• 沒有找到結果。

Chapter 10 Conclusions and Future Works

10.2 Future Works

We have shown that the nanostrucutred materials will play a more and more important role in improving the performance of electrochemical energy conversion such as direct methanol fuel cells (DMFCs) because of their high surface area, novel size effects and so on.

On one hand, nanomaterials show favorable properties such as enhanced kinetics and activity, which may lead to low-cost and/or high performance energy devices. On the other hand,

‘nano’ also has disadvantages such as low thermodynamic stability, high side reactions as well as handle problems. The remaining challenges include are highlighted below:

(1) well understanding various nano-size and shapes effects and developing new theories;

(2) investigating fine details regarding the surface features of ‘nano’;

(3) designing optimized nano/micro structures and surface modifications;

(4) searching for new synthetic routes and new material systems;

In addition, based on the study of literature through the year 2009, there are several open questions pertaining to the kinetics and mechanism of methanol oxidation in acid medium, which are listed below:

(1) What is the nature and distribution of the products – on bulk platinum, promoted platinum and technical catalyst – 50/50 Pt/Ru?

(2) Is it necessary to form a single phase alloy for the best catalytic activity or will a multiphase system or even a mixture work equally well?

(3) What species are intermediates and what is the poison?

(4) Is the oxidation of the poisoning residue brought about by H2O* or OHads? (5) What is the rate determining step – on platinum, on promoted platinum?

(6) Does the rate determining step change from poison oxidation to C-H activation at higher

potentials?

(7) What is the influence of temperature on the mechanism?

Future work aims to solve these challenges from a range of disciplines, and their success will promote the development of next generation green and sustainable energy devices.

References

[1] X. Ren, P. Zelenay, S. Thomas, J. Davey and S. Gottesfeld, J. Power Sources, 86 (2000) 111, “Recent advances in direct methanol fuel cells at Los Alamos National Laboratory”.

[2] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. Van Schalkwijk, Nat. Mater., 4 (2005) 366, “Nanostructured materials for advanced energy conversion and storage devices”.

[3] H.P. Liang, H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan and C.L. Bai, Angew. Chem. Int. Ed., 43 (2004) 1540, “Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts”.

[4] Y.Y. Mu, H.P. Liang, J.S. Hu, L. Jiang and L.J. Wan, J. Phys. Chem. B, 109 (2005), 22212.

“Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells”.

[5] L.J. Wan, T. Moriyama, M. Ito, H. Uchida and M. Watanabe, Chem. Commun., 1 (2002) 58, “In situ STM imaging of surface dissolution and rearrangement of a Pt–Fe alloy electrocatalyst in electrolyte solution”.

[6] J. Wang, P. Holt-Hindle, D. MacDonald, D. F. Thomas and A. Chen, Electrochim. Acta, 53 (2008) 6944, “Synthesis and electrochemical study of Pt-based nanoporous materials”.

[7] Y.-G. Guo, J.-S. Hu and L.-J. Wan, Adv. Mater., 20 (2008) 2878, “Nanostructured

materials for electrochemical energy conversion and storage devices”.

[8] M. T. Bore, T. L. Ward, A. Fukuoka and A. K. Datye, Catal. Lett., 98 (2004) 167,

“Synthesis of Pt nanowires inside aerosol derived spherical mesoporous silica particles”.

[9] G. L. Egan, J. Yu, C. H. Kim, S. J. Lee, R. E. Schaak and T. E. Mallouk, Adv. Mater., 12 (2000) 1040, “Nanoscale metal replicas of colloidal crystals”.

[10] H. J. Shin, C. H. Ko and R. Ryoo, J. Mater. Chem., 11 (2001) 260 “Synthesis of platinum networks with nanoscopic periodicity using mesoporous silica as template”.

[11] A. Fukuoka, Y. Sakamoto, S. Guan, S. Inagaki, N. Sugimoto, Y. Fukushima, K. Hirahara, S. Iijima and M. Ichikawa, J. Am. Chem. Soc., 123 (2001) 3373, “Novel templating synthesis of necklace-shaped mono- and bimetallic nanowires in hybrid organic−inorganic mesoporous material”.

[12] W. C. Choi and S. I. Woo, J. Power Sources, 124 (2003) 420, “Bimetallic Pt–Ru nanowire network for anode material in a direct-methanol fuel cell”.

[13] K. S. Napolskii, P.J. Barczuk, S. Yu. Vassiliev, A. G. Veresov, G. A. Tsirlina and P.J.

Kulesza, Electrochim. Acta, 52 (2007) 7910, “Templating of electrodeposited platinum group metals as a tool to control catalytic activity”.

[14] Y. Zhong, C. L. Xu, L.-B. Kong and H.-L. Li, Appl. Surf. Sci., 255 (2008) 3388,

“Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method”.

[15] S. Park, T. D. Chung and H. C. Park, Anal. Chem., 75 (2003) 3046, “Nonenzymatic glucose detection using mesoporous platinum”.

[16] H. Boo, S. Park, B. Ku, Y. Kim, J. H. Park, H. C. Kim and T. D. Chung, J. Am. Chem.

Soc., 126 (2004) 4524, “Ionic strength-controlled virtual area of mesoporous platinum electrode.

[17] S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle and G. Denuault, Anal. Chem., 74 (2002) 1322, “Detection of hydrogen peroxide at mesoporous platinum microelectrodes”.

[18] J. M. Elliott, G. S. Attard, P. N. Bartlett, N. R. B. Coleman, D. A. S. Merckel and J. R.

Owen, Chem. Mater., 11 (1999) 3602, “Nanostructured platinum (HI-ePt) films: effects of electrodeposition conditions on film properties”

[19] Z. Liu, J. Y. Lee, M. Han, W. Chen and L. M. Gan, J. Mater. Chem., 12 (2002) 2453,

“Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions”.

[20] G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen and J. H. Wang, Science, 278 (1997) 838, “Crystalline phases mesoporous platinum films from lyotropic liquid”.

[21] W. Yu, W. Tu and H. Liu, Langmuir, 15 (1999) 6, “Synthesis of nanoscale platinum colloids by microwave dielectric heating”.

[22] K. Okitsu, H. Bandow, Y. Maeda and Y. Nagata, Chem. Mater., 8 (1996) 315,

“Sonochemical preparation of ultrafine palladium particles”.

[23] K. Okitsu, A. Yue, S. Tanabe and H. Matsumoto, Chem. Mater., 12 (2000) 3006,

“Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina”.

[24] Trevor L. Knutson, Matthew L. Bollinger and William H. Smyrl, J. Electrochem. Soc., 155 (2008) F17, “Mesoporous microspheres of Pt and Pt/Ru formed by electrodeposition:

characterization of high surface area”.

[25] J. Y. Kim, Z. G. Yang, C. Chang, T. I. Valdez, S. R. Narayanan and P. N. Kumta, J.

Electrochem. Soc., 150 (2003) A1421, “A sol-gel-based approach to synthesize high-surface-area Pt-Ru catalysts as anodes for DMFCs”

[26] J. Jiang and A. Kucernak, Chem. Mater., 16 (2004) 1362, “Mesoporous microspheres composed of PtRu alloy”.

[27] L. Carrette, K. A. Friedrich and U. Stimming, Chem. Phys. Chem., 1 (2000) 162, Fuel cells: principles, types, fuels, and applications.

[28] L. J. M. J. Blomen and M. N. Mugerwa, Plenum Press, (1993) 19-485, “Fuel cell systems”.

[29] X. Li, International J. Global Energy Issues, 17 (2002) 68, “Fuel cells - the environmentally friendly energy converter and power generator”.

[30] G.G. Scherer, Solid State Ionics, 94 (1997) 249, “Interfacial aspects in the development of polymer electrolyte fuel cells”.

[31] S. Gilman, J. Phys. Chem., 68 (1964) 70, “Anodic oxidation of methanol”.

[32] P. Shiller and A. B. Anderson, J. Electroanal. Chem., 339 (1992) 201, “Moleculat orbital study of methanol oxidation on Pt(III) surfaces”.

[33] A. Wieckowski, J. Electroanal. Chem., 78 (1977) 229, “Complex formation during oxidation of methanol”.

[34] J. O`M. Bockris and H. Wroblowa, J. Electroanal. Chem., 7 (1964) 428,

“Electrooxidation of methanol”.

[35] A. S. Arico, S. Srinivasan and V. Antonucci, Fuel Cells, 1 (2001) 133, “DMFC: from fundamental aspects to technological developments”.

[36] J. T. Wang, S. Wasmus and R.F. Savinell, J. Electrochem. Soc., 143 (1996)1233, “Real time mass spectroscopic study of the methanol crossover in a DMFC”.

[37] R. Parsons and T. Vandernoot, J. Electroanal. Chem., 257 (1988) 9, “The oxidation of small organic molecules. A survey of recent fuel cell related research”.

[38] A. Hamnett, Catal. Today, 38 (1997) 445, “Mechanism and electrocatalysis in the direct methanol fuel cell”.

[39] Z. Liu, L. M. Gan, L. Hong, W. Chen and J. Y. Lee, J. Power Sources, 139 (2005) 73,

“Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells”.

[40] E. P. Lee, Z. Peng, D. M. Cate, H. Yang, C. T. Campbell and Y. Xia, J. Am. Chem. Soc., 129 (2007) 10634, “Growing Pt nanowires as a densely packed array on metal gauze”.

[41] E. P. Lee, Z. Peng, W. Chen, S. Chen, H. Yang, and Y. Xia, ACS Nano, 2 (2008) 2167,

“Electrocatalytic properties of Pt nanowires supported on Pt and W gauzes”.

[42] C. Wang, H. Daimon, Y. Lee, J. Kim and S. Sun, J. Am. Chem. Soc., 129 (2007) 6974,

“Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction”.

[43] J. N. Tiwari, F. M. Pan and K. L. Lin, New J. Chem.,33 (2009 ) 1482, “Facile approach to the synthesis of 3D platinum nanoflowers and their electrochemical characteristics”.

[44] J. Chen, T. Herricks and Y. Xia, Angew. Chem. Int. Ed., 44 (2005) 2589 “Polyol synthesis of platinum nanostructures: control of morphology through the manipulation of reduction kinetics”.

[45] K. Yamada, K. Miyazaki, S. Koji, Y. Okumura and M. Shibata, J. Power Sources, 180 (2008) 181, “Catalytic performance of Pt film with dendritic structure for PEFC”.

[46] Y. Bi and G. Lu, Electrochem. Commun., 11 (2009) 45, “Control growth of uniform platinum nanotubes and their catalytic properties for methanol electrooxidation”.

[47] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding and Z. L. Wang, Science, 316 (2007) 732,

“Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity”.

[48] Y. S. Hu, Y. G. Guo, W. Sigle, S. Hore, P. Balaya and J. Maier, Nat. Mater. 5 (2006) 713,

“Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity”.

[49] S. Wasmus and A. Kuver, J. Electroanalytical Chem., 461 (1999) 14, “Methanol oxidation and direct methanol fuel cells: a selective review”.

[50] E. Antolini, J. R. C. Salgado and E. R. Gonzalez, Appl. Catal. B, 63 (2006) 137, “The methanol oxidation reaction on platinum alloys with the first row transition metals, The case of Pt–Co and –Ni alloy electrocatalysts for DMFCs: a short review”.

[51] K. Sundmacher, T. Schultz, S. Zhou, K. Schott, M. Ginkel and E. D. Gilles, Chem. Eng.

Sci., 56 (2001) 333, “Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis”.

[52] E. Antolini, J. R. C. Salgado and E. R. Gonzalez, J. Electroanal. Chem., 580 (2005) 145,

“Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells”.

[53] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang and D. P. Wilkinson, J. Power Sources, 155 (2006) 95, “A review of anode catalysis in the direct methanol fuel cell”.

[54] N.M. Marković and P.N. Ross Jr., Surf. Sci. Rep., 45 (2002) 117, “Surface science studied of model fuel cell electrocatalysts”.

[55] U. B. Demirci, J. Power Sources, 173 (2007) 11, “Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells”.

[56] B. Hammer and J. K. Nørskov, Adv. Catal., 45 (2000) 71, “Theoretical surface science and catalysis—calculations and concepts”.

[57] C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau and J.M. Léger, J. Power Sources, 105 (2002) 283, “Recent advances in the development of direct alcohol fuel cells (DAFCs).

[58] M. Watanabe and S. Motoo, J. Electroanal. Chem., 60 (1975) 267, “Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms”.

[59] M. Watanabe and S. Motoo, J. Electroanal. Chem., 60 (1975) 275, “Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms”.

[60] J. C. Bertolini, Appl. Catal. A, 191 (2000) 15, “Surface stress and chemical reactivity of Pt and Pd overlayers”.

[61] J. H. Choi, K. W. Park, I. S. Park, W. H. Nam and Y. E. Sung, Electrochim. Acta, 50 (2004) 787, “Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and

Pt/Ru/Rh alloy catalysts”.

[62] J. H. Choi, K. J. Jeong, Y. Dong, J. Han, T. H. Lim, J. S. Lee and Y. E. Sung, J. Power Sources, 163 (2006) 71, “Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells”.

[63] A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver and J. K. Nørskov, J. Mol. Catal. A, 115 (1997) 421, “Surface electronic structure and reactivity of transition and noble metals”.

[64] B. Hammer and J.K. Nørskov, Adv. Catal., 45 (2000) 71, “Theoretical surface science and catalysis-calculations and concepts”.

[65] J. Greeley, J. K. Nørskov and M. Maurikakis, Annu. Rev. Phys. Chem., 53 (2002) 319,

“Electronic structure and catalysis on metal surfaces”.

[66] B. Gurau, R. Viswanathan, R. Liu, T.J. Lafrenz, K.L. Ley, E.S. Smotkin, E. Reddington, A. Sapienza, B.C. Chan, T.E. Mallouk and S. Sarangapani, J. Phys. Chem. B, 102 (1998) 9997, “Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation”.

[67] P. Sivakumar and V. Tricoli, Electrochem. Solid-State Lett., 9 (2006) A167, “Pt-Ru-Ir nanoparticles prepared by vapor deposition as a very efficient anode catalyst for methanol fuel cells”.

[68] P. Piela, C. Eickes, E. Brosha, F. Garzon and P. Zelenay, J. Electrochem. Soc., 151 (2004) A2053, “Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode”.

[69] S. F. Zheng, J. S. Hu, L. S. Zhong, L. J. Wan and W. G. Song, J. Phys. Chem. C., 111 (2007) 11174, “In situ one-step method for preparing carbon nanotubes and Pt composite catalysts and their performance for methanol oxidation”.

[70] M.S. Chandrasekar and M. Pushpavanam, Electrochim. Acta, 53 (2008) 3313, “Pulse and pulse reverse plating—conceptual, advantages and applications”.

[71] J. C. Puippe, N. Ibl, H. Angerer and H. J. Schenk, Oberflache Surf., 20 (1979) 77,

“Electrodeposition by current impulses”.

[72] M. Ghaemi and L. Binder, J. Power Sources, 111 (2002) 248, “Effects of direct and pulse current on electrodeposition of manganese dioxide”.

[73] A. Marlot, P. Kern and D. Landolt, Electrochim. Acta, 48 (2002) 29, “Pulse plating of Ni-Mo alloys from Ni-rich electrolytes”.

[74] K.M. Yin, S.L. Jan and C.C. Lee, Surf. Coat. Technol., 88 (1997) 219, “Current pulse with reverse plating of nickel-iron alloys in a sulphate bath”.

[75] T. Houga, A. Yamada and Y. Ueda, J. Jpn. Inst. Met., 64 (2000) 739, “Resistivity and magnetism of Co/Cu films produced by computer controlled pulse electrodeposition”.

[76] Y. Ueda, N. Hataya and H. Zaman, J. Magn. Magn. Mater., 156 (1996) 350,

“Magnetoresistance effect of Co/Cu multilayer film produced by electrodeposition method”.

[77] H.Y. Cheh, J. Electrochem. Soc., 118 (1971) 1132, “The limiting rate of deposition by P-R plating”.

[78] S. Toschev and I. Markov. Electrochim. Acta, 12 (1967) 281, “Electrolytic nucleation of cadmium”.

[79] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature, 412 (2001) 169, “Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles”.

[80] B. Rajesh, K. R. Thampi, J.-M. Bonard, A. J. McEvoy, N. Xanthopoulos, H. J. Mathieu and B. Viswanathan, J. Power Sources, 133 (2004) 155, “Pt particles supported on conducting polymeric nanocones as electro-catalysts for methanol oxidation”.

[81] Y. Lin and X. Cui, Langmuir, 21 (2005) 11474, “PtRu/Carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells”.

[82] W. Li, X. Wang, Z. Chen, M. Waje and Y. Yan, J. Phys. Chem. B, 110 (2006) 15353,

“Pt−Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells”.

[83] C. Zhou, H. Wang, F. Peng, J. Liang, H. Yu and J. Yang, Langmuir, (2009) DOI:

10.1021/la900250w, “MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells”.

[84] T. Hyeon, S. Han, Y-E. Sung, K. W. Park and Y. W. Kim, Angew. Chem. Int. Ed., 42 (2003) 4352, “High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils”.

[85] S. Shanmugam and A. Gedanken, Small, 3 (2007) 1189, “Carbon-coated anatase TiO2

nanocomposite as a high-performance electrocatalyst support”.

[86] P. L. Chen, C. T. Kuo, T. G. Tsai, B. W. Wu, C. C. Hsu and F. M. Pan, Appl. Phys. Lett., 82 (2003) 2796, “Self-organized titanium oxide nanodot arrays by electrochemical anodization”.

[87] T. M. Chen, F. M. Pan, J. Y. Hung, L. Chang, S. C. Wu and C. F. Chen, J. Electrochem.

Soc., 154 (2007) D215, “Amorphous carbon coated silicon nanotips fabricated by MPCVD using anodic aluminum oxide as the template”.

[88] I. Lee, K.-Y. Chan and D.L. Phillips, Appl. Surf. Sci., 136 (1998) 321, “Growth of electrodeposited platinum nanocrystals studied by atomic force microscopy”.

[89] G. C. Morris and R. Vanderveen, J. Appl. Surf. Sci., 92 (1996) 630, “Solar cells from thin films prepared by periodic pulse electrodeposition”.

[90] J. W. Guo, T. S. Zhao, J. Prabhuram, R. Chen and C. W. Wong, Electrochim. Acta, 51 (2005) 754, “Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells”.

[91] C. T. Hable and M. S. Wrighton, Langmuir, 7 (1991) 1305, “Electrocatalytic oxidation of

methanol by assemblies of platinum/tin catalyst particles in a conducting polyaniline matrix”.

[92] M. J. Gonzalez, C. T. Hable and M. S. Wrighton, J. Phys. Chem. B, 102 (1998) 9881,

“Electrocatalytic oxidation of small carbohydrate fuels at Pt−Sn modified electrodes”.

[93] M. J. Gonzalez, C. H. Peters and M. S. Wrighton, J. Phys. Chem. B, 105 (2001) 5470,

“Pt−Sn microfabricated surfaces as catalysts for organic electro-oxidation”.

[94] C. T. Hable and M. S. Wrighton, Langmuir, 9 (1993) 3284, “Electrocatalytic oxidation of methanol and ethanol: a comparison of platinum-tin and platinum-ruthenium catalyst particles in a conducting polyaniline matrix”.

[95] B. Liu, J. H. Chen, X. X. Zhong, K. Z. Cui, H. H. Zhou and Y. F. Kuang, J. Colloid Interface Sci., 307 (2007) 139, “Preparation and electrocatalytic properties of Pt–SiO2

nanocatalysts for ethanol electrooxidation”.

[96] F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee and X. S. Zhao, Chem. Mater., 17 (2005) 3960,

“Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells”.

[97] Y. Li, L. Tang and J. Li, Electrochem. Comm., 11 (2009) 846, “Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites”.

[98] F. Rodriguez-Reinoso, Carbon, 36 (1998) 159, “The role of carbon materials in heterogeneous catalysis”.

[99] F. Coloma, A. Sepulveda-Escribano and J. L.G. Fierro, Langmuir, 10 (1994) 750

“Preparation of platinum supported on pregraphitized carbon blacks”.

[100] Y. Y. Shao, G. P. Yin and Y. Z. Gao, J. Power Sources, 171 (2007) 558, “Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell”.

[101] X. W. Yu and S. Y. Ye, J. Power Sources, 172 (2007) 145, “Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst”.

[102] J. Zeng, F. Su, J. Y. Lee, W. Zhou and X. S. Zhao, Carbon, 44 (2006) 1713, “Methanol oxidation activities of Pt nanoparticles supported on microporous carbon with and without a graphitic shell”.

[103] W. Xu, X. Zhou, C. Liu, W. Xing and T. Lu, Electrochem. Comm., 9 (2007) 1002, “The real role of carbon in Pt/C catalysts for oxygen reduction reaction”.

[104] W. Chen, Q. Xin, G. Sun, Q. Wang, Q. Mao and H. Su, J. Power Sources, 180 (2008) 199, “The effect of carbon support treatment on the stability of Pt/C electrocatalysts”.

[105] J. N. Tiwari, T.-M. Chen, F. M. Pan and K.-L. Lin, J. Power Sources, 182 (2008) 510,

“Ordered silicon nanocones as a highly efficient platinum catalyst support for direct methanol fuel cells”.

[106] T. L. Barr and M. Yin, J. Vac. Sci. Technol. A, 10 (1992) 2788, “Concerted x-ray

photoelectron spectroscopy study of the character of select carbonaceous materials”.

[107] S. Biniak, G. Szymanski, J. Siedlewski and A. Swiatkowski, Carbon, 35 (1997) 1799,

“The characterization of activated carbons with oxygen and nitrogen surface groups”.

[108] E. A. Hoffmanna, T. Kortvelyesia, E. Wiluszb, L. S. Korugic-Karaszc, F. E. Karaszc and Z. A. Feketea, J. Mol. Struct. Theochem., 725 (2005) 5, “Relation between C1s XPS binding energy and calculated partial charge of carbon atoms in polymers”.

[109] A. C. Ferrari and J. Robertson, Phys. Rev. B, 61 (2000) 14095, “Interpretation of Raman spectra of disordered and amorphous carbon”.

[110] M. A. Tamor and W. C. Vassell, J. Appl. Phys, 76 (1994) 3823, “Raman fingerprinting of amorphous carbon films”.

[111] A. Guha, T. A. Zawodzinski and D. A. Schiraldi, J. Power Sources, 172 (2007) 530,

“Evaluation of electrochemical performance for surface-modified carbons as catalyst support in polymer electrolyte membrane (PEM) fuel cells”.

[112] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini and L. Giorgi, J. Power Sources, 105 (2002) 13, “Comparison of high surface Pt/C catalysts by cyclic voltammetry”.

[113] P. J. Ferreira, G. J. la O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha and H. A.

Gasteiger, J. Electrochem. Soc., 152 (2005) A2256, “Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells”.

[114] R. M. Darling and J. P. Meyers, J. Electrochem. Soc., 150 (2003) A1523, “Kinetic model of platinum dissolution in PEMFCs”.

[115] Sh.K. Shaikhutdinov, M. Schildenberger, M. Noeske and G. Mestl, React. Kinet. Catal.

Lett., 67 (1999) 129, “Platinum colloid supported on graphite: x-ray photoelectron spectroscopy study”.

[116] X. Wang, J. C. Yu, H. Y. Yip, L. Wu, P. K. Wong and S. Y. Lai, Chem. Eur. J., 11 (2005) 2997, “A mesoporous Pt/TiO2 nanoarchitecture with catalytic and photocatalytic functions”.

[117] J. Radnik, C. Mohr and P. Claus, Phys. Chem. Chem. Phys., 5 (2003) 172, “On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis”.

[118] J. R. Croy, S. Mostafa, J. Liu, Y. Sohn, H. Heinrich and B. R. Cuenya, Catal Lett, 119 (2007) 209, “Support dependence of MeOH decomposition over size-selected Pt nanoparticles”.

[119] Y. Li, F. P. Hu, X. Wang and P. K. Shen, Electrochem. Comm., 10 (2008) 1101,

“Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts”.

[120] J. Zhang, K. Sasaki, E. Sutter and R. R. Adzic, Science, 315 (2007) 220, “Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters”.

[121] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas and N. M.

Markovi , Science 315 (2007) 493, “Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability”.

[122] Z. Chen, M. Waje, W. Li and Y. Yan, Angew. Chem. Int. Ed., 46 (2007) 4060, “Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions”.

[123] R. Srivastava, P. Mani, N. Hahn and P. Strasser, Angew. Chem. Int. Ed., 46 (2007) 8988,

“Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles”.

[124] S. Chen and A. Kucernak, J. Phys. Chem. B, 108 (2004) 3262, “Electrocatalysis under conditions of high mass transport rate: oxygen reduction on single submicrometer-sized Pt particles supported on carbon”.

[125] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Science, 283 (1999) 512, “Self-oriented regular arrays of carbon nanotubes and their field emission properties”.

[126] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung and C. M. Lieber, Science, 289 (2000) 94, “Carbon nanotube-based nonvolatile random access memory for molecular computing”.

[127] J. M. Planeix, N. Coustel, B. Coq, V. Bretons, P. S. Kumbhar, R. Dutartre, P. Geneste, P.

Bernier and P. M. Ajayan, J. Am.Chem. Soc., 116 (1994) 7935, “Application of carbon

nanotubes as supports in heterogeneous catalysis”.

[128] N. M. Rodriguez, A. Chambers and R. T. K. Baker, Langmuir, 11 (1995) 3862,

“Catalytic engineering of carbon nanostructures”.

[129] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M.

J. Heben, Nature, 386 (1997) 377, “Storage of hydrogen in single-walled carbon nanotubes”.

[130] J. Lin, Science, 287 (2000) 1929, “Hydrogen storage in nanotubes”.

[131] H. Yang, Y. Yan, Y. Liu, F. Zhang, R. Zhang, Y. Meng, M. Li, S. Xie, B. Tu and D. Zhao, J. Phys. Chem. B, 108 (2004), 17320, “A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches”.

[132] H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater., 15 (2003) 2107,

“Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance”.

[133] J.-S. Yu, S. Kang, S. B. Yoon and G. Chai, J. Am. Chem. Soc., 124 (2002) 9382,

“Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter”.

[134] T. W. Kim, I. S. Park and R. Ryoo., Angew. Chem. Int. Ed., 42 (2003) 4375, “A synthetic route to ordered mesoporous carbon materials with graphitic pore walls”.

[135] A. B. Fuertes and S. Alvarez., Carbon, 42 (2004) 3049, “Graphitic mesoporous carbons synthesised through mesostructured silica templates”.

[136] C. H. Kim, D. K. Lee and T. J. Pinnavaia, Langmuir, 20 (2004) 5157, “Graphitic mesostructured carbon prepared from aromatic precursors”.

[137] C. M. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna and F. Schuth., Chem. Mater., 17 (2005) 355, “Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor”.

[138] F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu and D.J. Zhao, J. Phys. Chem. B, 109 (2005) 8723, “Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15”.

[139] F. Ehrburger-Dolle, I. Morfin, E. Geissler, F. Bley, F. Livet, C. Vix- Guterl, S. Saadallah, P. Julien, M. Reda, J. Patarin, M. Iliescu and J. Werckmann, Langmuir, 19 (2003) 4303,

“Small-angle x-ray scattering and electron microscopy investigation of silica and carbon replicas with ordered porosity”.

[140] J. Parmentier, C. Vix-Guterl, P. Gibot, M. Reda, M. Ilescu, J. Werckmann and J. Patarin, Microporous. Mesoporous. Mater., 62 (2003) 87, “Study of the structural evolutions of mesoporous MCM-48 silica infiltrated with carbon by different techniques”.

[141] Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley and M. W.

Barsoum, Nat. Mater., 2 (2003) 591, “Nanoporous carbide-derived carbon with tunable pore size”.

[142] K. Koczkur, Q. Yi and A. Chen, Adv. Mater., 19 (2007) 2648, “Nanoporous Pt-Ru networks and their electrocatalytical properties”.

[143] Z. L. Liu, X. Y. Ling, X. D. Su and J. Y. Lee, J. Phys. Chem. B, 108 (2004) 8234,

“Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell”.

[144] A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.-M. Leger and C. Lamy, J.

Electroanal. Chem., 444 (1998) 41, “In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes”.

[145] M. Watanabe, Y. M. Zhu, H. Igarashi and H. Uchida, Electrochem., 68 (2000) 244,

“Mechanism of CO tolerance at Pt-Alloy anode catalysts for polymer electrolyte fuel cells”.

[146] G. S. Chai, I. S. Shin and J. S. Yu, Adv. Mater., 16 (2004) 2057, “Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells”.

[147] R. V. Parthasarathy and C. R. Martin, Nature, 369 (1994) 298, “Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization”.

[148] G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, Nature, 393 (1998) 346, “Carbon nanotubule membranes for electrochemical energy storage and production”.

[149] B. B. Lakshmi, P. K. Dorhout and C. R. Martin, Chem. Mater., 9 (1997) 857, “Sol−gel template synthesis of semiconductor nanostructures”.

[150] S. A. Sapp, D. T. Mitchell and C. R. Martin, Chem. Mater., 11 (1999) 1183, “Using template-synthesized micro- and nanowires as building blocks for self-assembly of supramolecular architectures”.

[151] X. Peng, K. Koczkur, S. Nigro and A. Chen, Chem. Commun., 24 (2004) 2872,

“Fabrication and electrochemical properties of novel nanoporous platinum network electrodes”.

[152] X. Teng, X. Liang, S. Maksimuk and H. Yang, small, 2 (2006) 249, “Synthesis of porous platinum nanoparticles”.

[153] F. Cloaguen, J.-M. Leger and C. Lamy, J. Appl. Electrochem., 27 (1997) 1052,

“Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates”.

[154] G. R. Salazar-Banda, K. I. B. Eguiluz and L. A. Avaca, Electrochem. Commun., 9 (2007) 59, “Boron-doped diamond powder as catalyst support for fuel cell applications”.

[155] X. Teng, X. Liang, S. Rahman and H. Yang, Adv. Mater., 17 (2005) 2237, “Porous nanoparticle membranes: synthesis and application as fuel-cell catalysts”.

[156] J. N. Tiwari, F. M. Pan, R. N. Tiwari and S. K. Nandi, Chem. Commun., 48 (2008) 6516,

“Facile synthesis of continuous Pt island networks and their electrochemical properties for methanol electro oxidation”.

[157] X. Peng and A. Chen, Adv. Funct. Mater., 16 (2006) 1355, “Large-scale synthesis and characterization of TiO2-based nanostructures on titanium substrate”.

[158] S. Hrapovic, Y. L. Liu, K. B. Male and J. H. T. Luong, Anal. Chem., 76 (2004) 1083,

“Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes”.

[159] R. F. Service, Science, 285 (1999) 682, “Hydrogen power: bringing fuel cells down to earth”.

[160] K. V. Kordesch and G. R. Simader, Chem. Rev., 95 (1995) 191, “Environmental impact of fuel cell technology”.

[162] A. Rouxoux, J. Schulz and H. Patin, Chem. Rev. 102 (2002) 3757, “Reduced transition metal colloids: a novel family of reusable catalysts?”.

[162] S. H. Liu, R. F. Lu, S. J. Huang, A. Y. Lo, S. H. Chien and S. B. Liu, Chem. Commun., 32 (2006) 3435, “Controlled synthesis of highly dispersed platinum nanoparticles in ordered mesoporous carbons”.

[163] R. M. Rioux, H. Song, J. D. Hoefelmeyer, P. Yang and G. A. Somorjai, J. Phys. Chem.

B, 109 (2005) 2192, “High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica”.

[164] P. Jiang, J. F. Bertone and V. L. Colvin, Science, 291 (2001) 453, “A lost-wax approach to monodisperse colloids and their crystals”.

[165] K. S. Choi, E. W. Mcfarland and G. D. Stucky, Adv. Mater., 15 (2003) 2018,

“Electrocatalytic properties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly”.

[166] G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen and J. H. Wang, Science, 278 (1997) 838, “Mesoporous platinum films from lyotropic liquid crystalline phases”.

[167] A. Fukuoka, H. Araki, Y. Sakamoto, N. Sugimoto, H. Tsukada, Y. Kumai, Y. Akimoto and M. Ichikawa, Nano Lett., 2 ( 2002) 793, “Template synthesis of nanoparticle arrays of gold and platinum in mesoporous silica films”.

[168] D. V. Pugh, A. Dursun and S. G. Corcoran, J. Mater. Res., 18 (2003) 216, “Formation of nanoporous platinum by selective dissolution of Cu from Pt0.25Cu0.75”.

[169] J. F. Huang and I. W. Sun, Chem. Mater., 16 (2004) 1829, “Formation of nanoporous platinum by selective anodic dissolution of PtZn surface alloy in a Lewis acidic zinc chloride-1-Ethyl-3-methylimidazolium chloride ionic liquid”.

[170] H. T. Liu, P. He, Z. Y. Li and J. H. Li, Nanotech., 17 (2006) 2167, “High surface area nanoporous platinum: facile fabrication and electrocatalytic activity”.

[171] P. Marcus and C. Hinnen, Surf. Sci., 392 (1997) 134, “XPS study of the early stages of deposition of Ni, Cu and Pt on HOPG”.

[172] D. Kardash and C. Korzeniewski, Langmuir, 16 (2000) 8419, “Temperature effects on methanol dissociative chemisorption and water activation at polycrystalline platinum electrodes”.

[173] M. Bergelin, J. M. Feliu and M. Wasberg, Electrochim. Acta, 44 (1998) 1069, “Study of carbon monoxide adsorption and oxidation on Pt(111) by using an electrochemical impinging jet cell”.

[174] A. V. Tripkovic, S. Strbac and K. Dj. Popovic, “Electrochem. Commun., 5 (2003) 484,

“Effect of temperature on the methanol oxidation at supported Pt and PtRu catalysts in alkaline solution

[175] Y. G. Liu, S. L. Shi, X. Y. Xue, J. Y. Zhang, Y. G. Wang and T. H. Wang, Appl. Phys.

Lett., 92 (2008) 203105, “Edge-truncated cubic platinum nanoparticles as anode catalysts for direct methanol fuel cells”.

[176] T. H. M. Housmans, A. H. Wonders and M. T. M. Koper, J. Phys. Chem. B, 110 (2006) 10021, “Structure sensitivity of methanol electrooxidation pathways on platinum: an on-line electrochemical mass spectrometry study”.

[177] N. M. Markovic and P. N. Ross Jr., Surf. Sci. Rep., 45 (2002) 117, “Surface science studies of model fuel cell electrocatalysts”.

[178] E. Elmalem, A. E. Saunders, R. Costi, A. Salant and U. Banin, Adv. Mater., 20 (2008)

4312, “Growth of photocatalytic CdSe–Pt nanorods and nanonets”.

[179] L. Sun, D. V. Ca and J. A. Cox, J. Solid State Electrochem., 9 (2005) 816,

“Electrocatalysis of the hydrogen evolution reaction by nanocomposites of poly(amidoamine)-encapsulated platinum nanoparticles and phosphotungstic acid”.

[180] N. Tian, Z. Y. Zhou, S. G. Sun, L. Cui, B. Ren and Z. Q. Tian, Chem. Commun., 39 (2006) 4090, “Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity”.

[181] N. Toshima, Y. Shiraishi, T. Teranishi, M. Miyake, T. Dominica, H. Watanabe, W.

Brijoux, H. Bonnemann and G. Schmid, Appl. Organomet. Chem., 15 (2001) 178,

“Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase”.

[182] Y. Sun and Y. Xia, Science, 298 (2002) 2176, “Shape-controlled synthesis of gold and silver nanoparticles”.

[183] H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai and P. D. Yang, Angew.

Chem. Int. Ed., 45 (2006) 7828, “Morphological control of catalytically active platinum nanocrystals”.

[184] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein and M. A. El-Sayed, Science, 271 (1996) 1924, “Shape-controlled synthesis of colloidal platinum nanoparticles”.

[185] J. Y. Chen, T. Herricks, M. Geissler and Y. N. Xia, J. Am. Chem. Soc., 126 (2004)

10854, “Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process”.

[186] T. Kijima, T. Yoshimura, M. Uota, T. Ikeda, D. Fujikawa, S. Mouri and S. Uoyama, Angew. Chem. Int. Ed., 43 (2004) 228, “Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates”.

[187] X. W. Teng and H. Yang, Nano Lett., 5 (2005) 885, “Synthesis of platinum multipods:

an induced anisotropic growth”.

[188] M. H. Ullah, W. S. Chung, I. Kim and C. S. Ha, Small, 2 (2006) 870 “pH-Selective synthesis of monodisperse nanoparticles and 3D dendritic nanoclusters of CTAB-stabilized platinum for electrocatalytic O2 reduction”.

[189] I. Balint, A. Miyazaki and K. Aika, Appl. Catal. B, 37 (2002) 217, “NO reduction by CH4 over well-structured Pt nanocrystals supported on γ-Al2O3”.

[189] I. Balint, A. Miyazaki and K. Aika, Appl. Catal. B, 37 (2002) 217, “NO reduction by CH4 over well-structured Pt nanocrystals supported on γ-Al2O3”.