• 沒有找到結果。

Figure 25. Rietveld full profile refinement result of 1B2A

七、文獻回顧

Figure 25. Rietveld full profile refinement result of 1B2A

Figure 25. Rietveld full profile refinement result of 1B2A

Figure 26. Rietveld full profile refinement result of 1B3A

Figure 27. Rietveld full profile refinement result of 1B4A

Figure 28. Rietveld full profile refinement result of 1B5A

Figure 29. Rietveld full profile refinement result of 1B6A

Figure 30. Rietveld full profile refinement result of 1B7A

Figure 31. Rietveld full profile refinement result of 1B8A

Figure 32 the unconfined compressive strength with different dosage nitric acid extraction of ash

Figure 33 the unconfined compressive strength of untreated ash

cement /sludge ratio

40/60 45/55 50/50 55/45 60/40

compressive strength (kg/cm2)

0

heating up to 673 K Ca(OH)2

3000 mg/L H2O2

6000 mg/L H2O2 regualtion limit

Figure 34 The unconfined compressive strength of the 3-day curing solidified matrices under various cement/sludge mixing ratio

cement /sludge ratio

40/60 45/55 50/50 55/45 60/40

compressive strength (kg/cm2)

0

heating up to 673 K Ca(OH)2 3000 mg/L H2O2 6000 mg/L H2O2

regulation limit

Figure 35 The unconfined compressive strength of the 28-day curing solidified matrices under various cement/sludge mixing ratio

treated sludge heating

6000 mg/LH2O2

3000 mg/L H2O2 raw Ca(OH)2 compressive strength (kg/cm2)

0 compressive strength of 3 day

compressive strength of 28 day LOI

Figure 36 The relativity between the unconfined compressive strength with the loss of ignition of the treated sludge after 3-day and 28-day curing.

treated sludge heating

6000 mg/L H2O2

3000 mg/L H2O2 raw Ca(OH)2 compressive strength (kg/cm2)

0 compressive strength of 3 day 800

compressive strength of 28 day COD

Figure 37 The relativity between the unconfined compressive strength with the COD of the treated sludge after 3-day and 28-day curing.

heating 6000 mg/l H2O2

3000 mg/l H2O2 raw Ca(OH)2

compressive strength (kg/cm2)

0

Cu concentration in leachate (mg/L)

0.0 compressive strength of 3 day

Cu concentration

compressive strength (kg/cm2)

0 20 40 60 80

Cu concentration in leachate (mg/L)

0.0 0.2 0.4 compressive strength of 28 day 0.6 Cu concentration

Figure 38 The relativity between the unconfined compressive strength with the TCLP of the treated sludge after (a) 3-day and (b) 28-day curing.

Table 1 molar ratio mixture design

Table 2. Factorial design of experimental materials.

Batch CuO NiO ZnO

Table 4 Zn. Pb. Cu concentration of HAc extraction

Table 5 Zn. Pb. Cu concentration of HNO3 extraction

Table 6 Zn. Pb. Cu concentration of Ammonia

extraction

Table7 the of composition of raw and treatment in bottom ash

Raw Ash Water EDTA CH2CBr4

Table 8 elemental containment of raw and treated sludge(mg/g)

elemental containment of raw and treated sludge (mg/g)

element raw sludge

Table 9 Results of the TCLP tests of raw and treated sludges

Table 10 Analytical results of the leachates of both raw and treated sludges after distilled water leaching test of cement specimens.

0% 3% 10% 15% Conditioned

Table 12 Chemical compositions of experimental Materials (General Industrial Waste).

Chemical Composition (%)

Cement Raw

Mix MSWI Ash

Table 13 Physical and chemical composition of the experimental materials.

Sludge Chemical Composition Cement Raw

Mix Surface finishing Electroplating Water Content -- 39.8 62.9 Metal contents

as oxides (%)

Heavy metals (ppm) (dry basis)

Cr -- 109 41585

Table 14 Heavy metal concentrations in leachates of TCLP

Surface finishing sludge (SFS)

Electroplating Sludge (EPS)

Regulatory standard (ROC, Taiwan)

Zn 0.7 ND --

a : Exceed the regulatory standard

Table15 Composites and heavy metal concentrations of raw mixes

Raw mix

SFSC EPSC 70EPSC 35EPSC 15EPSC 10EPSC Composites (wt%)

Dried Sludge 6.3 93.8 65.6 32.8 14.1 9.4 CaO 67.8 0.9 21.4 45.3 59.0 62.4 SiO2 21.0 4.4 9.5 15.6 19.0 19.9 Al2O3 4.9 1.0 2.2 3.6 4.4 4.6 Oxides for

sludge conditioning

Fe2O3 0 0 1.3 2.7 3.6 3.8 Heavy metal

concentrations (ppm)

Zn 15 337 236 118 51 34

Table 16 Concentrations of heavy metals in TCLP leachates from hydrated samples.

Curing age Species SSC 10ESC 15ESC

ND: Not Detected

Table 17 Residual percentage of heavy metal oxides added

NA: No heavy metal oxide addition in original raw material.

Table 18. Rietveld quantitative description and NIST certificate of crystalline phases in SRM materials.

Table 19. Crystalline percentages in samples

C3S C2S C3A C4A F C a O A m o r p .

Table 20. Analysis of variance for tricalcium silicate (C3S) in samples

S u m o f

CuO 110.71 1 110.71 27.08a

Error 24.53 6 4.09

Total 135.24 7

a S i g n i f i c a n t a t 5 p e r c e n t

Table 21. Analysis of variance for dicalcium silicate

(C2S) in samples S u m o f

S q u a r e s

D e g r e e s o f F r e e d o m

M e a n S q u a r e Fo

CuO 32.22 1 32.22 6.86 a

Error 28.16 6 4.69

Total 60.37 7

a S i g n i f i c a n t a t 5 p e r c e n t

十、附錄

1. P. H. Shih, J. E. Chang, L. C. Chiang, “Replacement of raw mix in cement production by municipal solid waste incineration ash”, Cement and Concrete Research, Vol.33, No.11, pp.1831-1836, 2003.

2. P. H. Shih, J. E. Chang, H. C. Leu, L. C. Chiang, “Reuse of heavy metal containing sludges in cement production”, Cement and Concrete Research, submit.

3. 張祖恩、施百鴻、郭子豪、盧幸成,“經前處理垃圾焚化底灰作為水泥原料之 研究”,第十六屆廢棄物處理技術研討會論文集,2001。

4. 張祖恩、蔣立中、盧幸成、陳元昊、趙家緯,“氧化鋅對矽鋁鈣氧化物燒製水 泥之研究”,第十七屆廢棄物處理技術研討會論文集,2002。

5. 張祖恩、陳元昊、張益國、盧幸成、陳俊戎,“萃取前處理改變垃圾焚化飛灰 成分之研究”,第十八屆廢棄物處理技術研討會論文集,2003。

6. 張祖恩、蔣立中、盧幸成、施百鴻、張益國,“重金屬污泥做為水泥替代原料 可行性研究”,第十八屆廢棄物處理技術研討會論文集,2003。

7. 陳盈良、張祖恩、陳俊戎、蘇心敏、蔣立中、施百鴻,“低量重金屬氧化物對 水泥主要晶相燒結之影響”, 第十九屆廢棄物處理技術研討會論文集,2004。

8. P. H. Shih, T. H. Guo, J. E. Chang, L. C. Chiang, “Pretreated mswi bottom ash utilized as cement raw material”, International Conference on Environmental Science and Technology, 2005.

9. L. C. Chiang, P. H. Shih, Y. K. Chang, J. E. Chang, H. C. Lu, Y. H. Chen, C. C.

Lin, “Extraction and recovery of heavry metals from mswi fly ash”, International Conference on Environmental Science and Technology, 2005.

相關文件