z. YaaRub, Int. J. Hydrogen Energy 2010, 35, 7957.

[6] C. L. Sun, L. C. Chen, M. C. Su, L. S. Hong, O. Chyan, C. Y. Hsu, K. H. Chen, T.

F. Chang, L. Chang, Chem. Mater. 2005, 17, 3749.

[7] L. C. Chen, C. Y. Wen, C. H. Liang, W. K. Hong, K. J. Chen, H. C. Cheng, C. S.

Shen, C. T. Wu, K. H. Chen, Adv. Funct. Mater. 2002, 12, 687.

[8] B. M. Klein, Nature 1999, 399, 108.

[9] J. C. Carrero-Sanchez, A. L. Elias, R. Mancilla, G. Arrellin, H. Terrones, J. P.

Laclette, M. Terrones, Nano Lett. 2006, 6, 1609.

[10] G. Abbas, P. Papakonstantinou, G. R. S. Iyer, I. W. Kirkman, L. C. Chen, Phys.

Rev. B 2007, 75, 195429.

[11] Z. Y. Deng, J. M. F. Ferreira, Y. Sakka, J. Am. Ceram. Soc. 2008, 91, 3825.

[12] S. Sa, H. Silva, L. Brandao, J. M. Sousa, A. Mendes, Appl. Catal. B: Environ.

2010, 99, 43.

[13] Y. Choi, H. G. Stenger, J. Power Sources 2005, 142, 81.

[14] R. Becker, H. Parala, F. Hipler, O. P. Tkachenko, K. V. Klementiev, W. Grünert, H. Wilmer, O. Hinrichsen, M. Muhler, A. Birkner, C. Wöll, S. Schäfer, R. A.

Fischer, Angew. Chem. Int. Ed. 2004, 43, 2839.

[15] T. Ressler, B. L. Kniep, I. Kasatkin, R. Schlögl, Angew. Chem. Int. Ed. 2005, 44, 4704.

[17] I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlögl, Angew. Chem. Int. Ed.

2007, 46, 7324.

[18] L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He, G. S. Wu, W. L. Dai, K. N.

Fan, J. Catal. 2007, 246, 193.

[19] E. N. Muhamad, R. Irmawati, Y. H. Taufiq-Yap, A. H. Abdullah, B. L. Kniep, F.

Girgsdies, T. Ressler, Catal. Today 2008, 131, 118.

[20] M. Pagliaro, A. G. Konstandopoulos, R. Ciriminna, G. Palmisano, Energy Environ. Sci. 2010, 3, 279.

[21] L. J. Minggu, W. R. W. Daun, M. B. Kassim, Int. J. Hydrogen Energy 2010, 35, 5233.

[22] S. Dutta, Int. J. Hydrogen Energy 1990, 15, 379.

[23] K. Honda, A. Fujishima, Nature 1972, 238, 37.

[24] A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141.

[25] N. S. Lewis, Nature 2001, 414, 589.

[26] Y. Li, J. Z. Zhang, Laser Photonic Rev. 2010, 4, 517.

[27] M. Baldauf, W. Preidel, J. Power Sources 1999, 84, 161.

[28] A. Kuver, W. Vielstich, J. Power Sources 1998, 74, 211.

[29] S. K. Kamarudin, W. R. W. Daud, S. L. Ho, U. A. Hasran, J. Power Sources 2007, 163, 743.

[30] G. W. Yang, G. Y. Gao, G. Y. Zhao, H. L. Li, Carbon 2007, 45, 3036.

[31] J. W. Guo, T. S. Zhao, J. Prabhuram, R. Chen, C. W. Wong, Electrochem. Acta 2005, 51, 754.

[32] T. Fujigaya, M. Okamoto, N. Nakashima, Carbon 2009, 47, 3227.

[33] J. Prabhuram, T. S. Zhao, Z. X. Liang, R. Chen, Electrochem. Acta 2007, 52, 2649.

[34] L. Schlapbach, A. Zuttel, Nature 2001, 414, 353.

[37] Q. F. Li, R. H. He, J. O. Jensen, N. J. Bjerrum, Chem. Mater. 2003, 15, 4896.

[38] J. K. Lee, J. B. Ko, D. H. Kim, Appl. Catal. A 2004, 278, 25.

[40] R. van de Krol, Y. Q. Liang, J. Schoonman, J. Mater. Chem. 2008, 18, 2311.

[41] T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Int. J. Hydrogen Energy 2002, 27, 991.

[42] S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002, 297, 2243.

[43] O. Khaselev, J. A. Turner, Science 1998, 280, 425.

[44] R. Hoyle, J. Sotomayor, G. Will, D. Fitzmaurice, J. Phys. Chem. B 1997, 101, 10791.

[45] S. U. M. Khan, J. Akikusa, J. Electrochem. Soc. 1998, 145, 89.

[46] S. U. M. Khan, J. Akikusa, J. Phys. Chem. B 1999, 103, 7184.

[47] T. Lindgren, H. L. Wang, N. Beermann, L. Vayssieres, A. Hagfeldt, S. E.

Lindquist, Sol. Energy Mater. Sol. Cells 2002, 71, 231.

[48] N. Beermann, L. Vayssieres, S. E. Lindquist, A. Hagfeldt, J. Electrochem. Soc.

2000, 147, 2456.

[49] S. Saito, Science 1997, 278, 77.

[50] G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature 1998, 393, 346.

[51] S. Agrawal, M. J. Frederick, F. Lupo, P. Victor, O. Nalamasu, G. Ramanath, Adv.

Funct. Mater. 2005, 15, 1922.

[52] A. A. Mamedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted, A. Hirsch, Nat. Mater. 2002, 1, 190.

[53] A. Javey, Q. Wang, A. Ural, Y. Li, H. Dai, Nano Lett. 2002, 2, 929.

[54] A. Cao, R. Baskaran, M. J. Frederick, K. Turner, P. M. Ajayan, G. Ramanath, Adv. Mater. 2003, 15, 1105.

[55] K. Keren, R. S. Berman, E. Buchstab, U. Sivan, E. Braun, Science 2003, 302, 1380.

[58] C. L. Sun, H. W. Wang, M. Hayashi, L. C. Chen, K. H. Chen, J. Am. Chem. Soc.

2006, 128, 8368.

[59] D. Shi, J. Lian, W. Wang, G. Liu, P. He, Z. Dong, L. Wang, R. C. Ewing, Adv.

Mater. 2006, 18, 189.

[60] M. S. Raghuveer, A. Kumar, M. J. Frederick, G. P. Louie, P. G. Ganesan, G.

Ramanath, Adv. Mater. 2006, 8, 547.

[61] C. H. Wang, H. Y. Du, Y. T. Tsai, C. P. Chen, C. J. Huang, L. C. Chen, K. H.

Chen, H. C. Shih, J. Power Sources 2007, 171, 55.

[62] W. C. Fang, K. H. Chen, L. C. Chen, Nanotechnology 2007, 18, 485716.

[63] S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature 1998, 394, 52.

[64] R. J. Chen, Y. Zhang, D. Wang, H. Dai, J. Am. Chem. Soc. 2001, 123, 3838.

[65] B. M. Quinn, C. Dekker, S. G. Lemay, J. Am. Chem. Soc. 2005, 127, 6146.

[66] D. G. McCulloch, S. Prawer, A. Hoffman, Phys. Rev. B 1994, 50, 5905.

[67] J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D. N. Weldon, M.

Delamesiere, S. Draper, H. Zandbergen, Chem. Phys. Lett. 1994, 221, 53.

[68] J. W. Jang, C. E. Lee, S. C. Lyu, T. J. Lee, C. J. Lee, Appl. Phys. Lett. 2004, 84, 2877.

[69] C. Ronning, H. Feldermann, R. Merk, H. Hofsass, Phys. Rev. B 1998, 58, 2207.

[70] J. P. Zhao, Z. Y. Chen, T. Yano, T. Ooie, M. Yoneda, J. Sakakibara, J. Appl.

Phys. 2001, 89, 1634.

[71] H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle, R.

H. Friend, J. Phys. Chem. B 1999, 103, 8116.

[72] J. H. Mohr, W. Schmickler, Phys. Rev. Lett. 2000, 84, 1051.

[73] P. M. Ajayan, Chem. Rev. 1999, 99, 1787.

[74] J. F. Evans, T. Kuwana, Anal. Chem. 1977, 49, 1632.

[75] R. R. Davda, J. A. Dumesic, Angew. Chem. Int. Ed. 2003, 42, 4068.

[77] B. L. Kniep, T. Ressler, A. Rabis, F. Girgsdies, M. Baenitz, F. Steglich, R.

Schlögl, Angew. Chem. Int. Ed. 2004, 43, 112.

[78] B. Frank, F. C. Jentoft, H. Soerijanto, J. Kröhnert, R. Schlögl, R. Schomäcker, J.

Catal. 2007, 246, 177.

[79] O. J. Kwon, S. M. Hwang, J. H. Chae, M. S. Kang, J. J. Kim, J. Power Sources 2007, 165, 342.

[80] J. S. Suh, M. T. Lee, R. Greif, C. P. Grigoropoulos, J. Power Sources 2007, 173, 458.

[81] A. Stefanescu, A. C. van Veen, C. Mirodatos, J. C. Beziat, E. Duval-Brunel, Catal. Today 2007, 125, 16.

[82] Y. Kawamura, N. Ogura, T. Yamamoto, A. Igarashi, Chem. Eng. Sci. 2006, 61, 1092.

[83] A. Kundu, J. E. Ahn, S. S. Park, Y. G. Shul, H. S. Han, Chem. Eng. J. 2008, 135, 113.

[84] L. Vayssieres, Adv. Mater. 2003, 15, 464.

[85] C. Bock, C. Paquet, M. Couillard, G. A. Botton, B. R. MacDougall, J. Am.

Chem. Soc. 2004, 126, 8028.

[86] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Mouler, Handbook of X-Ray Photoeletron Spectroscopy, Perkin Elmer Corporation, MN, 1979.

[87] S. Velu, K. Suzuki, C. S. Gopinath, J. Phys. Chem. B 2002, 106, 12737.

[88] D. Grandjean, H. L. Castricum, J. C. Heuvel, B. M. Weckhuysen, J. Phys.

Chem. B 2006, 110, 16892.

[89] C. Z. Yao, L. C. Wang, Y. M. Liu, G. S. Wu, Y. Cao, W. L. Dai, H. Y. He, K. N.

Fan, Appl. Catal. A: Gen. 2006, 297, 151.

[90] M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, Appl. Catal. B: Environ. 2007, 77, 46.

[91] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, 4, 455.

[94] F. Raimondi, G. G. Scherer, R. Kötz, A. Wokaun, Angew. Chem. Int. Ed. 2005,

[99] B. L. Kniep, F. Girgsdies, T. Ressler, J. Catal. 2005, 236, 34.

[100] Y. G. Lin, Y. K. Hsu, S. Y. Chen, Y. K. Lin, L. C. Chen, K. H. Chen, Angew.

Chem. Int. Ed. 2009, 48, 7586.

[101] B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing: Matthews, NC, 2003.

[102] C. O. Kappe, Angew. Chem. Int. Ed. 2004, 43, 6250.

[103] T. A. Nissinen, Y. Kiros, M. Gasik, M. Leskelä, Chem. Mater. 2003, 15, 4974.

[104] D. D. Young, J. Nichols, R. M. Kelly, A. Deiters, J. Am. Chem. Soc. 2008, 130, 10048.

[105] C. J. Ko, Y. K. Lin , F. C. Chen, Adv. Mater. 2007, 19, 3520.

[106] Y. Li, B. Tan, Y. Wu, Chem. Mater. 2008, 20, 567.

[107] N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D.

Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, B. Monemar, J. Appl. Phys. 2003, 93, 126.

[108] T. Yu, X. Zhao, Z. X. Shen, Y. H. Wu, W. H. Su, J. Cryst. Growth 2004, 268, 590.

[109] L. Seyfried, F. Garin, G. Maire, J. M. Thiebaut, G. Roussy, J. Catal. 1994, 148, 281.

[112] I. -K. Sung, Christian, M. Mitchell, D. -P. Kim, P. J. A. Kenis, Adv. Funct.

Mater. 2005, 15, 1336.

[113] G. Guan, R. Zapf, G. Kolb, Y. Men, V. Hessel, H. Loewe, J. Ye, R. Zentel, Chem. Commun. 2007, 260.

[114] G. A. Umeda, W. C. Chueh, L. Noailles, S. M. Haile, B. S. Dunn, Energy Environ. Sci. 2008, 1, 484.

[115] T. Ishida, M. Haruta, Angew. Chem. Int. Ed. 2007, 46, 7154.

[116] J. D. Holladay, Y. Wang, E. Jones, Chem. Rev. 2004, 104, 4767.

[117] V. Meille, Appl. Catal. A 2006, 315, 1.

[118] S. Vukojevi , O. Trapp, J. D. Grunwaldt, C. Kiener, F. Schüth, Angew. Chem.

Int. Ed. 2005, 44, 7978.

[119] J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans, M. Pérez, Angew. Chem. Int. Ed.

2007, 46, 1329.

[120] C. T. Campbell, C. H. F. Peden, Science 2005, 309, 713.

[121] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, Appl. Catal. B: Environ.

2007, 69, 226.

[122] Z. Y. Pu, X. S. Liu, A. P. Jia, Y. L. Xie, J. Q. Lu, M. F. Luo, J. Phys. Chem. C 2008, 112, 15045.

[123] C. H. Liang, Z. Q. Ma, H. Y. Lin, L. Ding, J. S. Qiu, W. Frandsen, D. S. Su, J.

Mater. Chem. 2009, 19, 1417.

[124] P. K. Giri, S. Bhattacharyya, D. K. Singh, R. Kesavamoorthy, B. K. Panigrahi, K. G. M. Nair, J. Appl. Phys. 2007, 102, 093515.

Phys. Chem. B 2006, 110, 20865.

[130] C. Bozo, N. Guilhaume, J. M. Herrmann, J. Catal. 2001, 203, 393.

[131] T. X. T. Sayle, S. C. Parker, C. R. A. Catlow, Surf. Sci. 1994, 316, 329.

[132] S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D.

Benkstein, J. van de Lagemaat, A. J. Frank, J. Am. Chem. Soc. 2003, 125, 6306.

[133] J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, G. A. Ozin, Adv. Mater.

2006, 18, 1915.

[134] K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J.

Frydrych, M. Gratzel, J. Am. Chem. Soc. 2010, 132, 7436.

[135] K. S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, M. Al-Jassim, Appl.

Phys. Lett. 2008, 93, 163117.

[136] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Adv. Funct.

Mater. 2009, 19, 1849.

[137] X. Yang, A. Wolcott, G. Waang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2009, 9, 2331.

[138] E. Hendry, M. Koeberg, B. O’Regan, M. Bonn, Nano Lett. 2006, 6, 755.

[139] M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341.

[140] H. Zhang, R. Zong, Y. Zhu, J. Phys. Chem. C 2009, 113, 4605.

[141] Y. Li, X. Zhou, X. Hu, X. Zhao, P. Fang, J. Phys. Chem. C 2009, 113, 16188.

[142] S. Krishnamurthy, C. McGuinness, L. S. Dorneles, M. Venkatesan, J. M. D.

Coey, J. G. Lunney, C. H. Patterson, K. E. Smith, T. Learmonth, P. A. Glans, T.

Schmitt, J. H. Guo, J. Appl. Phys. 2006, 99, 08M111.

[143] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Small 2009, 5, 104.

[144] Y. J. Hwang, A. Boukai, P. D. Yang, Nano Lett. 2009, 9, 410.

Curriculum Vitae

Name:Yan-Gu Lin

11.01.1980 Born in Taichung (Taiwan)

1998-2002 Undergraduate study in the department of materials science and

engineering at Feng Chia University

2002-2004 Graduate study in the department of materials science and engineering

at Feng Chia University

2004-2010 PhD study in the department of materials science and engineering at

Chiao Tung University

PhD Thesis:Study on One-Dimensional N-doped CNT and Three-

Dimensional Cu/ZnO Nanostructures for Electrochemical

Characteristics and Hydrogen Production Applications

Publications

Yan-Gu Lin

SCI Paper

1. Y. G. Lin, Y. K. Hsu, S. Y. Chen, L. C. Chen, and K. H. Chen,

“Microwave-Activated CuO Nanotip/ZnO Nanorod Nanoarchitectures for Efficient Hydrogen Production” Journal of Material Chemistry (in press,2010). (IF:4.795) 2. Y. K. Hsu, Y. C. Chen, Y. G. Lin, L. C. Chen, and K. H. Chen, ”Reversible phase

transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy” Chemical Communications (in press,2010).

(IF:5.504)

3. Y. G. Lin, Y. K. Hsu, S. Y. Chen, L. C. Chen, and K. H. Chen, “O2

Plasma-activated CuO-ZnO Inverse Opals as High-performance Methanol Microreformer” Journal of Material Chemistry (in press,2010). (IF:4.795) 4. Y.G. Lin, Y.K. Hsu, Y.K. Lin, S.Y. Chen, K.H. Chen, and L.C. Chen, “Novel

Nanostructured ZnO Nanorod@Cu Nanoparticle Catalysts for Microreformer Devices” Angewandte Chemie International Edition, Vol. 48, pp7586-7590 (2009) (IF:11.829)

5. Y.K. Lin, Y.H. Su, Y.H. Huang, C.J. Hsu, Y.K. Hsu, Y. G. Lin, K. H. Huang, S. Y.

Chen, L.C. Chen, and K.H. Chen, “Efficient Hydrogen Production Using Cu-based Catalysts Prepared via Homogeneous Precipitation” Journal of Material

Chemistry, Vol. 19, pp9186-9194 (2009) (IF: 4.795).

6. C.L. Sun, Y.K. Hsu, C. Bock, Y.G. Lin, E. A. Baranova, X.H. Wu, L.C. Chen, K.H.

Chen, and B. MacDougall, “Ternary PtRuNi Nanocatalysts Supported on N-doped

ppB1249-B1252 (2009) (IF: 2.437)

7. Y.K. Hsu, J.L. Yang, Y.G. Lin, S.Y. Chen, L.C. Chen, and K.H. Chen, “Efficient Synthesis of PtRu/CNTs/Carbon Cloth Electrode for the Anodic Oxidation of Methanol” Diamond and Related Materials, Vol. 18, pp557-562 (2009) (IF:

2.092)

8. Y.G. Lin, Y.K. Hsu, C.T. Wu, S.Y. Chen, K.H. Chen, and L.C. Chen, “Effects of nitrogen-doping on the microstructure, bonding and electrochemical activity of carbon nanotubes” Diamond and Related Materials, Vol.18, pp433-437 (2009) (IF: 2.092)

9. Y.G. Lin, Y.K. Hsu, S.Y. Chen, K.H. Chen, and L.C. Chen, “Novel Copper-Zinc Oxide Arrayed Nanoatalysts for Hydrogen Production Applications” ECS Transactions, Vol. 13, pp165-168 (2008)

International Conferences

Oral

1. Y.G. Lin, Y.K. Hsu, S.Y. Chen, L.C. Chen, and K.H. Chen, 2010, “Novel

Copper-Zinc Oxide Nanoarchitectures as Microreformation Catalysts for Hydrogen Production”, 217th ECS Meeting, April 26-30, Vancouver, Canada.

2. Y.G. Lin, Y.K. Hsu, S.Y. Chen, L.C. Chen, and K.H. Chen, 2009, “Morphological Control of Catalytically Active Cu-ZnO Nanostructures for Hydrogen Generation”

EMRS Spring Meeting, Jun. 8-12, Strasbourg, France.

3. Y.G. Lin, Y.K. Hsu, S.Y. Chen, L.C. Chen, and K.H. Chen, 2008, “Binary

Nanostructures for Hydrogen Generation” Pre-Symposium of 14th International Congress on Catalysis, Jul. 8-12, Kyoto, Japan.

4. Y.G. Lin, Y.K. Hsu, Y.K. Lin, C.N. Chuang, S.Y. Chen, L.C. Chen, and K.H. Chen,

5. Y.G. Lin, Y.K. Hsu, J.L. Yang, S.Y. Chen, K.H. Chen, and L.C. Chen, 2007,

“Electrocatalytic activity and structural studies of nitrogen doping effects on array multi-walled carbon nanotube electrodes” 54th AVS Meeting, Oct. 14-19, Seattle, USA.

6. J.L. Yang, Y.K. Hsu, Y.G. Lin, S.Y. Chen, L.C. Chen, and K.H. Chen, 2007,

“Synthesis and Optimization of Pt-Ru/CNxNTs/CC nanocatalysts for methanol electro-oxidation” 211th ECS Spring Meeting, May 6-10, Chicago, USA.

Poster

1. Y.K. Hsu, Y.G. Lin, L.C. Chen, and K.H. Chen, 2008, “Enhanced stability of Pt nanocatalysts on carbon nanotubes electrode by H2 plasma treatment for methanol electro-oxidation” 2ed International conference on New Diamond and Nano Carbons, May 26-29, Taipei, Taiwan.

2. Y.G. Lin, Y.K. Hsu, J.L. Yang, C.H. Wang, H.Y. Du, W.C. Wang, J.H. Huang, H.C.

Shih, S.Y. Chen, K.H. Chen, and L.C. Chen, 2008, “Modification of CNTs for Fuel Cell and Capacitor Application” 2ed International conference on New Diamond and Nano Carbons, May 26-29, Taipei, Taiwan.

3. C.L. Sun, Y.K. Hsu, C. Bock, Y.G. Lin, E.A. Baranova, X.H. Wu, K.H. Chen, L.C.

Chen, and B. MacDougall, 2008, “PtRuNi Full-Cell Electrocatalysts Supported by N-doped Carbon Nanotubes” 2ed International conference on New Diamond and Nano Carbons, May 26-29, Taipei, Taiwan.

4. Y.K. Hsu, W.H. Su, Y.G. Lin, J.L. Yang, C.L. Sun, S.Y. Chen, C.R. Lin, K.H. Chen, and L.C. Chen, 2006, “Ternary PtRuNi Nanocatalysts Dispersed on Multiwall Carbon Nanotubes for Methanol Electro-oxidation in Acid Medium” MRS Fall Meeting, Nov. 27 - Dec. 1, Boston, USA.

報論文獎。作者:Y.G. Lin, Y.K. Hsu, Y.H. Hsieh, Y.K. Lin, T. Mathew, K.H. Chen, L.C. Chen, and S.Y. Chen。題目:Oxidative steam reforming of methanol over Cu/ZnAlGa-oxide catalysts for the production of hydrogen for fuel cells: catalyst characterization and performance evaluation。

2. 2009 MRS Fall Meeting "SCIENCE AS ART" 2nd Place Winner, Boston, USA.