• 沒有找到結果。

Conclusions and future work

5.2 Future work

On the other hand, the N2O and O2 plasma treatment also provide a good effect on electrical characteristics although most samples are still worse than that of N2

plasma treatment. The reason is that the samples using N2O and O2 plasma treatment will introduce oxygen bonding to from additional interfacial layer so that the capacitance will be decreased. But for another hand, the thicker oxidation layer becomes a good resistance against leakage current even if the plasma damage has begun to occur. Therefore, we can find that these samples show lower leakage current at the process conditions of 3 min and 5 min even if their capacitance has been seriously degraded by plasma damage.

Finally, in this thesis, the point we focus on is the improvement of capacitance.

The treatment of N2 plasma for 1 min is the best condition because the capacitance has 50% increasing. Simultaneously, its reliability also represents a excellent progress.

The most suitable way for post -deposition treatment by plasma to improve electrical characteristics on MIS structure is observed

5.2 Future work

In this experiment, the HfO2 film was deposited by sputter and furnace system. In

the future, the ALCVD ( Atomic Layer CVD ) system will become another important deposition technology. Further experiment and analysis are required to clarify if the treatment condition is also suitable for ALCVD film. On the other hand, the MOSFET will be fabricated by the same treatment condition to verify the effect on device characteristics, such as mobility, subthreshold swing, and transonductance.

References

[1] Max Schulz, “The end of the road for silicon,” Nature, Vol. 399, pp. 729, 1999.

[2] S. –H. Lo, D. A. Buchanan, Y. Taur, W. Wang, “Quantum-Mechnical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin Oxide nMOSFET’s,” IEEE Electron Device Lett., Vol. 18, pp.209, 199

[3] G. D. Wilk, R. M. Wallace, et. al., “High-k gate dielectrics: current status and materials properties consideration” J. Appl. Phys., Vol. 89, No. 10, pp. 5243, 2001.

[4] J. Robertson, J. Vac. Sci. Technol. B 18, pp1785, 2000.

[5] Robert M. Wallace, IRPS Tutorial, IRPS, 2004.

[6] K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 , 1996.

[7] Baohong Cheng, Min Cao, Ramgopal Rao, Anand Inani, Paul Vande Voorde, Wayne M. Greene, Johannes M. C. Stork, Zhiping Yu, Peter M. Zeitzoff, Jason C.S. Woo, “The Impact of High-k Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET’s”, IEEE Transactions on Electron Devices, Vol. 46, No. 7, July, 1999.

[8] C. T. Liu, “Circuit Requirement and Integration Challenges of Thin Gate Dielectrics for Ultra Small MOSFET’s”, IEDM Tech. Dig., p.747, 1998.

[9] S. P. Muraka and C. C. Chang, Appl. Phys. Lett. 37,639, 1980.

[10] M. Balog, M. Schieber,M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films, vol. 41, pp. 247–259, 1977.

[11] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, pp. 1785–1791, 2000.

[12] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mat. Res., vol. 11, pp. 2757–2776, 1996.

[13] M. Balog et al. Thin Solid Films, ~01.41, 247, 1977.

[14] K. Onishi, C. S. Kang, R. Choi, H.-J. Cho, S. Gopalan, R. Nieh, S. Krishnan, and J. C. Lee, “Effects of high-temperature forming gas anneal on HfO2 MOSFET performance,” in VLSI Tech. Dig., pp. 22–23, 2002.

[15]J. Robertson, J. Vac. Sci. Technol. B 18, pp1785, 2000.

[16] B. Tavel, X. Garros, T. Skotnicki, F. Martin, C. Leroux, D. Bensahel, M. N.

Se’me’ria, Y. Morand, J. F. Damlencourt, S. Descombes, F. Leverd, Y. Le-Friec, P. Leduc, M. Rivoire, S. Jullian and R. Pantel: Int. Electron Device Meet. Tech.

Dig., p. 429, 2002.

[17] C. H. Choi, S. J. Rhee, T. S. Jeon, N. Lu, J. H. Sim, R. Clark, M. Niwa and D. L.

Kwong: Int. Electron Device Meet. Tech. Dig., p. 857, 2002.

[18] S. Pidin, Y. Morisaki, Y. Sugita, T. Aoyama, K. Irino, T. Nakamura and T. Sugii:

Symp. VLSI Tech. Dig., p. 28, 2002.

[19] J.-P Han, E. M. Vogel, E. P. Gusev, ”Energy Distribution of Interface Traps in High-k Gated MOSFETs”, VLSI, 2003.

[20] S. Zafar, A. Callegari, E. Gusev and M. V. Fischetti: J. Appl. Phys. 93, 9298, 2003.

[21] L.Pantisano, E.Cartier “Dynamics of Threshold Voltage Instability in Stacked High-k Dielectrics: Role of the interfacial Oxide”, VLSI, 2003.

[22] W. Y. Loh, B. J. Cho, M. S. Joo, M. F. Li, D. S. H. Chan, S. Mathew and D. L. Kwong: Int. Electron Device Meet. Tech. Dig.,

p. 38.3.1, 2003.

[23] Hokyung Park, M.Shahriar Rahman, Man Chang, Byoung Hun Lee, Rino Choi,”

Improved interface Quality and Charge-Trapping Characteristics of MOSFETs With High-k Gate Dielectric”, IEEE Electron Device Letters, VOL. 26, NO. 10, October, 2005.

[24] Christopher C. Hobbs, Leonardo R. C. Fonseca,” Fermi-Level Pinning at the Polysilicon/Meal Oxide Interface-Part 1”, IEEE Electron Device Letters, VOL.

51,NO. 6, June, 2004.

[25] H.-H Tseng,Y. Jeon, P. Abramowitz, T.-Y. Luo, “Ultra-Thin Decoupled Plasma Nitridation (DPN) Oxynitride Gate Dielectric for 80-nm Advanced Technology “, IEEE Electron Device Letters, VOL. 23, NO. 12, December, 2002.

[26] Seiji Inumiya, Katauyuki Sekine, Shoko Niwa, Akio Kaneko, Motoyuki Sato,”

Fabrication of HFSION Gate Dielectrics by Plasma Oxidation and Nitridation, Optimized for 65 nm node Low Power CMOS Applications ”, VLSI, 2003.

[27] Satoshi Kamiyama, Tomonori,” Improvement in the uniformity and the thermal stability of Hf-silicate gate dielectric by plasma-nitridation”, IWGI, 2003.

[28] Katsuyuki Sekine, Seiji Inumiya, Motoyuki Sato, Yoshitaka Tsunashima,

“Nitrogen Profile Control by Plasma Nitridation Technique for Poly-Si Gate HfSiON CMOSFET with Excellent interface property and Ultra-low Leakage Current”, IEDM 03-103

[29] T. Nabatame, K.Iwamto, H. Ota,” Design and Proof of High Quality HfAlOx

Film Formation for MOSCAPs and nMOSFETs through Layer-by-Layer Deposition and Annealing Process ”, VLSI, 2003.

[30] T. Watanabe, M. Takayanagi, “ Design Guideline of HfSiON Gate Dielectric for 65 nm CMOS Generation ”, VLSI, 2003.

[31] Katsuyuki Sekine, Yuji Saito, Masaki Hirayama, “Highly Robust Ultrathin Silicon Nitride Films Grown at Low-Temperature by Microwave-Excitation High-Density Plasma for Giga Scale Integration”, IEEE Electron Device Letters, VOL. 47, NO. 7, JULY, 2000.

[32] Yoshitaka Nagasato, Tomo Ueno, ”Novel Fabrication Process for HfO2 Thin Film for Gate Dielectric”, The Japan Society of Applied Physics.

[33] Wai Shing Lau, Thiam Siew Tan, Nathan P. Sandler, Barry S.

Page,“Characterization of Defect States Responsible for Leakage Current in Tantalum Pentoxide Films for Very-High-Density Dynamic Random Access Memory (DRAM) Applications”, Jpn. J. Appl. Phys., Vol.34, pp.757-761, 1995.

[34] HyperPhysics, C.R Nave Georgia University, 2002.

Table

Table 1-1 High-performance Logic Technology Requirements Roadmap.

( ITRS:2005 updae )

相關文件