• 沒有找到結果。

CONCLUSIONS AND FUTURE WORKS

6.2 Future Works

Since the great improvement in the RF/microwave passive devices has been demonstrated with very low loss since it is urgent to investigate the effects of substrate coupling on the performance of CMOS RFIC’s and systems. More works to optimize the design and accurate simulation are worth to realize the circuit level applications. Beside, the structures of passive devices can be further designed to achieve optimized performance. If the combination of integrating the passive devices with 3D coming, it shall be very useful to realize the fully integrated high performance CMOS RF/microwave circuit or system.

REFERENCES

[1.1.1] L. E. Larson, “Integrated circuit technology options for RFIC’s? Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, 1998, pp.

387-399.

[1.1.2] K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian,

“High Q inductors for wireless applications in a complementary silicon bipolar process”, IEEE J. Solid-State Circuits, vol. 31, 1996, pp. 4-9.

[1.1.3] J. N. Burghartz, D. C. Edelstein, K. A. Jenkins, and Y. H. Kwark, “Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates,” IEEE Trans.

Microwave Theory Tech, vol. 45, 1997, pp. 1961-1968.

[1.1.4] J. P. Raskin, A. Viviani, D. Flandre and J.-P. Colinge, “Substrate crosstalk reduction using SOI technology,” IEEE Trans. Electron Devices, vol. 44, 1997, pp. 2252-2261.

[1.1.5] J.-B. Yoon, B.-K. Kim, C.-H. Han, E. Yoon, and C.-K. Kim, “Surface micromachined solenoid on-Si and on-glass inductors for RF applications,”

IEEE Electron Device Lett., vol. 20, 1999, pp. 487-489.

[1.1.6] R. F. Drayton, R. M. Henderson, and L. P. B. Katehi, “ Monolithic

packaging concepts for high isolation in circuits and antennas,“ IEEE Trans.

Microwave Theory Tech., vol. 46, 1998, pp. 900-906.

[1.1.7] J. Kim, Y. Qian, G. Feng, P. Ma, M. F. Chang, and T. Itoh,

“Millimeter-wave silicon MMIC interconnect and coupler using multilayer polymide technology,” IEEE Trans. Microwave Theory Tech., vol. 48, 2000, pp. 1482-1487.

[1.1.8] M. Marso, M. Wolter, R. Arens-Fischer, P. Kordos, and H. Luth,

“Formation of laterally displaced porous silicon filters using different fabrication methods,” in IEEE Advanced Semiconductor Devices and Microsystems Dig., 2000, pp, 95-98.

[1.1.9] M. F. Chang, Y. Qian, P. Ma, and T. Itoh, “Silicon/metal polymide (SIMPOL) interconnects for broadband mixed signal silicon MMICs,”

Electronics Lett., vol. 34, 1998, pp. 1670-1671.

[1.2.1] Ling Yun, “On current carrying capacities of PCB traces,” Electronic Components and Technology Conference, Proceedings. May 2002,

pp.1683-1693.

[1.2.2] E. Waffenschmidt, B. Ackermann, J.A. Ferreira,”Design method and material technologies for passives in printed circuit Board Embedded circuits” IEEE Transactions on Power Electronics, Vol. 20, Issue 3, May

2005, pp. 576 – 584.

[1.2.3] S. Hata, “Vision systems for PCB manufacturing in Japan,” 16th Annual Conference of IEEE Industrial Electronics Society, vol.1. 1990, pp. 792 –

797.

[1.2.4] A. R. Hidde, A. Gierse, ”An AI-based manufacturing design rule checker and path optimizer for PCB production preparation and manufacturing”

Components, Hybrids, and Manufacturing Technology, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, B, C]

Vol. 15, Issue 3, June 1992, pp. 299 – 305.

[1.2.5] Jun So Pak, Jingook Kim, Jung-Gun Byun, Heejae Lee, Joungho Kim,”Coupling of through-hole signal via to power/ground resonance and excitation of edge radiation in multi-layer PCB” IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, ,2003, pp. 231 – 235.

[1.2.6] E. K.W. Gan, H.Y. Zheng, G.. C. Lim,”Laser drilling of micro-vias in PCB substrates,” Proceedings of Electronics Packaging Technology Conference, 2000, pp.321 – 326.

[1.2.7] G. Smithson,” Practical RF printed circuit board design,” IEE Training Course 5. How to Design RF Circuits, pp. 11/1 - 11/6, 2000.

[1.3.1] D. S. Yu, Albert Chin, C. C. Laio, C. F. Lee, C. F. Cheng, W. J. Chen, C.

Zhu, M.-F. Li, W. J. Yoo, S. P. McAlister, and D. L. Kwong, “3D GOI CMOSFETs with Novel IrO2(Hf) Dual Gates and High-k Dielectric on 1P6M-0.18 µm-CMOS,” in IEDM Tech. Dig., 2004, pp. 181-184.

[1.3.2] J. W. Joyner, P. Z. Ha, J. D. Meindl, "Global interconnect design in a three-dimensional system-on-a-chip." IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 12, Issue 4 , 2004, pp.367 – 372.

[2.1.1] B. Yu, H. Wang, A. Joshi, Q. Xiang, E. Ibok, M.-R. Lin, 15nm gate length planar CMOS transistor, International Electron Devices Meeting (IEDM) Tech Dig, 2001, pp. 937-939.

[2.1.2] T. Ohguro, K. Kojima, H. S. Momose, S. Nitta, T. Fukuda, T. Enda, and Y.

Toyoshima, Improvement of high resistivity substrate for future mixed analog-digital application, VLSI Tech Symp Dig., pp. 158-159. 2002.

[2.1.3] E. C. Park, S. H. Baek, T. S. Song, J. B. Yoon, and E. Yoon, Performance Comparison of 5GHz VCOs Integrated by CMOS Compatible High Q MEMS Inductors, IEEE MTT-S Int Microwave Symp Dig, 2003, pp.

721-724.

[2.1.4] A. Chin, K. Lee, B. C. Lin, and S. Horng, Picosecond photoresponse of carriers in Si ion-implanted Si, Appl Phys Lett. vol.69, 1996, pp. 653-656.

[2.1.5] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, S. C. Pai, C. C. Chi, and C. P.

Liao, RF loss and cross talk on extremely high resistivity (10K-1Μ-cm) Si fabricated by ion implantation, IEEE MTT-S Int Microwave Symp Dig., 2000, pp. 241-244.

[2.1.6] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, Transmission line noise from standard and proton-implanted Si, IEEE MTT-S Int Microwave Symp Dig., 2001, pp. 763-766.

[2.1.7] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin, Integrated Antennas on Si, Proton-Implanted Si and Si-on-Quartz, International Electron Devices Meeting (IEDM) Tech Dig., 2001, pp.

903-906.

[2.1.8] K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, V. Liang, J. K. Chen, S.

C. Chien, D. S. Duh, and W. J. Lin, Low RF loss and noise of transmission lines on Si substrates using an improved ion implantation process, IEEE MTT-S Int Microwave Symp Dig., Vol. 2, 2003, pp. 963-966.

[2.1.9] K. T. Chan, A. Chin, J. T. Kuo, C. Y. Chang, D. S. Duh, W. J. Lin, C. X.

Zhu, M. F. Li, and D. L. Kwong, “Microwave Coplanar Filters on Si Substrates, IEEE MTT-S Int Microwave Symp Dig., vol. 3, 2003, pp.

1909-1912.

[2.2.1] K. Chang, Microwave ring circuits and antennas, New York: John Wiley &

Sons, 1996.

[2.2.2] L. Zhu, and K. Wu, A joint field/circuit model of line-to-ring coupling structures and its application to the design of microstrip dual-mode filters and ring resonator circuits, IEEE Trans Microwave Theory Tech., (1999), vol. 47, No. 10, 1938-1948.

[2.2.3] H. Yabuki, M. Sagawa, M. Matsuo, and M. Makimoto, Stripline dual-mode ring resonators and their application to microwave devices, IEEE Trans. Microwave Theory Tech., (1996), Vol. 44, No. 5, 723 -729.

[2.2.4] T. Ohguro, K. Kojima, H. S. Momose, S. Nitta, T. Fukuda, T. Enda, and Y.

Toyoshima, Improvement of high resistivity substrate for future mixed analog-digital application, VLSI Tech Symp Dig., 2002, pp. 158-159.

[2.2.5] E. C. Park, S. H. Baek, T. S. Song, J. B. Yoon, and E. Yoon, Performance comparison of 5GHz VCOs integrated by CMOS compatible high Q MEMS inductors, IEEE MTT-S Int Microwave Symp Dig., 2003, pp.

721-724.

[2.2.6] K. T. Chan, A. Chin, J. T. Kuo, C. Y. Chang, D. S. Duh, W. J. Lin, C. X.

Zhu, M. F. Li, and D. L. Kwong, Microwave coplanar filters on Si substrates, IEEE MTT-S Int Microwave Symp., 2003, pp. 1909-1912.

[2.2.7] K. T. Chan, A. Chin, C. M. Kwei, D. T. Shien, and W. J. Lin, Transmission

line noise from standard and proton-implanted Si, IEEE MTT-S Int Microwave Symp. Dig., 2001, pp. 763-766.

[2.2.8] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin, Integrated antennas on Si, proton-implanted Si and Si-on-quartz, Int Electron Devices Meeting (IEDM) Tech. Dig., 2001, pp. 903-906.

[3.1.1] T. Edwards, Foundations for Microstrip Circuits Design, New York: John Wiley & Sons, 2nd Ed., chap. 5. (1992)

[3.1.2] J.-T. Kuo and E. Shih, Wideband band-pass filter design with three-line microstrip structures, Int’l Microwave Symp. Dig., Phoenix, Arizona, USA, 2001.

[3.1.3] G. L. Mattaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Network, and Coupling Structures. Norwood, MA:

Artech House, 1980.

[3.1.4] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines.

Norwood, MA: Artech House, 1979, chap. 3.

[3.1.5] D. M. Pozar, Microwave Engineering, New York: John Wiley & Sons, 2nd Ed., 1998, chap. 8.

[3.1.6] M. Velazquez-Ahumada, J. Martel, F. Medina, Parallel coupled microstrip filters with ground-plane aperture for spurious band suppression and

enhanced coupling, IEEE Trans. Microwave Theory Tech.52, 2004, pp.

1082-1086.

[3.1.7] K. Chang, Microwave ring circuits and antennas, New York: John Wiley &

Sons, 1996.

[3.1.8] A. Chin, K. T. Chan, H. C. Huang, C. Chen, V. Liang, J. K. Chen, S. C.

Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M.-F. Li, S. P. McAlister and D. L. Kwong, RF Passive devices on Si with excellent performance close to ideal devices designed by electromagnetic simulation, Int’l Electron Devices Meeting (IEDM) Tech. Dig., 2003, pp. 375.

[3.1.9] K. T. Chan, A. Chin, J. T. Kuo, C. Y. Chang, D. S. Duh, W. J. Lin, C. X.

Zhu, M. F. Li, and D. L. Kwong, Microwave Coplanar Filters on Si Substrates, IEEE MTT-S Int’l Microwave Symp. Dig., 2003, pp. 1909-1912.

[3.1.10] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, S. C. Pai, C. C. Chi, and C. P.

Liao, “RF loss and cross talk on extremely high resistivity (10K-1MΩ-cm) Si fabricated by ion implantation,” in IEEE MTT-S Int’l Microwave Symp.

Dig 1, 2000, pp. 221-224

[3.1.11] K. T. Chan, A. Chin, S. P. McAlister, C. Y. Chang, V. Liang, J. K. Chen, S.

C. Chien, D. S. Duh, and W. J. Lin, Low RF loss and noise of transmission lines on Si substrates using an improved ion implantation process, IEEE

MTT-S Int’l Microwave Symp. Dig., 2 2003, pp. 963-966.

[3.2.1] D. M. Pozar, Microwave Engineering, John Wiley & Sons, New York, (1998), 2nd Ed.

[3.2.2] S. D’Agostino and C. Paoloni, Design of high-performance power-distributed amplifier using Lange couplers, IEEE Trans. Microwave Theory Tech., vol. 42, 1994, pp. 2525 – 2530.

[3.2.3] C. Y. Chi and G. M. Rebeiz, Design of Lange-couplers and single-sideband mixers using micromachining techniques, IEEE Trans. Microwave Theory Tech., vol. 45, 1997, pp. 291 – 294.

[3.2.4] Y. Konishi, I. Awai, Y. Fukuoka and M. Nakajima, “A directional coupler of vertically installed planar circuit structure,” IEEE Trans. Microwave Theory Tech., vol. 36, 1988, pp. 1057 – 1063.

[3.2.5] M. Nakajima and E. Yamashita, “A quasi-TEM design method for 3 dB hybrid couplers using a semi-reentrant coupling section,” IEEE Trans.

Microwave Theory Tech., vol. 38, 1990, pp. 1731 – 1737.

[3.2.6] F. Masot, F. Medina and M. Horno, Analysis and experimental validation of a type of three-microstrip directional coupler, IEEE Trans. Microwave Theory Tech., vol. 42, 1994, pp. 1624 – 1631.

[3.2.7] K. Sachse and A. Sawicki, Quasi-Ideal multilayer two- and three-strip

sirectional couplers for monolithic and hybrid MIC’s, IEEE Trans.

Microwave Theory Tech., vol. 47, 1999, pp. 1873 – 1882.

[3.2.8] K. T. Chan, A. Chin, Y. D. Lin, C. Y. Chang, C. X. Zhu, M. F. Li, D. L.

Kwong, S. McAlister, D. S. Duh, and W. J. Lin, Integrated antennas on Si with over 100 GHz performance, fabricated using an optimized proton implantation process, IEEE Microwave & Wireless Components Lett., vol.

13, 2003, pp. 487-489.

[3.2.9] A. Chin, K. T. Chan, H. C. Huang, C. Chen, V. Liang, J. K. Chen, S. C.

Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M.-F. Li, S. P. McAlister, and D. L. Kwong, RF passive devices on Si with excellent performance close to ideal devices designed by Electro-Magnetic simulation, in Int’l Electron Devices Meeting (IEDM) Tech. Dig., (2003), pp. 375-378.

[3.2.10] Zeland Software Inc., IE3D simulator, (1997).

[4.1.1] H. Iwai, “Future semiconductor manufacturing- Challenges and opportunities,” in IEDM Tech. Dig., 2004, pp. 11-16

[4.1.2] M. Brillouët, “Emerging technologies on silicon,” in IEDM Tech. Dig., 2004, pp. 11-16.

[4.1.3] A. Chinand S. P. McAlister, “The power of functional scaling: beyond the power consumption challenge and the scaling roadmap,” IEEE Circuit &

Devices Magazine, Jan/Feb. 2005.

[4.1.4] D. S. Yu, Albert Chin, C. C. Laio, C. F. Lee, C. F. Cheng, W. J. Chen, C.

Zhu, M.-F. Li, W. J. Yoo, S. P. McAlister, and D. L. Kwong, “3D GOI CMOSFETs with Novel IrO2(Hf) Dual Gates and High-κ Dielectric on 1P6M-0.18µm-CMOS,” in IEDM Tech. Dig., 2004, pp. 181-184.

[4.1.5] B. P. Shieh, L. C. Bassman, D.-K. Kim, K. C. Saraswat, M. D. Deal, J. P.

McVittie, R. S. List, S. Nag, and L. Ting, “Integration and reliability issues for low capacitance air-gap interconnect structures,” in IEEE Int.

Interconnect Technology Conference (IITC) Dig., 1998 , pp. 125-127.

[4.1.6] D. S. Yu, K. T. Chan, A. Chin, S. P. McAlister, C. Zhu, M. F. Li, and Dim-Lee Kwong, “Narrow-Band Band-pass Filters on Silicon Substrates at 30 GHz,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, vol. 3, pp.

1467-1470.

[4.1.7] A. Chin, K. T. Chan, H. C. Huang, C. Chen, V. Liang, J. K. Chen, S. C.

Chien, S. W. Sun, D. S. Duh, W. J. Lin, C. Zhu, M.-F. Li, S. P. McAlister, and D. L. Kwong, “RF passive devices on Si with excellent performance close to ideal devices designed by Electro-Magnetic simulation,” in IEDM Tech. Dig., 2003, pp. 375-378.

[4.1.8] K. T. Chan, A. Chin, Y. B. Chen, Y.-D. Lin, D. T. S. Duh, and W. J. Lin,

“Integrated Antennas on Si, Proton-Implanted Si and Si-on-Quartz,” in IEDM Tech. Dig., 2001, pp. 903-906.

[4.1.9] Y. H. Wu, A. Chin, K. H. Shih, C. C. Wu, S. C. Pai, C. C. Chi, and C. P.

Liao, “RF loss and cross talk on extremely high resistivity (10K-1MΩ-cm) Si fabricated by ion implantation,” in IEEE MTT-S Int. Microwave Symp.

Dig., 2000, vol. 1, pp. 221-224.

[4.1.10] T. Ohguro, K. Kojima, H. S. Momose, S. Nitta, T. Fukuda, T. Enda, and Y.

Toyoshima, “Improvement of high resistivity substrate for future mixed analog-digital application,” in Symp. On VLSI Tech. Dig., 2002, pp.

158-159.

[4.1.11] J. N. Burghartz, D. C. Edelstein, K. A. Jenkins, C. Jahnes, C. Uzoh, E. J.

O'Sullivan, K. K. Chan, M. Soyuer, P. Roper, and S. Cordes, “Monolithic spiral inductors fabricated using a VLSI Cu-damascene interconnect technology and low-loss substrates,” in IEDM Tech. Dig., 1996, pp.

99-102.

[5.1.1] J. Kim, Y. Qian, G. Feng, P. Ma, M. F. Chang, and T. Itoh,

“Millimeter-wave silicon MMIC interconnect and coupler using multilayer polymide technology,” IEEE Trans. Microwave Theory Tech., vol. 48, 2000, pp. 1482-1487.

[5.1.2] A. Triantafyllou, A. Farcy, P. Benech, F. Ndagijimana, J. Torres, O.

Exshaw, C. Tinella, O. Richard, C. Raynaud, "High transmission performance integrated antennas on SOI substrate for VLSI wireless interconnects,"  Int. Interconnect Technology Conference (IITC), 2005, pp. 80-82.

[5.1.3] J. W. Joyner, P. Z. Ha, J. D. Meindl, "Global interconnect design in a three-dimensional system-on-a-chip." IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 12, Issue 4, pp.367 – 372, 2004.

[5.1.4] K. T. Chan, A. Chin, Y. B. Chen, Y. D. Lin, T. S. Duh, and W. J. Lin,

"Integrated antennas on Si, proton-implanted Si and Si-on-quartz," IEDM Tech. Dig., 2001, pp. 903-906.

[5.1.5] S. B. Cohn, "Parallel-Coupled Transmission-Line-Resonator Filters,"

IEEE Trans. Microwave Theory Tech., vol. 6, pp. 223-231, 1958.

[5.1.6] Y. Eo, W. R. Eisenstadt, J. Y. Jeong, and Oh-Kyong Kwon, "A New On-Chip Interconnect Crosstalk Model and Experimental Verification for CMOS VLSI Circuit Design, IEEE Trans. on Electron Devices, vol. 47, 2000, pp. 129-140.

VITA

姓名:陳家忠 性別:男

出生年月日:民國 67 年 11 月 16 日 籍貫:台灣省基隆市

住址:基隆市信二路 174 巷 39 號 4 樓 學歷:中原大學電子工程系

相關文件