• 沒有找到結果。

Chapter 7 Conclusions and Future Works

7.2 Future works

In this study, we have shown that metal oxides of three different kinds used as Pt catalyst supports can greatly enhance CO tolerance of Pt nanoparticles, and thus the electrocatalytic activity toward MOR. However, some subjects may be further studied:

(A) TiO2 has intriguing photo-catalytic properties and has long been used as a catalyst or support in photo-electrochemical systems. Seger et al. constructed a polymer membrane electrode assembly (MEA), consisting of a TiO2 photoanode, a Pt cathode, and a proton exchange membrane, to generate hydrogen continuously under UV excitation with no applied bias, and the operation principle of photoelectrolysis cell based was shown in figure 7-1[1]. The use of methanol as sacrificial electron donor in the anode significantly decreases the overvoltage for electrode reactions and thus enables the production without any external bias. Besides, the influence of Pt/TiO2

photocatalysts on H2 production is also extensively investigated [136]. In our study,

Figure 7-1 Operation principle of photoelectrolysis cell based on TiO2/Nafion/Pt-CB assembly[1].

94

Pt/porous TiO2 electrode was prepared by hydrothermal method and has an excellent electrocatalytic activity toward methanol electro-oxidation. It may be used as an electrode of photo-catalysts for the application of photocatalytic hydrogen production.

(B) Previous study shows that palladium has an electrocatalytic hehavior similar to Pt for electro-oxidation of methanol, ethanol and formic acid [104-106]. However, Pd is liable to anodic dissolution in acidic electrolytes and is considered an unsuitable electrocatalyst in DMFCs. Although, in our study, the anodic dissolution is greatly alleviated when Pt nanoparticles are electrodeposited on the PdO nanoflake thin film, Pd is still more stable in alkaline solution compared with in acidic solution. Many metallic Pd nanostructures of high surface, such as nanowires, nanoflowers and clusters, are investigated for electrochemical study [82, 86, 137]. In our study, the nanoflake-like morphology of the as deposited PdO thin film results in a large surface area, providing enormous electrochemical active sites. Metallic Pd nanoflakes can be found by hydrogen reduction or CV tests of PdO nanoflakes. The metallic Pd nanoflake electrode of high surface area may be utilized as an electrocatalyst not only for methanol electro-oxidation reaction but also ethanol or formic acid electrooxidation in alkaline systems.

95

References

[1] B. Seger, P.V. Kamat, The Journal of Physical Chemistry C, 113 (2009) 18946-18952.

[2] R. O'Hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley&Sons, New Jersey, (2005).

[3] T. Frelink, W. Visscher, J.A.R. van Veen, Surface Science, 335 (1995) 353-360.

[4] C. Lu, C. Rice, R.I. Masel, P.K. Babu, P. Waszczuk, H.S. Kim, E. Oldfield, A.

Wieckowski, The Journal of Physical Chemistry B, 106 (2002) 9581-9589.

[5] J.M. Léger, S. Rousseau, C. Coutanceau, F. Hahn, C. Lamy, Electrochimica Acta, 50 (2005) 5118-5125.

[6] P. Waszczuk, G.Q. Lu, A. Wieckowski, C. Lu, C. Rice, R.I. Masel, Electrochimica Acta, 47 (2002) 3637-3652.

[7] F. Maillard, G.Q. Lu, A. Wieckowski, U. Stimming, The Journal of Physical Chemistry B, 109 (2005) 16230-16243.

[8] G.Y. Zhao, C.L. Xu, D.J. Guo, H. Li, H.L. Li, Journal of Power Sources, 162 (2006) 492-496.

[9] M.C. Tsai, T.K. Yeh, C.H. Tsai, Electrochemistry Communications, 8 (2006) 1445-1452.

[10] E. Antolini, Applied Catalysis B: Environmental, 74 (2007) 337-350.

[11] J.N. Tiwari, T.M. Chen, F.M. Pan, K.L. Lin, Journal of Power Sources, 182 (2008) 510-514.

[12] T. Maiyalagan, Applied Catalysis B: Environmental, 80 (2008) 286-295.

[13] C. Xu, Z. Tian, P. Shen, S.P. Jiang, Electrochimica Acta, 53 (2008) 2610-2618.

[14] X. Wang, R. Kumar, D.J. Myers, Electrochem. Solid-State Letters, 9 (2006) A225.

[15] Y.J. Gu, W.T. Wong, Journal of The Electrochemical Society, 153 (2006) A1714-A1718.

[16] E.E. Switzer, T.S. Olson, A.K. Datye, P. Atanassov, M.R. Hibbs, C.J. Cornelius, Electrochimica Acta, 54 (2009) 989-995.

[17] J. Bagchi, S.K. Bhattacharya, Journal of Power Sources, 163 (2007) 661-670.

[18] F.C. Simões, D.M. dos Anjos, F. Vigier, J.M. Léger, F. Hahn, C. Coutanceau, E.R.

Gonzalez, G. Tremiliosi-Filho, A.R. de Andrade, P. Olivi, K.B. Kokoh, Journal of Power Sources, 167 (2007) 1-10.

[19] S.T. Nguyen, H.M. Law, H.T. Nguyen, N. Kristian, S. Wang, S.H. Chan, X. Wang, Applied Catalysis B: Environmental, 91 (2009) 507-515.

[20] C.S. Chen, F.M. Pan, Applied Catalysis B: Environmental, 91 (2009) 663-669.

[21] L.X. Yang, C. Bock, B. MacDougall, J. Park, Journal of Applied Electrochemistry, 34 (2004) 427-438.

[22] M.S. Saha, R. Li, M. Cai, X. Sun, Electrochemical and Solid-State Letters, 10 (2007) B130-B133.

96

[23] C.S. Chen, F.M. Pan, H.J. Yu, Applied Catalysis B: Environmental, 104 (2011) 382-389.

[24] M.L. Anderson, R.M. Stroud, D.R. Rolison, Nano Letters, 2 (2002) 235-240.

[25] G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Nature, 393 (1998) 346-349.

[26] S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature, 412 (2001) 169-172.

[27] B. Rajesh, K.R. Thampi, J.M. Bonard, A.J. McEvoy, N. Xanthopoulos, H.J. Mathieu, B. Viswanathan, Journal of Power Sources, 133 (2004) 155-161.

[28] W. Li, X. Wang, Z. Chen, M. Waje, Y. Yan, The Journal of Physical Chemistry B, 110 (2006) 15353-15358.

[29] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells, 1 (2001) 5-39.

[30] M.P. Hogarth, G.A. Hards, Platinum Matels Review, 40 (1996) 150-159.

[31] E. Antolini, J.R.C. Salgado, E.R. Gonzalez, Applied Catalysis B: Environmental, 63 (2006) 137-149.

[32] K.W. Park, J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, H.Y. Ha, S.A. Hong, H. Kim, A. Wieckowski, The Journal of Physical Chemistry B, 106 (2002) 1869-1877.

[33] A.V. Tripkovic, K.D. Popovic, B.N. Grgur, B. Blizanac, P.N. Ross, N.M. Markovic, Electrochimica Acta, 47 (2002) 3707-3714.

[34] J. Prabhuram, R. Manoharan, Journal of Power Sources, 74 (1998) 54-61.

[35] N.M. Markovic, C.A. Lucas, A. Rodes, V. Stamenkovic, P.N. Ross, Surface Science, 499 (2002) L149-L158.

[36] R.S. Ferreira Jr, V.R. Oliveira, R.G.C.S. Reis, G. Maia, G.A. Camara, Journal of Power Sources, 185 (2008) 853-856.

[37] G.F. McLean, T. Niet, S. Prince-Richard, N. Djilali, International Journal of Hydrogen Energy, 27 (2002) 507-526.

[38] K. Scott, E. Yu, G. Vlachogiannopoulos, M. Shivare, N. Duteanu, Journal of Power Sources, 175 (2008) 452-457.

[39] M.A. Scibioh, S.K. Kim, E.A. Cho, T.H. Lim, S.A. Hong, H.Y. Ha, Applied Catalysis B: Environmental, 84 (2008) 773-782.

[40] D.J. Guo, X.P. Qiu, W.T. Zhu, L.Q. Chen, Applied Catalysis B: Environmental, 89 (2009) 597-601.

[41] J. Wang, S. Yu, J. Xi, L. Chen, W. Zhu, X. Qiu, Electrochemical and Solid -State Letters, 10 (2007) B114-B118.

[42] U. Koponen, T. Peltonen, M. Bergelin, T. Mennola, M. Valkiainen, J. Kaskimies, M.

Wasberg, Journal of Power Sources, 86 (2000) 261-268.

[43] M. Grden, M. Lukaszewski, G. Jerkiewicz, A. Czerwinski, Electrochimica Acta, 53 (2008) 7583-7598.

[44] H. Song, P. Xiao, X. Qiu, W. Zhu, Journal of Power Sources, 195 (2010) 1610-1614.

97

[45] N.M. Marković, B.N. Grgur, C.A. Lucas, P.N. Ross, The Journal of Physical Chemistry B, 103 (1999) 487-495.

[46] M. Bergelin, J.M. Feliu, M. Wasberg, Electrochimica Acta, 44 (1998) 1069-1075.

[47] J. Croy, S. Mostafa, J. Liu, Y. Sohn, H. Heinrich, B. Cuenya, Catalysis Letters, 119 (2007) 209-216.

[48] C.J. Huang, F.M. Pan, H.Y. Chen, C. Li, Journal of Applied Physics, 108 (2010) 053105-053106.

[49] H. Song, X. Qiu, D. Guo, F. Li, Journal of Power Sources, 178 (2008) 97-102.

[50] M. Gustavsson, H. Ekström, P. Hanarp, L. Eurenius, G. Lindbergh, E. Olsson, B.

Kasemo, Journal of Power Sources, 163 (2007) 671-678.

[51] B.E. Hayden, D.V. Malevich, D. Pletcher, Electrochemistry Communications, 3 (2001) 390-394.

[52] B.E. Hayden, D. Pletcher, J.P. Suchsland, L.J. Williams, Physical Chemistry Chemical Physics, 11 (2009) 1564-1570.

[53] Q.Z. Jiang, X. Wu, M. Shen, Z.F. Ma, X.Y. Zhu, Catalysis Letters, 124 (2008) 434-438.

[54] T. Ying, H. Qiang, T. Cheng, C. Yue, A. Sufen, L. Junbai, Journal of Nanoscience and Nanotechnology, 6 (2006) 2072-2076.

[55] S.G. Neophytides, K. Murase, S. Zafeiratos, G. Papakonstantinou, F.E. Paloukis, N.V.

Krstajic, M.M. Jaksic, The Journal of Physical Chemistry B, 110 (2006) 3030-3042.

[56] B. Huber, H. Gnaser, C. Ziegler, Surface Science, 566-568 (2004) 419-424.

[57] S. Guerin, B.E. Hayden, D. Pletcher, M.E. Rendall, J.-P. Suchsland, L.J. Williams, Journal of Combinatorial Chemistry, 8 (2006) 791-798.

[58] A. Rothschild, Y. Komem, A. Levakov, N. Ashkenasy, Y. Shapira, Applied Physics Letters, 82 (2003) 574-576.

[59] Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, The Journal of Physical Chemistry B, 108 (2004) 8234-8240.

[60] B.E. Hayden, A.J. Murray, R. Parsons, D.J. Pegg, Journal of Electroanalytical Chemistry, 409 (1996) 51-63.

[61] J. Chen, B. Lim, E.P. Lee, Y. Xia, Nano Today, 4 (2009) 81-95.

[62] N.M. Markovic, P.N. Ross, Surface Science Reports, 45 (2002) 117-229.

[63] G. Ertl, M. Neumann, K.M. Streit, Surface Science, 64 (1977) 393-410.

[64] K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M.

Markovic, The Journal of Physical Chemistry B, 109 (2005) 14433.

[65] M. Watanabe, S. Motoo, Journal of Electroanalytical Chemistry, 60 (1975) 275.

[66] H.A. Gasteiger, N. Markovic, J.P.N. Ross, E.J. Cairns, Journal of The Electrochemical Society, 141 (1994) 1795-1803.

[67] G. Tremiliosi-Filho, H. Kim, W. Chrzanowski, A. Wieckowski, B. Grzybowska, P.

98

Kulesza, Journal of Electroanalytical Chemistry, 467 (1999) 143-156.

[68] J.C. Davies, B.E. Hayden, D.J. Pegg, Surface Science, 467 (2000) 118-130.

[69] J.B. Goodenough, A. Hamnett, B.J. Kennedy, R. Manoharan, S.A. Weeks, Journal of Electroanalytical Chemistry, 240 (1988) 133-145.

[70] M. Krausa, W. Vielstich, Journal of Electroanalytical Chemistry, 379 (1994) 307-314.

[71] T. Frelink, W. Visscher, J.A.R. van Veen, Langmuir, 12 (1996) 3702-3708.

[72] M. Lazzeri, A. Vittadini, A. Selloni, Physical Review B, 63 (2001) 155409.

[73] A. Vittadini, A. Selloni, F.P. Rotzinger, Gr, auml, M. tzel, Physical Review Letters, 81 (1998) 2954.

[74] C. Arrouvel, M. Digne, M. Breysse, H. Toulhoat, P. Raybaud, Journal of Catalysis, 222 (2004) 152-166.

[75] S.J. Tauster, S.C. Fung, R.L. Garten, Journal of the American Chemical Society, 100 (1978) 170-175.

[76] H. Song, X. Qiu, F. Li, Electrochimica Acta, 53 (2008) 3708-3713.

[77] M. Hepel, I. Dela, T. Hepel, J. Luo, C.J. Zhong, Electrochimica Acta, 52 (2007) 5529-5547.

[78] T.C. Wen, C.C. Hu, Journal of The Electrochemical Society, 140 (1993) 988-995.

[79] A.E. Bolzán, Journal of Electroanalytical Chemistry, 437 (1997) 199-208.

[80] M. Wang, D.j. Guo, H.l. Li, Journal of Solid State Chemistry, 178 (2005) 1996-2000.

[81] P.K. Shen, C. Xu, Electrochemistry Communications, 8 (2006) 184-188.

[82] C.W. Xu, H. Wang, P.K. Shen, S.P. Jiang, Advanced Materials, 19 (2007) 4256-4259.

[83] Y. Zhu, Y. Kang, Z. Zou, Q. Zhou, J. Zheng, B. Xia, H. Yang, Electrochemistry Communications, 10 (2008) 802-805.

[84] F. Jia, K.w. Wong, R. Du, Electrochemistry Communications, 11 (2009) 519-521.

[85] R.K. Pandey, V. Lakshminarayanan, The Journal of Physical Chemistry C , 113 (2009) 21596-21603.

[86] Z. Yin, H. Zheng, D. Ma, X. Bao, The Journal of Physical Chemistry C, 113 (2008) 1001-1005.

[87] C. Bianchini, P.K. Shen, Chemical Reviews, 109 (2009) 4183-4206.

[88] X. Wang, W. Wang, Z. Qi, C. Zhao, H. Ji, Z. Zhang, Journal of Power Sources, 195 (2010) 6740-6747.

[89] F. Miao, B. Tao, L. Sun, T. Liu, J. You, L. Wang, P.K. Chu, Journal of Power Sources, 195 (2010) 146-150.

[90] D.A.J. Rand, R. Woods, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 35 (1972) 209-218.

[91] S.H. Cadle, Journal of The Electrochemical Society, 121 (1974) 645-648.

[92] L.H. Dall'Antonia, G. Tremiliosi-Filho, G. Jerkiewicz, Journal of Electroanalytical Chemistry, 502 (2001) 72-81.

99

[93] K. Juodkazis, J. Juodkazytė, B. Šebeka, G. Stalnionis, A. Lukinskas, Russian Journal of Electrochemistry, 39 (2003) 954-959.

[94] Y. Du, K. Lv, B. Su, N. Zhang, C. Wang, Journal of Applied Electrochemistry, 39 (2009) 2409-2414.

[95] O. Yepez, P.G. Pickup, Electrochemical and Solid-State Letters, 8 (2005) E35-E38.

[96] L.S. Kibis, A.I. Titkov, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin, Applied Surface Science, 255 (2009) 9248-9254.

[97] T. Pillo, et al., Journal of Physics: Condensed Matter, 9 (1997) 3987.

[98] K.S. Kim, A.F. Gossmann, N. Winograd, Analytical Chemistry, 46 (1974) 197-200.

[99] Y.N. Wu, S.J. Liao, Y.L. Su, J.H. Zeng, D. Dang, Journal of Power Sources, 195 (2010) 6459-6462.

[100] C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, Journal of The Electrochemical Society, 151 (2004) A1937-A1942.

[101] A. Czerwinski, R. Marassi, S. Zamponi, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 316 (1991) 211-221.

[102] M.S. Rau, P.M. Quaino, M.R. Gennero de Chialvo, A.C. Chialvo, Electrochemistry Communications, 10 (2008) 208-212.

[103] A.J. Zhang, M. Gaur, V.I. Birss, Journal of Electroanalytical Chemistry, 389 (1995) 149-159.

[104] Y.N. Wu, S.J. Liao, Z.X. Liang, L.J. Yang, R.F. Wang, Journal of Power Sources, 194 (2009) 805-810.

[105] Z. Liu, L. Hong, M.P. Tham, T.H. Lim, H. Jiang, Journal of Power Sources, 161 (2006) 831-835.

[106] Y. Wang, T.S. Nguyen, X. Liu, X. Wang, Journal of Power Sources, 195 (2010) 2619-2622.

[107] R. Manoharan, J.B. Goodenough, ChemInform, 23 (1992).

[108] Q. He, W. Chen, S. Mukerjee, S. Chen, F. Laufek, Journal of Power Sources, 187 (2009) 298-304.

[109] M. Sevilla, C. Sanchís, T. Valdés-Solís, E. Morallón, A.B. Fuertes, Electrochimica Acta, 54 (2009) 2234-2238.

[110] A. Czerwinski, Journal of Electroanalytical Chemistry, 379 (1994) 487-493.

[111] L. Pedocchi, M.R. Ji, S. Lizzit, G. Comelli, G. Rovida, Journal of Electron Spectroscopy and Related Phenomena, 76 (1995) 383-387.

[112] K. Zorn, S. Giorgio, E. Halwax, C.R. Henry, H. Gr nbeck, G.n. Rupprechter, The Journal of Physical Chemistry C, 115 (2010) 1103-1111.

[113] R. Mancharan, J.B. Goodenough, Journal of Materials Chemistry, 2 (1992) 875-887.

[114] Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, Carbon, 45 (2007) 1686-1695.

[115] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, Journal of Power

100

Sources, 105 (2002) 13-19.

[116] S. Garbarino, A. Pereira, C. Hamel, E. Irissou, M. Chaker, D. Guay, The Journal of Physical Chemistry C, 114 (2010) 2980-2988.

[117] A. Howard, D.N.S. Clark, C.E.J. Mitchell, R.G. Egdell, V.R. Dhanak, Surface Science, 518 (2002) 210-224.

[118] P. Marcus, C. Hinnen, Surface Science, 392 (1997) 134-142.

[119] J.L. Rousset, A.J. Renouprez, A.M. Cadrot, Physical Review B, 58 (1998) 2150.

[120] B.C. Khanra, J.C. Bertolini, J.L. Rousset, Journal of Molecular Catalysis A:

Chemica,l 129 (1998) 233-240.

[121] A. Kowal, S.N. Port, R.J. Nichols, Catalysis Today, 38 (1997) 483-492.

[122] M.A. Abdel Rahim, R.M. Abdel Hameed, M.W. Khalil, Journal of Power Sources, 134 (2004) 160-169.

[123] E. Herrero, K. Franaszczuk, A. Wieckowski, The Journal of Physical Chemistry, 98 (1994) 5074-5083.

[124] Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, L.M. Gan, Journal of Power Sources, 149 (2005) 1-7.

[125] U. Koponen, T. Peltonen, M. Bergelin, T. Mennola, M. Valkiainen, J. Kaskimies, M.

Wasberg, Journal of Power Sources, 86 (2000) 261-268.

[126] J.N. Tiwari, F.M. Pan, T.M. Chen, R.N. Tiwari, K.L. Lin, Journal of Power Sources, 195 (2010) 729-735.

[127] F. Cinquini, L. Giordano, G. Pacchioni, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 120 (2008) 575-582.

[128] J.S. Spendelow, J.D. Goodpaster, P.J.A. Kenis, A. Wieckowski, The Journal of Physical Chemistry B, 110 (2006) 9545-9555.

[129] A.V. Tripković, K.D. Popović, J.D. Momčilović, D.M. Dražić, Journal of Electroanalytical Chemistry, 418 (1996) 9-20.

[130] M. Vuković, Journal of Applied Electrochemistry, 24 (1994) 878-882.

[131] H. Li, H. Li, W.-L. Dai, W. Wang, Z. Fang, J.-F. Deng, Applied Surface Science, 152 (1999) 25-34.

[132] G.B. Hoflund, W.S. Epling, Chemistry of Materials, 10 (1998) 50-58.

[133] N.S. McIntyre, M.G. Cook, Analytical Chemistry, 47 (1975) 2208-2213.

[134] A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, Surface Science, 600 (2006) 1771-1779.

[135] A. Verma, S. Basu, Journal of Power Sources, 174 (2007) 180-185.

[136] B.S. Huang, F.Y. Chang, M.Y. Wey, International Journal of Hydrogen Energy, 35 (2010) 7699-7705.

[137] H. Meng, C. Wang, P.K. Shen, G. Wu, Energy & Environmental Science, 4 (2011) 1522-1526.

101

Vita

基本資料

姓名:陳重守 (Chung-Shou Chen) 出生年月日:民國 70 年 8 月 21 日

地址:台北市中山區建國北路三段 78 號八樓 電子信箱:hockeyplayer0821@hotmail.com

學歷

國立交通大學 材料科學與工程研究所博士班 (2006.9–2011.7) 國立台北科技大學 化學工程研究所碩士班 (2004.9–2006.7) 私立中國文化大學 化學工程學系 (2000.9–2004.7)

經歷

國立交通大學 貴重儀器中心 歐傑微探能譜儀助教 (2007.9–2010.9) 國立交通大學 材料科學與工程學系 材料力學助教 (2010.9–2011.1)

國立台北科技大學 化學工程學系 輸送現象與單元操作助教 (2004.2–2005.6)

102

List of Publications

Journal Paper

[1] Chung-Shou Chen, Fu-Ming Pan, "Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation", Applied Catalysis B:

Environmental, 91 (2009) 663-669.

[2] Chung-Shou Chen, Fu-Ming Pan, Hsin-Jung Yu, "Electrocatalytic activity of Ni stalactite supported Pt nanoparticles toward methanol oxidation in alkaline medium", Applied Catalysis B: Environmental, 104 (2011) 988-995.

[3] Chung-Shou Chen, Fu-Ming Pan, Tzu-Chung Wang, "Electrocatalytic Oxidation of Methanol in Acidic Solutions on PdO Nanoflake Thin Films loaded with Pt Nanoparticles", Applied Catalysis B: Environmental, under review.

Conference Paper

[1] Chung-Shou Chen, Fu-Ming Pan, “Electrocatalytic activity of Pt Nanoparticles deposited on Porous TiO2 Supports toward methanol oxidation”, 215th Meeting of the Electrochemical Society, San Francisco, USA, May (2008). [Oral]

[2] Chung-Shou Chen, Fu-Ming Pan and Hisn-Jung Yu, “Electrocatalytic activity of Pt nanoparticles on karst-rock shaped Ni thin films toward methanol and ethanol oxidation in alkaline solutions”, 218th Meeting of the Electrochemical Society, Las Vegas, USA, Oct (2010). [Oral]