• 沒有找到結果。

The immobilization of mouse-IgG and anti-mouse IgG onto gold-silicide nanowires

Chapter 4: Results and Discussion

4.3 Immobilization of Biomolecules onto the Gold-Silicide Nanowire and Electrical Properties

4.3.6 The immobilization of mouse-IgG and anti-mouse IgG onto gold-silicide nanowires

4.3.6 The immobilization of mouse-IgG and anti-mouse IgG onto gold-silicide nanowires

We choose the process of annealing by furnace at 500℃ for this experiment according to the previous results of the measurements of conductance and fluorescent images. The samples were immobilized with mouse-IgG and FITC-conjugated anti-mouse IgG, and then directly Figure 4.35: The conductance of the gold-silicide nanowires of various widths with

biotin and streptavidin immobilization.

observed under the fluorescent microscope. The SEM morphology in Figure 4.36 showed the pad and various nanowires of gold-silicide. The nanowires were fabricated as our expected widths. The binding of the mouse-IgG and anti-mouse IgG onto the nanowires and pads were too tiny to be seen in the images.

(a) (b)

(c) (d)

(e)

Figure 4.36: The SEM images of the gold-silicide nanowires with various widths annealing at 500℃ by furnace then immobilizing mouse-IgG and hybridizing FITC-conjugated anti-mouse IgG. (a) 80 nm (b) 100 nm (c) 120 nm (d) 200 nm (e) pad.

Figure 4.37 revealed the fluorescent images of the samples. The upper image was the sample modified by 1,2-ethanedithiol and sulfoSMCC and successful immobilized

mouse-IgG and FITC-conjugated anti-mouse IgG. The lower image was the sample without modification can not immobilize mouse-IgG and FITC-conjugated anti-mouse IgG.

The electrical properties of the samples were shown in Figure 4.38. The samples with linker modification could immobilize mouse-IgG and have no obvious changes (Figure 4.38a). When the anti-mouse IgG added to combine with mouse-IgG, the conductance Figure 4.37: The images of the gold-silicide pads and nanowires annealing at 500℃

by furnace. The fluorescence of FITC-conjugated anti-mouse IgG with (upper) and without (lower) surface modification.

increased significantly (Figure 4.38b). If we wash the sample with boiling water for 10 minutes, the mouse-IgG and anti-mouse IgG will denature and can not bind to each other [10].

The conductance restores to the value before immobilization. The sample without surface modification in Figure 4.38c could evaluate the non-specific binding of the mouse-IgG and alter some changes for the electrical property. The non-specific binding of mouse-IgG could fix the anti-mouse IgG. The simultaneous existence of mouse-IgG and anti-mouse IgG on the surface of the gold-silicide nanowire could affect the electrical property.

(a) (c)

(b)

Figure 4.38: The conductance of the gold-silicide nanowires of various widths with IgG and anti-IgG immobilization.

Although the BSA and the detergent Tween 20 were already used in the experiment, we still need some efforts to reduce the non-specific binding in the future. In a short conclusion, the gold-silicide nanowire could use to immobilize a specific biomolecule of interest by our surface modification and binding techniques. We could direct observe the specific binding under fluorescent microscope or measure the changes of electrical properties. The change maybe due to that the current flows extremely close to the surface, the biological

macromolecules bound to the surface of a nanowire and undergoing a binding event with conformational change or change of charge state, may thus affect the current flow in the nanowire. This mechanism is beneficial for a biosensor with state-of-the-art semiconductor manufacturing to detect low concentration of biomolecules.

Chapter 5: Conclusions

The immobilization between the solid support and biomolecules is very important for the interdisciplinary studies of biotechnology and semiconductor fields. The key to

immobilization is the surface modification. We firstly immobilize rhodamine by APTES and glutaraldehyde modification onto various substrates and find out the best solid support is silicon dioxide. The active enzyme, namely sulfotransferase, is also successfully immobilized by APTES and sulfoSMCC modification on the silicon dioxide and still has the activity. We also propose a new material of gold-silicide nanowires to immobilize biomolecules. We fabricate the gold-silicide nanowires by annealing gold-coated poly-silicon nanowires, followed with gold removal by aqua regia. The gold-silicide nanowires have controllable widths and lengths. After surface modification with 1,2-ethanedithiol and SulfoSMCC, the gold-silicide nanowires readily immobilize biomolecules such as hydrazide-biotin and IgG.

The biotin and IgG could bind to streptavidin and anti-IgG, respectively. We observe the specific biomolecules under fluorescent microscope and measure the changes of electrical property. The proposed gold-silicide nanowires, for the first time, can be a very effective means to sense various important biomolecules. These devices also possess the advantages of very high sensitivity, label free and low cost.

References

Chapter 1

[1] T. Sakata & Y. Miyahara. “Detection of DNA recognition events using multi-well field effect devices.” Biosensors and Bioelectronics 21, 827–832 (2005).

[2] G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang, C. M. Lieber. “Multiplexed electrical detection of cancer markers with nanowire sensor arrays.” Nature biotechnology 23, 1294-1301 (2005).

[3] Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber. “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species.” Science 293, 1289-2192 (2001).

[4] BIACORE AB. BIACORE Application Handbook (1998).

[5] M. W. Duffel, A. D. Marshal, P. McPhie, V. Sharma, W. B. Jakoby. “Enzymatic aspects of the phenol (aryl) sulfotransferases.” Drug Metab Rev. 33, 369-395 (2001).

[6] R. M. Weinshilboum, D. M. Otterness, I. A. Aksoy, T. C. Wood, C. Her, R. B. Raftogianis.

“Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes.”

FASEB J. 11, 3-14 (1997).

[7] C. Clarke, P. Thorburn, D. McDonald, J. B. Adams. “Enzymic synthesis of steroid sulphates.

XV. Structural domains of estrogen sulphotransferase.” Biochim. Biophys. Acta. 707, 28-37 (1982).

[8] E. Chapman, M. D. Best, S. R. Hanson, C. H. Wong. “Sulfotransferases: structure,

mechanism, biological activity, inhibition, and synthetic utility.” Angew. Chem. Int. Ed. Engl.

43, 3526-3548 (2004).

[9] M. S. Paget and M. J. Buttner. “Thiol-based regulatory switches.” Annu. Rev. Genet. 37, 91-121 (2003).

[10] C. Lind, R. Gerdes, Y. Hamnell, I. Schuppe-Koistinen, H. B. von Lowenhielm, A.

Holmgren, I. A. Cotgreave. “Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis.”

Arch. Biochem. Biophys. 406, 229-240 (2002).

[11] Y. Ji, V. Toader, B. M. Bennett. “Regulation of microsomal and cytosolic glutathione S-transferase activities by S-nitrosylation.” Biochem. Pharmacol. 63, 1397-1404 (2002).

[12] R. Gopalakrishna, S. Jaken. “Protein kinase C signaling and oxidative stress.” Free Radic.

Biol. Med. 28, 1349-1361 (2000).

[13] A. D. Marshall, P. McPhie, W. B. Jakoby. “Redox control of aryl sulfotransferase specificity.” Arch. Biochem. Biophys. 382, 95-104 (2000).

[14] Y. S. Yang, S. W. Tsai, E. S. Lin. “Effects of 3’-phosphoadenosine 5’-phosphate on the activity and folding of phenol sulfotransferase.” Chem. Biol. Interact. 109, 129-135 (1998).

[15] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, R. S. Williams. “Sequence-specific label-free DNA sensors based on silicon nanowires.” Nano Lett. 4, 245-247 (2004).

[16] H. R. Byon, H. C. Choi. “Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor

applications sequence-specific label-free DNA sensors based on silicon nanowires.” J. Am.

Chem. Soc. 128, 2188-2189 (2006).

[17] G. Maruccio, P. Visconti, V. Arima, S. D’Amico, A. Biasco, E. D’Amone, R. Cingolani, R.

Rinaldi. “Field effect transistor based on a modified DNA base.” Nano Lett. 3, 479-483 (2003).

[18] J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, P. Avouris. “Field-modulated carrier transport in carbon nanotube transistors.” Phys. Rev. Lett. 89, 126801 (2002).

[19] S. J. Tans, A. R. M. Verschueren, C. Dekker. “Room-temperature transistor based on a single carbon nanotubes.” Nature 393, 49-52 (1998).

[20] G. Maruccio, A. Biasco, P. Visconti, A. Bramanti, P. P. Pompa, F. Calabi, R. Cingolani, R.

Rinaldi, S. Corni, R. Di Felice, E. Molinari, M. P. Verbeet, G. W. Canters. “Towards protein field-effect transistors: report and model of a prototype.” Adv. Mater. 17, 816-822 (2005).

[21] R. F. Wolffenbutte. “Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond.” Sensors and Actuators A 62, 680-686 (1997).

[22] M. Hansen, K. Anderko. Constitution of Binary Alloy, 2nd ed. (McGraw-Hill, New York, 1958).

[23] J. F. Chang, T. F. Young, Y. L. Yang, H. Y. Ueng, T. C. Chang. “Silicide formation of Au thin films on (100) Si during annealing.” Materials Chemistry and Physics 83, 199–203 (2004).

[24] S. R. Das, K. Sheergar, D. X. Xu, A. Naem. “Thickness dependence of the properties and thermal stability of PtSi films.” Thin Solid Films 253, 467 (1994).

[25] Q. Z. Hong, S. Q. Hong, F. M. D’Heurle, J. M. E. Harper. ”Thermal stability of silicide on

polycrystalline Si.” Thin Solid films 253, 479 (1994).

[26] T. Sano, S. Vajda, C. R. Cantor. ”Genetic engineering of streptavidin, a versatile affinity tag.” Journal of Chromatography B 715, 85–91 (1998).

[27] W. A. Hendrickson, A. Pahler, J. L. Smith, Y. Satow, E. A. Merritt, R. P.

Phizackerley. ”Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation.” Proc. Natl. Acad. Sci. USA 86, 2190-2194 (1989).

[28] D. Pacheco-Alvarez, R. S. Solórzano-Vargas, A. León Del Río. “Biotin in metabolism and its relationship to human disease.” Archives of Medical Research 33, 439–447 (2002).

[29] Janeway CA, Jr. et al. Immunobiology, 6th ed. (Garland Science, 2005).

[30] K. F. Karpinski. “Optimality assessment in the enzyme-linked immunosorbent assay (ELISA).” Biometrics 46, p381-390 (1990).

[31] H. Siitari, I. Hemmilä, E. Soini, T. Lövgren & V. Koistinen. “Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay.” Nature 301, 258-260 (1983).

[32] N. Ida, T. Hartmann, J. Pante, J. Schröder, R. Zerfass, H. Förstl, R. Sandbrink, C. L. Masters, K. Beyreuther. “Analysis of heterogeneous βA4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive western blot assay.” The Journal of Biological Chemistry 271, 22908–22914 (1996).

[33] F. H. o, Z. H. Yeh, C. C. Chen, T. F. Liu. “Self-aligned platinum-silicide nanowires for biomolecule sensing.” J. Vac. Sci. Technol. B 23, 3000-3005 (2005).

Chapter 2

[1] J. R. Chen, Y. Q. Miao, N. Y. He, X. H. Wu, S. J. Li. “Nanotechnology and biosensors.”

Biotechnology Advances 22, 505–518 (2004).

[2] R. P. Feynman in Miniaturization (Ed.: H. D. Gilbert), Reinhold, New York, 282-296, (1961).

[3] C. M. Niemeyer. “Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science.” Angew. Chem. Int. Ed. 40, 4128-4158 (2001).

[4] G. M. Whitesides, J. P. Mathias, C. T. Seto. “Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures.” Science 254, 1312-1319 (1991).

[5] Ward, MD. Ebersole. RC. 1996. US patent 5501986.

[6] D. Maxwell, M. J. Taylor, S. Nie. “Self-assembled nanoparticle probes for recognition and

detection of biomolecules.” J. Am. Chem. Soc.124, 9606-9612 (2002).

[7] J. Richardson, P. Hawkins, R. Luxton. “The use of coated paramagnetic particles as a physical label in a magnetoimmunoassay.” Biosens. Bioelectron.16, 989-993 (2001).

[8] X. Xu, S. Liu, H. Ju. ”A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode.”

Sensors 3, 350-360 (2003).

[9] M. B. Gonzalez-Garcia, C. Fernandez-Sanchez, A. Costa-Garcia. “Colloidal gold as an electrochemical label of streptavidin–biotin interaction.” Biosens. Bioelectron. 15, 315-321 (2000).

[10]M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos. “Semiconductor nanocrystals as fluorescent biological labels.” Science 281, 2013–2016 (1998).

[11] W. C. W. Chan, S. M. Nie. “Quantum dot bioconjugates for ultrasensitive nonisotopic detection.” Science 281, 2016–2018 (1998).

[12] X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J P. Larson, N. F. Ge, F. Peale, M. P. Bruchez. “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.” Nat. Biotechnol. 21, 41–46 (2003)

[13] P. S. Eastman, W. Ruan, M. Doctolero, R. Nuttall, G. de Feo, J. S. Park, S. F. Julia Chu, P.

Cooke, J. W. Gray, S. Li, F. Q. Frank Chen. “Qdot Nanobarcodes for Multiplexed Gene Expression Analysis.” Nano Let. 6, 1059-1064 (2006).

[14] Y. Cui, Q. Wei, H. Park, C. M. Lieber. “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species.” Science 293, 1289-1292 (2001).

[15] J. J. Davis, K. S. Coleman, B. R. Azamian, C. B. Bagshaw, M. L. H. Green. “Chemical and biochemical sensing with modified single walled carbon nanotubes.” Chem. Eur. J. 9, 3732-3739 (2003).

[16] R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, Nadine W. S. Kam, M. Shim, Y. M. Li, W.

Kim, P. J. Utz, H. J. Dai. “Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors.” Proc. Natl. Acad. Sci. USA 100, 4984–4989 (2003).

[17] J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer. “Translating biomolecular recognition into nanomechanics.” Science 288, 316-318 (2000).

[18] D. G. Castner, B. D. Ratner. ”Biomedical surface science: foundations to frontiers.” Surface Science 500, 28–60 (2002).

[19] G. M. Whitesides, G. S. Ferguson, D. Allara, D. Scherson, L. Speaker, A. Ulman.

“Organized molecular assemblies.” Crit. Rev. Surf. Chem. 3, 49–65 (1993).

[20] N. L. Jeon, R. G. Nuzzo, Y. Xia, M. Mrksich, G. M. Whitesides. “Patterned self-assembled monolayers formed by microcontact printing direct selective metalization by chemical vapor deposition on planar and nonplanar substrates.” Langmuir 11, 3024–3026 (1995).

[21] H. Kuhn. “Functionalized monolayer assembly manipulation.” Thin Solid Films 99, 1–16 (1983).

[22] R. G. Nuzzo, D. L. Allara. ”Adsorption of bifunctional organic disulfides on gold surfaces.”

J. Am. Chem. Soc. 105, 4481–4483(1983).

[23] A. S. Rudolph. “Biomaterial biotechnology using selfassembled lipid microstructures.” J.

Cellular Biochem. 56, 183–187 (1994).

[24] M. Pomerantz, A. Segmuller, L. Netzer, J. Sagiv. “Coverage of Si substrates by self-assembling monolayers and multilayers as measured by IR, wettability and X-ray diffraction.” Thin Solid Films 132, 153–162 (1985).

[25]A. Ulman, J.E. Eilers, N. Tillman. “Packing and molecular orientation of alkanethiol monolayers on gold surfaces.” Langmuir 5, 1147–1152 (1989).

[26] C.D. Bain, G.M. Whitesides. “Molecular-level control over surface order in self-assembled monolayer films of thiols on gold.” Science 240, 62–63 (1988).

[27] M. Kunitake, N. Batina, K. Itaya, “Self-organized porphyrin array on iodine-modified Au (111) in electrolyte solutions: In situ scanning tunneling microscopy study.” Langmuir 11, 2337–2340 (1995).

[28] T. Boland, B.D. Ratner. “Two dimensional assembly of purines and pyrimidines on Au (111).” Langmuir 10, 3845–3852 (1994).

[29] A. Wawkuschewski, H. J. Cantow, S. N. Magonov. “Scanning tunneling microscopy of alkane adsorbates at the liquid/graphite interface.” Langmuir 9, 2778–2781 (1993).

[30] D. Pum, U.B. Sleytr. “Monomolecular reassembly of a crystalline bacterial cell surface layer (S-layer) on untreated and modified silicon surfaces.” Supramol. Sci. 2, 193–197 (1995).

[31]T. M. Phillips. “Rapid analysis of inflammatory cytokines in cerebrospinal fluid using chip-based immunoaffinity electrophoresis.” Electrophoresis 25, 1652–1659 (2004).

[32] R. Polzius, T. Schneider, F. F. Bier, U. Bilitewski. “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides.” Biosens. Bioelectron. 11, 503-514

(1996).

[33] B. K. Oh, Y. K. Kim, K. W. Park, W. H. Lee, J. W. Choi. “Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium.” Biosens. Bioelectron. 19, 1497-1504 (2004).

[34] G. J. Wegner, H. J. Lee, G. Marriott, R. M. Corn. “Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein-protein and protein-DNA interactions.” Anal. Chem. 75, 4740-4746 (2003).

Chapter 3

[1] H. Yuan, W. M. Mullett, J. Pawliszyn. “Biological sample analysis with immunoaffinity solid-phase microextraction.” Analyst 126, 1456–1461 (2001).

[2] A. Simon, T. Cohen-Bouhacina, M. C. Porté, J. P. Aimé, and C. Baquey. “Study of Two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface.”

Journal of Colloid and Interface Science 251, 278–283 (2002).

[3] E. Chapman, M. D. Best, S. R. Hanson, C. H. Wong. “Sulfotransferases: structure,

mechanism, biological activity, inhibition, and synthetic utility.” Angew. Chem. Int. Ed. Engl.

43, 3526-3548 (2004).

[4] S. Taylor, S. Smith, B. Windle, A. Guiseppi-Elie. “Impact of surface chemistry and blocking strategies on DNA microarrays.” Nucleic Acids Research 28, No. 20, e87

Chapter 4

[1] M. Hansen, K. Anderko. Constitution of Binary Alloy, 2nd ed. (McGraw-Hill, New York, 1958).

[2] R. F. Wolffenbutte. “Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond.” Sensors and Actuators A 62, 680-686 (1997).

[3] M. Moniwa, K. Kusukawa, E. Murakami, T. Warabisako, M. Miyao. “Influence of Si film thickness on growth enhancement in Si lateral solid phase epitaxy.” Appl. Phys. Lett. 52, 1788-1790 (1988).

[4] A. Chatterjee, M. Rodder,I. C. Chen. “A transistor performance figure-of-merit including the effect of gate resistance and its application to scaling to sub-0.25-μm CMOS logic

technologies.” IEEE Transactions on Election Devices 45, 1246-1652 (1998).

[5] J. F. Chang, T. F. Young, Y. L. Yang, H. Y. Ueng, T. C. Chang. “Silicide formation of Au thin films on (100) Si during annealing.” Materials Chemistry and Physics 83, 199–203 (2004).

[6] T. Adachi. “Eutectic reaction of gold thin-films deposited on silicon surface.” Surface Science 506, 305–312 (2002).

[7] M. Paulose, O. K. Varghese, C. A. Grimes. “Synthesis of Gold-Silica Composite Nanowires through Solid-Liquid-Solid Phase Growth.” J. Nanosci. Nanotech. 3, 341-346 (2003).

[8] T. Ohguro, S. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, H. Iwai. “Analysis of resistance behavior in Ti- and Ni-salicided

polysilicon films.” IEEE Transactions on Electron Devices 41, 2305-2317 (1994).

[9] H. M. Wang, M. S. Chan, Y. Y. Wang, P. K. Ko. “The behavior of narrow-width SOI MOSFET’s with MESA isolation.” IEEE Transactions on Election Devices 47, 593-600 (2000).

[10] A. Holmberg, A. Blomstergren, O. Nord, M. Lukacs, J. Lundeberg, M. Uhlén. “The

biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures.”

Electrophoresis 26, 501–510 (2005).

相關文件