• 沒有找到結果。

Material Design Systemrefine

5.3 Future Works

The material representation of our system stores all the lighting phenomena of a material in texture maps. Thus given two to three materials, maybe we can find a reasonable way to create a new material in between using the idea in texture synthesis as [MZD05]. Also, it would be even amazing to have a clone tool for drawing materials. On the other hand, since our material representation is an extension of the g-BRDF, we can also use it to refine the fitting results of

5.3 Future Works 70

the g-BRDF. Given a BTF data set, we can firstly use the method proposed in [MG09] to obtain all the g-BRDF maps and then render it and edit the maps via our design system. In this case, a window showing the difference may be helpful to guide the editing for the user.

Bibliography

[Ash06] M. Ashikhmin. Distribution-based BRDFs., 2006. URL: http://jesper.

kalliope.org/blog/library/dbrdfs.pdf.

[CCCC08] Y. C. Chen, S. J. Chiu, H. T. Chen, and C. F. Chang. Physically-based analysis and rendering of bidirectional texture functions data. Journal of Information Science and Engineering, 24(1), 2008.

[DTPG11] Y. Dong, X. Tong, F. Pellacini, and B. Guo. Appgen: Interactive material mod-eling from a single image. ACM Transactions on Graphics (SIGGRAPH Asia 2011), 2011.

[DVGNK99] K. J. Dana, B. Van-Ginneken, S.K. Nayar, and J.J. Koenderink. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics, 18(1):1–34, Jan 1999.

[FC88] R. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10:439–451, July 1988.

[FH04] J. Filip and M. Haindl. Non-linear reflectance model for bidirectional texture function synthesis. In ICPR ’04: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04) Volume 1, pages 80–83, Washington, DC, USA, 2004. IEEE Computer Society.

71

Bibliography 72

[FH05] J. Filip and M. Haindl. Efficient image based bidirectional texture function model. In M. Chantler and O. Drbohlav, editors, Texture 2005: Proceedings of 4th Internatinal Workshop on Texture Analysis and Synthesis, pages 7–12, Ed-inburgh, October 2005. Heriot-Watt University.

[FH09] J. Filip and M. Haindl. Bidirectional texture function modeling: A state of the art survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31:1921–1940, 2009.

[HF03] M. Haindl and J. Filip. Fast BTF texture modelling. In M. Chantler, editor, Texture 2003. Proceedings, pages 47–52, Edinburgh, October 2003. IEEE Press.

[HF04] M. Haindl and J. Filip. A fast probabilistic bidirectional texture function model.

In Aurelio Campilho and Mohamed Kamel, editors, Image Analysis and Recog-nition, volume 3212 of Lecture Notes in Computer Science, pages 298–305.

Springer Berlin / Heidelberg, 2004.

[HF07] M. Haindl and J. Filip. Extreme compression and modeling of bidirectional tex-ture function. IEEE Trans. Pattern Anal. Mach. Intell., 29(10):1859–1865, 2007.

[HFA04] M. Haindl, J. Filip, and M. Arnold. BTF image space utmost compression and modelling method. In ICPR ’04: Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04) Volume 3, pages 194–197, Washington, DC, USA, 2004. IEEE Computer Society.

[HH10] M. Haindl and V. Havlicek. A compound MRF texture model. In Proceedings of the 2010 20th International Conference on Pattern Recognition, ICPR ’10, pages 1792–1795. IEEE Computer Society, 2010.

[KBD07] J. Kautz, S. Boulos, and F. Durand. Interactive editing and modeling of bidirec-tional texture functions. ACM Trans. Graph., 26(3):53, 2007.

Bibliography 73

[KMBK03] M. L. Koudelka, S. Magda, P. N. Belhumeur, and D. J. Kriegman. Acquisition, compression, and synthesis of bidirectional texture functions. In In ICCV 03 Workshop on Texture Analysis and Synthesis, 2003.

[LFTG97] E. P. F. Lafortune, S. C. Foo, K. E. Torrance, and D. P. Greenberg. Non-linear approximation of reflectance functions. In SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pages 117–126, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[McA02] D. K. McAllister. A generalized surface appearance representation for computer graphics. PhD thesis, 2002. Director-Lastra, Anselmo.

[MCC+04] W. C. Ma, S. H. Chao, B. Y. Chen, C. F. Chang, M. Ouhyoung, and T. Nishita.

An efficient representation of complex materials for real-time rendering. In VRST

’04: Proceedings of the ACM symposium on Virtual reality software and technol-ogy, pages 150–153, New York, NY, USA, 2004. ACM.

[MCT+05] W. C. Ma, S. H. Chao, Y. T. Tseng, Y. Y. Chuang, C. F. Chang, B. Y. Chen, and M. Ouhyoung. Level-of-detail representation of bidirectional texture functions for real-time rendering. In I3D ’05: Proceedings of the 2005 symposium on Interactive 3D graphics and games, pages 187–194, New York, NY, USA, 2005.

ACM.

[MG09] N. Menzel and M. Guthe. g-BRDFs: An intuitive and editable BTF representa-tion. Computer Graphics Forum, 28(8):2189–2200, 2009.

[MMK03a] J. Meseth, G. M¨uller, and R. Klein. Preserving realism in real-time rendering of bidirectional texture functions. In OpenSG Symposium 2003, pages 89–96.

Eurographics Association, Switzerland, April 2003.

Bibliography 74

[MMK03b] G. M¨uller, J. Meseth, and R. Klein. Compression and real-time rendering of measured BTFs using local PCA. In T. Ertl, B. Girod, G. Greiner, H. Niemann, H.-P. Seidel, E. Steinbach, and R. Westermann, editors, Vision, Modeling and Vi-sualisation 2003, pages 271–280. Akademische Verlagsgesellschaft Aka GmbH, Berlin, November 2003.

[MMK04] J. Meseth, G. M¨uller, and R. Klein. Reflectance field based real-time, high-quality rendering of bidirectional texture functions. Computers and Graphics, 28(1):103–112, February 2004.

[MMS+05] G. M¨uller, J. Meseth, M. Sattler, R. Sarlette, and R. Klein. Acquisition, synthe-sis and rendering of bidirectional texture functions. Computer Graphics Forum, 24(1):83–109, March 2005.

[MZD05] W. Matusik, M. Zwicker, and F. Durand. Texture design using a simplicial com-plex of morphable textures. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 787–794. ACM, 2005.

[RC98] S. Roy and I. J. Cox. A maximum-flow formulation of the n-camera stereo cor-respondence problem. In Proceedings of the Sixth International Conference on Computer Vision, ICCV ’98, pages 492–. IEEE Computer Society, 1998.

[RTG97] H. Rushmeier, G. Taubin, and A. Gu´eziec. Applying shape from lighting vari-ation to bump map capture. In In Eurographics Rendering Techniques97, pages 35–44, 1997.

[SBLD03] F. Suykens, K. V. Berge, A. Lagae, and P. Dutre. Interactive rendering with bidirectional texture functions. Computer Graphics Forum, 22:463–472, 2003.

[Tat06] N. Tatarchuk. Dynamic parallax occlusion mapping with approximate soft shad-ows. In Proceedings of the 2006 symposium on Interactive 3D graphics and games, I3D ’06, pages 63–69. ACM, 2006.

Bibliography 75

[VT04] M. A. O. Vasilescu and D. Terzopoulos. Tensortextures: multilinear image-based rendering. ACM Trans. Graph., 23(3):336–342, 2004.

[WDR11] H. Wu, J. Dorsey, and H. Rushmeier. A sparse parametric mixture model for BTF compression, editing and rendering. Computer Graphics Forum, 30(2):465–473, 2011.

[WWS+05] H. C. Wang, Q. Wu, L. Shi, Y. Yu, and N. Ahuja. Out-of-core tensor ap-proximation of multi-dimensional matrices of visual data. ACM Trans. Graph., 24(3):527–535, 2005.

[XWT+09] K. Xu, J. Wang, X. Tong, S. M. Hu, and B. Guo. Edit propagation on bidirectional texture functions. Computer Graphics Forum, 28(7):1871–1877, 2009.

相關文件