• 沒有找到結果。

Chapter 5 Conclusions and Future Work

5.2 Future Work

1. The goal of low leakage current:

We must try to research the other new process and the other gas plasma treatment to reduce the defects and suppress the leakage current in HfAlO thin film further.

2. More potential interfacial layer investigation:

The quality of the interfacial layer still must be improved. Moreover, in order to improve the quality at high-k/Si-substrate interafce, other more potential interfacial layers maybe can be investigated in the future. For example:HfSiON.

3. Devices fabrication with the above results:

The optimum condition will be used to the structures of our MOS device in the future.

Table

Table 1-1 The time of intel corporation found a solution for high-k and metal gate to keep continuation of Moor’s Law

Table 1-2: Material requirements of high-k dielectrics

Table 1-3 Comparison of relevant properties for various high- k candidates [32].

aCalculated by Robertson.

bMono.=monoclinic.

cTetrag.=tetragonal.

Table 2-1 Comparison of deposition techniques: Sputter, ALCVD, and MOCVD [53].

Figure-chapter 1

Figure 1-1 Illustration of Moore’s law: number of transistors integrated in the different generations of Intel’s microprocessors vs. the production year of these circuits.

Figure 1-2 Trend of device scaling: Transistor physical gate length will reach

~ 15nm before end of this decade and ~ 10nm early next decade.

Fig. 1-3 With the marching of technology nodes, gate dielectric has to be shrunk and five silicon atoms thick of gate dielectric is predicted for 2012.[2]

Fig. 1-4 Measured and simulated Ig-Vgcharacteristics under inversion condition for nMOSFETs. The dotted line indicates the 1A/cm2 limit for the leakage current. [3]

Fig. 1-5 Conduction mechanism in oxide for the MOS structure.

Figure 1-6 (a) Energy band chart of NMOS device (b) The influence of poly-Si depletion for capacitance density.

Fig. 1-7 High-k+ metal gate transistors provide significant performance increase and leakage current reduction , ensuring continuation of moor’s law.

Figure 1-8 Power consumption and gate leakage current density comparing to the potential reduction in leakage current by an alternative dielectric exhibiting the same equivalent oxide thickness [5].

(a) Schottky Emission (SE)

(b) Frenkel-Poole Emission (FP)

(c) Fowler-Nordheim Tunneling (F-N)

Figure 1-9 (a) Schottky Emission (SE) (b) Frenkel-Poole Emission (FP) (c)Fowler-Nordheim Tunneling (F-N) current transport mechanism.

Figure 1-10 schemes of important regions in gate stack of a field effect transistor

Figure-chapter 2

Fig. 2-1 Schematic diagram of MOCVD system structure.

Fig. 2-2 The ICP plasma system that was used in this experiment.

Fig.2-3 (1)Si substrate RCA clean (2)6 nm HfAlO was deposited on the sub-Si by MOCVD.

Fig.2-4 (1) PDA by RTA (2) Plasma treatment (3) PNA by RTA

Fig.2-5 40 nm Ti was deposited on the HfAlO layer by dual e-gun evaporation system .

Fig.2-6 400 nm Al was deposited on the Ti layer as top electrode by thermal evaporation coater.

Fig.2-7 Undefined Al was removed by wet etching .

Fig.2-8 Undefined Ti was removed by wet etching (1%HF).

Fig.2-9 Al was deposited on the back side of sub-Si as bottom electrode by thermal evaporation coater.

Fig. 2-10 MOS diode capacitance structure

Fig. 2-11 The energy band plot and electric charges distribution of MOS diode capacitance under bias voltage.

Fig. 2-12 The capacitance-voltage curve of three different conditions

Figure-chapter 3

Fig.3-1 The capacitance-voltage (C-V) characteristics of HfAlO gate dielectrics treated with N2 plasma treatment for different process time.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Fig.3-2 The capacitance-voltage (C-V) characteristics of HfAlO gate dielectrics treated with NH3 plasma treatment for different process time.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Fig.3-3 The capacitance-voltage (C-V) characteristics of HfAlO gate dielectrics treated with N2Oplasma treatment for different process time.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Fig.3-4 The capacitance-voltage (C-V) characteristics of HfAlO gate dielectrics treated with N2 plasma treatment, NH3 plasma treatment and N2O plasma treatment all for 30 sec.

-2.0 -1.5 -1.0 -0.5 0.0

Fig. 3-5 The J-V characteristics of p-type HfAlOcapacitors treated by N2 plasma with different process time from 0 V to -2 V.

-2.0 -1.5 -1.0 -0.5 0.0

Fig. 3-6 The J-V characteristics of p-type HfAlOcapacitors treated by NH3 plasma with different process time from 0 V to -2 V.

-2.0 -1.5 -1.0 -0.5 0.0

Fig. 3-7 The J-V characteristics of p-type HfAlOcapacitors treated by N2Oplasma with different process time from 0 V to -2 V.

-2.0 -1.5 -1.0 -0.5 0.0

Fig. 3-8 The J-V characteristics of HfAlOgate dielectrics treated with N2 plasma treatment, NH3 plasma treatment and N2Oplasma treatment all for 30 sec.

Figure-chapter 4

Fig. 4-1 The hysteresis of p-type HfAlOgate dielectrics treated without PDA, plasma treatment, PNA.

Fig. 4-2 The hysteresis of p-type HfAlOgate dielectrics treated with PDA, N2 plasma treatment, PNA.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Fig. 4-3 The hysteresis of p-type HfAlO gate dielectrics treated with PDA, NH3 plasma treatment, PNA.

Fig. 4-4 The hysteresis of p-type HfAlO gate dielectrics treated with PDA, N2O plasma treatment, PNA.

-2.0 -1.5 -1.0 -0.5 0.0

SILC after CVS -3V for 180sec

Voltage(V) 8000C-60sec+N2-10sec+6000C-60sec+SILC 8000 8000C-60sec+N2-60sec+6000C-60sec+SILC 8000

Fig. 4-5 The SILC curve of p-type HfAlOgate dielectrics treated with N2 plasma treatment for different process time.

-2.0 -1.5 -1.0 -0.5 0.0

SILC after CVS -3V for 180sec

Voltage(V) Gate Leakage ( A/cm2 )

Fig. 4-6 The SILC curve of p-type HfAlOgate dielectrics treated with NH3 plasma treatment for different process time.

-2.0 -1.5 -1.0 -0.5 0.0

SILC after CVS -3V for 180sec

Voltage(V) Gate Leakage ( A/cm2 )

Fig. 4-7 The SILC curve of p-type HfAlOgate dielectrics treated with N2Oplasma treatment for different process time.

0 20 40 60 80 100 120 140 160 180

Gate Leakag e shift ( A/cm

2

)

Fig. 4-8 The gate current shift of p-type HfAlOgate dielectrics treated with N2 plasma treatment for different process time as a function of stress time during Vg = -3 V CVS stress.

0 20 40 60 80 100 120 140 160 180

Fig. 4-9 The gate current shift of p-type HfAlOgate dielectrics treated with NH3 plasma treatment for different process time as a function of stress time during Vg = -3 V CVS stress.

Fig. 4-10 The gate current shift of p-type HfAlOgate dielectrics treated with N2O plasma treatment for different process time as a function of stress time during Vg = -3 V CVS stress.

0 20 40 60 80 100 120 140 160 180

Gate L eakag e shi ft ( A/ cm

2

)

Fig. 4-11 The CVS compare of HfAlO gate dielectrics treated with N2 plasma treatment , NH3 plasma treatment and N2Oplasma treatment all for 30 sec.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Fig. 4-12 The capacitance-voltage (C-V) characteristics of HfAlOgate dielectrics treated with PDA, N2, NH3, N2O plasma treatment all for 30 sec, PNA plus 950℃ 30 sec.

-2.0 -1.5 -1.0 -0.5 0.0

Fig. 4-13 The J-V characteristics of HfAlOgate dielectrics treated with PDA, N2, NH3, N2O plasma treatment all for 30 sec, PNA plus 950℃ 30 sec.

Fig. 4-14 The J-V characteristics of HfAlOgate dielectrics treated with N2 plasma treatment , NH3 plasma treatment and N2Oplasma treatment all for 30 sec and then measured at 25℃ and 125℃.

References

[1] G. E. Moore 1965 Electronics 38 114-117

[2]Max Schulz, “The end of the road for silicon,” Nature, Vol. 399, pp. 729, 1999.

[3]S. –H. Lo, D. A. Buchanan, Y. Taur, W. Wang, “Quantum-Mechnical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin Oxide nMOSFET’s,” IEEE Electron Device Lett., Vol. 18, pp.209, 1997.

[4] International Technology Roadmap for Semiconductors, Semiconductor Industry Association, 2001.

[5] G. D. Wilk, R. M. Wallace, et. al., “High-κ gate dielectrics: current status and materials properties consideration” J. Appl. Phys., Vol. 89, No. 10, pp. 5243, 2001.

[6] E. P. Gusev, D. A. Buchanan, et. al., “Ultrathin high-κ gate stacks for advanced CMOS devices,” Proc. IEEE IEDM Tech. Dig. pp. 451–454, 2001.

[7] C. Chaneliere, J. L. Autran, and R. A. B. Devine, “Conduction mechanisms in Ta2O5/SiO2 and Ta2O5/Si3N4 stacked structure on Si,” J. Appl. Phys., Vol. 86, pp.480-486, 1999.

[8] C. K. Maiti, S. Maikap, S. Chatterjee, S. K. Nandi, and S. K. Samanta, “Hafnium oxide gate dielectric for strained-Si1-xGex, “ Solid State Electronics, Vol. 47,

pp.1995-2000, 2003.

[9] S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, “Evaluation of Qbd for

electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface,” IEEE Transactions on Electron Devices, Vol. 40, pp.1251-1257, 1993.

[10] D. A. Muller, G. D. Wilk, Appl. Phys. Lett. 79 (2001) 4195-4197

[11] J.-Y. Zhang, I.W. Boyd, Appl. Surf. Sci. 186 (2002) 40-44

[12] W.-J. Qi, R. Nieh, B.H. Lee, L. Kang, Y. Jeon, J.C. Lee, Phys. Lett. 77( 2000) 3269.

[13] L. Kang, B.H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, J.C. Lee, IEEE Electron Device Lett. 21 (2000).

[14] D. Wilk, R.M. Wallace and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

[15] W.-J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee, and J. C. Lee , Tech. Dig. Int. Electron Devices Meet., 145 (1999).

[16] C.-H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, Tech. Dig. Int. Electron Devices Meet., 27 (2000).

[17] B. C. Hendrix, A. S. Borovik, C. Xu, J. F. Roeder, T. H. Baum, M. J. Bevan, M.R. Visokay, J. J. Chambers, A. L. Rotondaro, H. Bu, and L. Colombo, Appl. Phys.

Lett. 80, 2362 (2002).

[18] I.W. Boyd, J.-Y. Zhang, Nucl. Instrum, Method Phys. Res. B 121 (1997) 349.

[19] A. Kawamoto, J. Jameson, K. Cho, R.Dutton, challenges for atomic scale modeling in alter native gate stack engineering, IEEE Trans. El. Dev 47 (2000) 1787.

[20] C. H. Choi, S. J. Rhee, T. S. Jeon, N. Lu, J. H. Sim, R. Clark, M. Niwa, and D. L.

Kwong, “Thermally stable CVD HfOXNY advanced gate dielectrics with poly-Si gate electrode,” in IEDM Tech Dig., 2002, p. 857.

[21] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, “Effects of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics,” IEEE Electron Device Lett., vol. 23, p. 649, 2002.

[22] R. S.Robert S. Johnson, G.Gerald Lucovsky, and I.Isreal Baumvol, “Physical and electrical properties of noncrystalline Al O prepared by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Technol., vol. A 19, p. 1353, 2001.

[23] C. S.Chang Seok Kang, H.-J. Cho, K. Onishi, R. Choi, R. Nieh, S. Goplan, S.

Krishnan, and J. C.Jack C. Lee, “Improved thermal stability and device performance of ultra-thin gate dielectric MOSFET’s by using hafnium oxynitride (HfO N ),” in VLSI Tech. Dig., 2002, p. 146.

[24] G. D. Wilk, M. L. Green, M.-Y. Ho, B. W. Busch, T. W. Sorsch, F. P. Klemens, B. Brijs, R. B. van Dover, A. Kornblit, T. Gustafsson, E. Garfunkel, S. Hillenius, D.

Monroe, P. Kalavade, and J. M. Hergenrother, “Improved film growth and flat band voltage control of ALD HfO2 and Hf-Al-O with n+ poly-Si gates using chemical oxides and optimized post-annealing,” in Proc. Symp. VLSI Technol., 2002.

[25] C. S. Kang, H.-J. Cho, R. Choi, Y. H. Kim, C. Y. Kang, S. J. Rhee, C. Choi, M.

S. Akbar, and J. C. Lee, “The electrical and material characterization of hafnium oxynitride gate dielectric with TaN-gate electrode,” IEEE Transactions on Electron Devices, Vol. 51, pp.220-227, 2004.

[26] C. Gerardi and M. Melanotte, S. Lombardo, M. Alessandri, B. Crivelli, and R.

Zonca, “Effects of nitridation by nitric oxide on the leakage current of thin SiO2 gate oxides,” J. Appl. Phys. Vol. 87, pp.498-501, 2000.

[27] H. Fukada, M. Yasuda, T. Iwabuchi and S. Ohno, “Novel N2O-oxynitridation technology for forming highly reliable EEPROM tunnel oxide films,” IEEE Electron Device Lett. Vol. 12, pp.587-589, 1991.

[28] C. S. Kang, H.-J. Cho, K. Onishi, R. Choi, Y. H. Kim, R. Nieh, J. Han, S.

Krishnan, A. Shahriar, and J. C. Lee, “Nitrogen concentration effects and performance improvement of MOSFETs using thermally stable HfOxNy gate dielectrics,” in IEDM tech. Dig., 2002, pp.865-868.

[29] P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si(100),”

J. of

Appl. Phys., Vol. 91, pp.4353-4363, 2002.

[30] H. Y. Yu, J. F. Kang, C. Ren, J. D. Chen, Y. T. Hou, C. Shen, M. F. Li, D. S. H.

Chan, K. L. Bera, C. H. Tung, and D. L. Kwong, “Robust high-quality HfN-HfO2 gate stack for advanced MOS devices applications,” IEEE Electron Device Lett., Vol. 25, pp.70-72, 2004.

[31] K. S. Chang-Liao and H. C. Lai, “Correlation between nitrogen concentration profile and infrared spectroscopy in silicon dioxide,” Appl. Phys. Lett., Vol. 72, pp.2280-2282, 1998.

[32] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: current status and materials properties considerations,” J. Appl. Phys., Vol. 89, pp. 5243-5275, 2001.

[33] S. Mudanai, F. Li, S. B. Samavedam, P. J. Tobin, C. S. Kang, R. Nieh, J. C. Lee, L. F. Register, and S. K. Banerjee, “Interfacial defects states in HfO2 and ZrO2 nMOS capacitors,” IEEE Electron Device Lett., vol. 23, pp. 728-730, 2002.

[34] D. K. Schroder, “Semiconductor material and device characterization,” John wiley & Sons, pp. 337-338, 1998.

[35] P. O. Hahn and M. Henzler, “The Si/SiO2 interface: Correlation of atomic structure and electrical properties,” J. Vac. Sci. Technol. A, vol. 2, pp. 574-583, 1984.

[36] T. Yamanka, S. Feng, H. Lin, J. Snyder, and C. R. Helms, “Correlation between inversion layer mobility and surface roughness measured by AFM,” IEEE Electron Device Lett., vol. 17, pp. 178-180, 1996.

[37] H. Nishino, N. Hayasaka, K. Horioka, J. Shiozawa, S. Nadahara, N. Shooda, Y.

Akama, A. Sakai, and H. Okano, “Smoothing of the Si surface using CF4/O2

down-flow etching,” J. Appl. Phys., Vol. 74, pp. 1349-1353, 1993.

[38] N. Aoto, M. Nakamori, S. Yamasaki, and H. Hada, “Native oxides on Si surface of deep-submicro contact-hole bottoms,” J. Appl. Phys., Vol. 77, pp.3899-3907, 1995.

[39] H.-H Tseng,Y. Jeon, P. Abramowitz, T.-Y. Luo, “Ultra-Thin Decoupled Plasma Nitridation (DPN) Oxynitride Gate Dielectric for 80-nm Advanced Technology “, IEEE Electron Device Letters, VOL. 23, NO. 12, December, 2002.

[40] Seiji Inumiya, Katauyuki Sekine, Shoko Niwa, Akio Kaneko, Motoyuki Sato,”

Fabrication of HFSION Gate Dielectrics by Plasma Oxidation and Nitridation, Optimized for 65 nm node Low Power CMOS Applications ”, VLSI, 2003.

[41] Satoshi Kamiyama, Tomonori,” Improvement in the uniformity and the thermal stability of Hf-silicate gate dielectric by plasma-nitridation”, IWGI, 2003.

[42] Katsuyuki Sekine, Seiji Inumiya, Motoyuki Sato, Yoshitaka Tsunashima,

“Nitrogen Profile Control by Plasma Nitridation Technique for Poly-Si Gate HfSiON CMOSFET with Excellent interface property and Ultra-low Leakage Current”, IEDM 03-103

[43] S. Gopalan, R. Choi, K. et. al.,”Impact of NH3 pre-treatment on the electrical and reliability characteristics of ultra thin hafnium silicate films prepared by re-oxidation method,” Microelectronic Research Center, DRC, 2002.

[44] J. H. Lee, K. Kon, et. al., “Effect of polysilicon gate on the flatband voltage shift and mobility degradation for ALD-Al2O3 gate dielectric,” in IEDM Tech. Dig., 2000.

[45] Yoshihide Senzaki, Hood Chatham, et. al.,“Atomic layer deposition of high-κ thin films for gate and capacitor dielectrics,” IEEE International Conference on Integrated Circuit Design and Technology, 2004.

[46] Shi-Jin Ding, Hang Hu, et. all., “High performance MIM capacitor using ALD high-κ HfO2/Al2O3 laminate dielectrics,” IEEE Electron Device Lett. Vol. 24, No. 12, 2003.

[47] J. F. Conley, Jr., Y. Ono, et.al., ”Electrical properties and reliability of HfO2 deposited via ALD using Hf(NO3)4 precursor,” IEEE, 2002.

[48] Hang Hu, Chnxiang Zhu, et. al.,”MIM capacitors using Atomic-Layer-Deposited high-κ (HfO2)1-x(Al2O3)x dielectrics,” IEEE Electron Device Lett. Vol. 24, No. 2, 2003.

[49] Y. Tanida, Y. Tamura, et. al.,”Effect of in-situ nitrogen doping into MOCVD-grown Al2O3 to improve electrical characteristics of MOSFETs with polysilicon gate,” in VLSI Tech. Symp. Dig., 2002.

[50] J. Zhang, E. Zhao, et. al., ”Polarity dependent reliability of advanced MOSFET using MOCVD nitrided Hf-silicate high k gate dielectric,” IEEE, 2002.

[51] Moon Sig Joo, Byung jin Cho, et. al.,”Formation of hafnium-aluminum-oxide gate dielectric using single cocktail liquid source in MOCVD process,” IEEE Trans.

Electron Devices, Vol. 50, No. 10, 2003.

[52] MOCVD of electroceramic oxides: A precursor manufacturer’s perspective.

[53] E. P. Gusev, D. A. Buchanan, et. al., “Ultrathin high-κ gate stacks for advanced CMOS devices,” Proc. IEEE IEDM Tech. Dig. pp. 451–454, 2001.

[54] International SEMATECH Confidential and Supplier Sensitive, “Status of High-k Gate Dielectric Development and the Demonstration of High-k Devices with Equivalent Oxide Thickness (EOT) of <= 1.0 nm”, 2002.

[55] S. M. Sze, Physics of Semiconductor Devices, Wiley & Sons Inc., 1981.

[56] R. F. Pierret, Semiconductor Device Fundamentals, Addison Wesley, 1996.

簡歷

姓 名:蘇明紳 性 別:男

出生日期:民國 65 年 11 月 1 日 出 生 地:台灣省彰化縣

住 址:彰化縣秀水鄉埔崙村民生街607巷11號 學 歷:

國立彰化高中

(民國81 年9 月~民國84 年6 月) 國立中興大學土木工程學系 (民國86 年9 月~民國90 年6 月)

國立交通大學電機學院微電子奈米科技產業研發碩士班 (民國95 年3 月~民國97 年1 月)

碩士論文:電漿處理氧化鋁鉿閘極介電層之研究

The study of plasma treatment on HfAlO gate dielectrics

相關文件