• 沒有找到結果。

Given a code C and a metric δ, determine whether the covering radius of C under δ is less than or equal to some value b

在文檔中 頻率排列碼 (頁 90-109)

Conclusion and Future Works

Definition 7.5.1. Given a code C and a metric δ, determine whether the covering radius of C under δ is less than or equal to some value b

Similar to what we mentioned in Chapter 6, when the problem instance is of sizeO (log |C|), the naive algorithm for covering radius runs inefficiently in exponential time. Moreover, the decision problem for the covering radius problem of a binary linear code under Ham-ming distance is ΠP2-complete, see McLoughlin’s work [29]. McLoughlin actually gave a

polynomial-time reduction from the AE qualified 3-Dimensional matching problem. But we cannot directly apply this reduction to the covering radius problem of a permutation code, since permutation codes have some different nature from the linear codes.

Definition 7.5.2. (CRSPAδ) Given a code C and a metric δ, determine whether the covering radius of C under δ is less than or equal to some value b.

Conjecture 7.5.3. CRSPA is ΠP2-complete.

Bibliography

[1] S. Arora, L. Babai, J. Stern, Z. Sweedyk, “The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations,” Journal of Computer and System Science, vol. 54, 1997, pp. 317–331.

[2] S. Arora, B. Barak, Computational Complexity, Cambridge University Press, 2009.

[3] A. A. Babaev, “Procedures of Encoding and Decoding of Permutations,” Cybernetics and Systems Analysis, vol. 20, pp. 861–863, 1984.

[4] E. R. Berlekamp, R. J. McEliece, H. C.A. van Tilborg, “On the Inherent Intractibility of Certain Coding Problems,” IEEE Transactions on Information Theory, pp. 384–386, 1978.

[5] I. Blake, “Permutation Codes for Discrete Channels,” IEEE Transactions on Information Theory, vol. 20, pp. 138–140, 1974.

[6] C. Buchheim, P. J. Cameron, T. Wu, “On the Subgroup Distance Problem,” Discrete Mathematics, vol. 309, pp. 962–968, 2009.

[7] P. J. Cameron, T. Wu, “The Complexity of the Weight Problem for Permutation and Matrix Groups,” Discrete Mathematics, vol. 310, pp. 408–416, 2010.

[8] P. Cappelletti, C. Golla, P. Olivo, E. Zanoni, Flash Memories, Kluwer Academic Pub-lishers, 1999.

[9] J.-C. Chang, R.-J. Chen, T. Kløve, S.-C. Tsai, “Distance-Preserving Mappings from Bi-nary Vectors to Permutations,” IEEE Transactions on Information Theory, vol. 49, pp.

1054–1059, 2003.

[10] J.-C. Chang, “Distance-Increasing Mappings from Binary Vectors to Permutations,”

IEEE Transactions on Information Theory, vol. IT-51, pp. 359–363, 2005.

[11] J.-C. Chang, “Distance-Increasing Mappings from Binary Vectors to Permutations that Increase Hamming Distances by at Least Two,” IEEE Transactions on Information The-ory, vol. 52, pp. 1683–1689, 2006.

[12] C. J. Colbourn, T. Kløve, “Permutation Arrays for Powerline Communication and Mu-tually Orthogonal Latin Squares,” IEEE Transactions on Information Theory, vol. 50, pp. 1289–1291, 2004.

[13] D. R. de la Torre, C. J. Colbourn, and A. C. H. Ling, “An Application of Permutation Arrays to Block Cipher,” Congressus Numerantium, vol. 145, pp. 5–7, 2000.

[14] M. Deza, S. A. Vanstone, “Bounds on Permutation Arrays,” Journal of Statistical Plan-ning and Inference, vol. 2, pp. 19–209, 1978.

[15] I. Dinur, “Approximating SVP to within almost Polynomial Factors is NP-hard,”

Combinatorica, vol. 23, pp. 205–243, 2003.

[16] K. Efremenko, “3-Query Locally Decodable Codes of Subexponential Length,” in Pro-ceedings of ACM Symposium on Theory of Computing, pp. 39–44, 2009.

[17] S. Huczynska, G. L. Mullen, “Frequency Permutation Arrays,” Journal of Combinatorial Designs, vol. 14, pp. 463–478, 2006.

[18] J. Fridrich and D. Soukal, “Matrix Embedding for Large Payloads,” IEEE Transactions on Information Forensics and Security, vol. 1, pp. 390–395, 2006.

[19] D. Inoue, T. Matsumoto, “A scheme of Standard MIDI Files steganography and its evaluation,” Security and Watermarking of Multimedia Contents IV, pp. 194–205, 2002.

[20] A. Jiang, R. Mateescu, M. Schwartz, J. Bruck, “Rank Modulation for Flash Memories,”

in Proceedings of IEEE International Symposium on Information Theory, pp. 1731–1735, 2008.

[21] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank Modulation,”

in Proceedings of IEEE International Symposium on Information Theory, pp. 1736–1740, 2008.

[22] S. Khot, “Hardness of Approximating the Shortest Vector Problem in Lattices,” Journal of the ACM, Vol. 52, pp. 789–808, 2005.

[23] T. Kløve, “Spheres of Permutations under the Infinity Norm - Permutations with Limited Displacement,” Reports in Informatics, Dept. of Informatics, Univ. Bergen, Report no.

376, 2008.

[24] T. Kløve, “Frequency Permutation Arrays within Distance one,” Reports in Informatics, Dept. of Informatics, Univ. Bergen, Report no. 382, 2009.

[25] T. Kløve, “Lower Bounds on the Size of Spheres of Permutations under the Chebychev Distance,” Designs, Codes and Cryptography, vol. 59, pp. 183–191, 2011.

[26] T. Kløve, T.-T. Lin, S.-C. Tsai, W.-G. Tzeng, “Permutation Arrays Under the Chebyshev Distance,” IEEE Transactions on Information Theory, vol. 56, pp. 2611–2617, 2010.

[27] M. Kwan, The GIF Shuffle,

http://www.darkside.com.au/gifshuffle/

[28] T.-T. Lin, S.-C. Tsai, W.-G. Tzeng, “Efficient Encoding and Decoding with Permutation Arrays,” in Proceedings of IEEE International Symposium on Information Theory, pp.

211-214, 2008.

[29] A. M. McLoughlin, “The Complexity of Computing the Covering Radius of a Code,”

IEEE Transactions on Information Theory, vol. 30, pp. 800–804, 1984.

[30] C. Papadimitriou, Computational Complexity, Addison-Wesley Publishing Co, 1995.

[31] K. W. Shum, ”Permutation Coding and MFSK Modulation for Frequency Selective Channel,” IEEE Personal, Indoor and Mobile Radio Communications, vol. 13, pp. 2063–

2066, Sept. 2002.

[32] M. Schwartz, “Efficiently Computing the Permanent and Hafnian of some Banded Toeplitz Matrices,” Linear Algebra and its Applications, vol. 430, pp. 1364–1374, 2009 [33] C. Sims, “Computational Methods in the Study of Permutation Groups”, Computational

Problems in Abstract Algebra, pp. 169–183, 1970.

[34] D. E. Stevenson, “PNG Palette Permuter,” in Proceedings of the 11th annual SIGCSE, Conference on Innovation and Technology in Computer Science Education, pp. 143–147, 2006.

[35] T. G. Swart, H. C. Ferreira, “Decoding Distance-Preserving Permutation Codes for Power-Line Communications,” in Proceedings of IEEE AFRICON, pp. 1–7, 2007.

[36] D. Slepian, “Permutation Modulation,” Proceedings of the IEEE, vol. 53, pp. 228–236, Mar. 1965.

[37] I. Tamo, M. Schwartz, “Correcting Limited-Magnitude Errors in the Rank-Modulation Scheme,” IEEE Transactions on Information Theory, vol. 56, pp. 2551–2560, Jun. 2010.

[38] L. Trevisan, “Some Applications of Coding Theory in Computational Complexity,”

Quaderni di Matematica, vol. 13, pp. 347–424, 2004.

[39] J. H. van Lint, R. M. Wilson, A Course in Combinatiorics 2nd ed., Cambridge University Press, 2001.

[40] A. Vardy, “The Intractability of Computing the Minimum Distance of a Code,” IEEE Transactions on Information Theory, vol. 43, pp. 1757–1766, 1997.

[41] A. J. H. Vinck, J. Häring, “Coding and Modulation for Power-Line Communications,”

in Proceedings of International Symposium on Power Line Communications, pp. 265-272, Apr. 2000.

[42] A. J. H. Vinck, J. Häring, T. Wadayama, “Coded M-FSK for Power Line Communica-tions,” in Proceedings of IEEE International Symposium on Information Theory, p. 137, 2000.

[43] A. J. H. Vinck, “Coded Modulation for Powerline Communications,” AEU International Journal of Electronics and Communications, vol. 54, pp. 45–49, 2000.

[44] Z. Wang, A. A. Jiang, J. Bruck, “On the Capacity of Bounded Rank Modulation for Flash Memories,” in Proceedings of IEEE International Symposium on Information The-ory, pp. 1234–1238, 2009.

[45] S. Yekhanin, “Towards 3-query Locally Decodable Codes of Subexponential Length,”

Journal of the ACM, vol. 55, pp. 1–16, 2008.

Appendix A

Tables of Ball Size

We list the tables of ball size which are not given in previous results.

Table A.1: The table of ball size under ℓ-metric for λ = 2, m∈ [20], d = 2 n V (2, n, 2, ℓ)

2 1

4 6

6 90

8 786

10 6139

12 54073

14 477228

16 4113864

18 35579076

20 308945881 22 2679325561 24 23222971098 26 201351085146 28 1745886520422 30 15137227297027 32 131243141767393 34 1137923361184848 36 9866167034815440 38 85542686564024352 40 741681846818742097

Table A.2: The table of ball size under ℓ-metric for λ = 2, m∈ [20], d = 3 n V (2, n, 3, ℓ)

2 1

4 6

6 90

8 2520

10 45450

12 669666

14 9747523

16 154700569

18 2502207156

20 40043708244

22 632349938520 24 9986116318524 26 158192179607364 28 2509767675626581 30 39796612230719845 32 630688880128338378 34 9994168619297530758 36 158396161513685960664 38 2510580301930785916566 40 39792149406721332018414

Table A.3: The table of ball size under ℓ-metric for λ = 2, m∈ [20], d = 4 n V (2, n, 4, ℓ)

2 1

4 6

6 90

8 2520

10 113400

12 3540600

14 88610850

16 2044242426

18 47806940971

20 1196081134201

22 30647443460124 24 784921116539484 26 19899840884886720 28 500019936693729120 30 12551808236761063440 32 315694279415609776404 34 7955400980632212027852 36 200622722060793477132937 38 5057787000067792980984649 40 127452627155747602225756890

Table A.4: The table of ball size under ℓ-metric for λ = 2, m∈ [20], d = 5 n V (2, n, 5, ℓ)

2 1

4 6

6 90

8 2520

10 113400

12 7484400

14 361859400

16 14091630840

18 489147860970

20 16420511188146

22 563209318269379

24 20416518083009593 26 758713036253909844 28 28351365170599079604 30 1054143198114097909680 32 38864351069181445164480 34 1423417411123883479886400 36 52064892889568503574209920 38 1906534315066176639758670480 40 69931615009402042606373019804

Table A.5: The table of ball size under ℓ-metric for λ = 3, m∈ [20], d = 2 n V (3, n, 2, ℓ)

3 1

6 20

9 1680

12 61340

15 1886431

18 69496201

21 2568223000

24 91712960320

27 3290467596440

30 118724053748417

33 4276273204804217 36 153904262366842444 39 5541519231941145440 42 199545071017172522244 45 7184755645113714298863 48 258691998154725997048673 51 9314545233907934721851472 54 335381528796576643131475840 57 12075785123501322139824319056 60 434802491356562053648077727185

Table A.6: The table of ball size under ℓ-metric for λ = 3, m∈ [20], d = 3

n V (3, n, 3, ℓ)

3 1

6 20

9 1680

12 369600

15 41480880

18 3422150780

21 276888204387

24 25512718688405

27 2418264595619240

30 225661997838758560

33 20649533952628896000 36 1889648253594082624960 39 173699198403114756474600 42 16001577154624484682748453 45 1472965856766989578006355117 48 135481185586476496195656612044 51 12459839493182349378716705969200 54 1146141579672729885487800599057600 57 105440511941055519854115528116882480 60 9699923367172090411762252385134967844

Table A.7: The table of ball size under ℓ-metric for λ = 4, m∈ [20], d = 2

n V (4, n, 2, ℓ)

4 1

8 70

12 34650

16 5562130

20 708212251

24 114774147001

28 18679465660540

32 2906167849870600

36 454904037056013460

40 71729455730285511001

44 11285129375761977675001 48 1773699532985462649188410 52 278931562239767189408085850 56 43869015908453746845566145990 60 6898693708786029238293860809251 64 1084865341390442288732669957148001 68 170605963060816377946936433265175680 72 26829411396875692269491197638918648400 76 4219165662049303123773116859323196816720 80 663502408038018748448058464247159216890001

Table A.8: The table of ball size under ℓ-metric for λ = 5, m∈ [20], d = 2

n V (5, n, 2, ℓ)

5 1

10 252

15 756756

20 549676764

25 298227062281

30 218838390759073

35 161446400503248672

40 112632613848657302400

45 79169699996993643966432

50 56151546386557366024202177

55 39717291593245217794329362081

60 28058660061656964336359435570604 65 19835819533825566529982592591911412 70 14024417724324420598672399947721245804 75 9914206081036463014882722168252570938889 80 7008596284293402975749309111124669929079521 85 4954676885097638926007640423100194180529855296 90 3502659589845301193905028251874353899223998638208 95 2476160267409321946445662150301548547825713614803904 100 1750492069977099993617695861204414333904857504132837761

Appendix B

在文檔中 頻率排列碼 (頁 90-109)

相關文件