• 沒有找到結果。

Improving completeness of regulation role of small non-coding RNAs by adding other kind

6. Discussions

6.2 Improving completeness of regulation role of small non-coding RNAs by adding other kind

Next-generation sequencing technology is the good way for analyzing small non-coding RNAs. To deeply investigate the regulation role of small RNAs, multiple information such as gene expression data from cDNA microarray, gene function (GO) and pathways are combined in previous studies or my study.

However, it is still not enough to completely decipher the pathway of small non-coding RNAs. Several kinds of NGS data can be merged for doing more comprehensive analysis.

The first is RNA-seq which is the application of NGS. It is used to detect the expression level of transcripts. Unlike cDNA microarray, RNA-seq can detect novel alternative splicing events and more correctly monitor the expression of transcripts. The probe sets of cDNA microarray are designed based on whole known isoforms. So, RNA-seq can more sensitively detect the expression level of each isoform. In miRNAs and siRNAs target site prediction, the more correct mRNA expression profile is helpful for reducing the false positive rate of prediction due to the miRNAs and siRNAs down-regulating the expression level of mRNAs. Moreover, the mRNA expression profile of RNA-seq can also reduce the false positive rate of predicting transcriptional cis-regulatory elements in the promoter regions. For example, E2F3, a transcription factor, is predicted that induces a set of miRNAs by binding their promoter regions. If E2F3 is not detected in the mRNA expression profile, it is not the candidate for regulating these miRNAs. If the set of miRNAs are up-regulated but E2F3 is down-regulated, E2F3 is not the regulator of these miRNAs.

90

The second is chip (chromatin immunoprecipitation)-seq which is another application of NGS. Chip-seq is applied for high-throughput screening the DNA sequences which are bound by selected proteins. These proteins can be transcription factors (TFs) or other important proteins in biological processes.

After mapping the sequencing reads of chip-seq of selected transcription factor to genomes, the TFBSs (transcription factor binding sites) are identified in the sequence abundant regions. These experimental evidences can be used to build the relationship between miRNAs and the TFs which regulate them. For example, the sequence abundant regions locate the promoter region of miRNAs. The TFs have high possibility regulating miRNAs. The complete miRNA regulatory network from transcription to translation level can be generated by combing RNA-seq and chip-seq.

The third is CLIP (crosslinking immunoprecipitation)-seq which is the novel application of NGS. CLIP-seq is the method for high-throughput screening the RNA sequences which are bound by selected proteins. Recent studies use AGO (Argonaute) protein to do CLIP-seq [180-181]. AGO protein is required for miRNAs and siRNAs targeting mRNAs. So, the miRNA and mRNA interaction sites can be detected by AGO CLIP-seq. AGO CLIP-seq can directly give the evidence of miRNA and mRNA interactions. But these interaction sites need to be further analyzed. This is because AGO CLIP-seq is global screening the miRNA and mRNA interaction sequences. Identifying what miRNAs interact with these sequences is required. For example, the interaction region is chr1: 156770-156798 [+] in human. All known miRNAs are used to find the interaction in this region or not by current target site prediction guideline.

91

The fourth is Degradome-Seq (degradome sequencing) which is designed for identifying the miRNA cleavage sites by using a modified 5’-rapid amplification of cDNA ends (RACE) with next-generation sequencing technology. Degradome-Seq first is used to find miRNA target sites in plants [71, 182-185]. Recently, some studies are purposed that they used Degradome-Seq to identify miRNA-derived cleavage sites [186-187]. Therefore, Degradome-Seq can give the direct evidence of miRNA and mRNA interactions in plants and animals.

The final is high-throughput sequencing of DNA methylation. There are three high-throughput sequencing methods for DNA methylation such as bisulfate-sequencing (BS-seq), methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methyl-binding protein sequencing (MBD-seq) [188]. The degree of DNA methylation affects the transcription processes. In plants, the function of hc-siRNAs regulates gene expression by triggering DNA methylation.

Therefore, the DNA methylation profile can be applied for identifying relationship between hc-siRNAs and their target genes.

92

References

1. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.

2. Kent, W.J., BLAT--the BLAST-like alignment tool. Genome Res, 2002. 12(4): p.

656-64.

3. Jiang, H. and W.H. Wong, SeqMap: mapping massive amount of

oligonucleotides to the genome. Bioinformatics, 2008. 24(20): p. 2395-6.

4. Lin, H., et al., ZOOM! Zillions of oligos mapped. Bioinformatics, 2008. 24(21):

p. 2431-7.

5. Li, H., J. Ruan, and R. Durbin, Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res, 2008. 18(11): p.

1851-8.

6. Langmead, B., et al., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 2009. 10(3): p. R25.

7. Li, R., et al., SOAP: short oligonucleotide alignment program. Bioinformatics, 2008. 24(5): p. 713-4.

8. Friedlander, M.R., et al., Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol, 2008. 26(4): p. 407-15.

9. Wang, W.C., et al., miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics, 2009. 10: p. 328.

10. Ronen, R., et al., miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics, 2010. 26(20): p. 2615-6.

11. Hackenberg, M., et al., miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res, 2009. 37(Web Server issue): p. W68-76.

12. Pantano, L., X. Estivill, and E. Marti, SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res, 2010. 38(5): p.

e34.

13. Huang, P.J., et al., DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res, 2010. 38(Web Server issue): p. W385-91.

14. Zhu, E., et al., mirTools: microRNA profiling and discovery based on

high-throughput sequencing. Nucleic Acids Res, 2010. 38(Web Server issue): p.

W392-7.

15. Kanehisa, M., The KEGG database. Novartis Found Symp, 2002. 247: p. 91-101;

discussion 101-3, 119-28, 244-52.

16. Berezikov, E., et al., Diversity of microRNAs in human and chimpanzee brain.

93

Nat Genet, 2006. 38(12): p. 1375-7.

17. Morin, R.D., et al., Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res, 2008.

18(4): p. 610-21.

18. Bar, M., et al., MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells, 2008. 26(10): p.

2496-505.

19. Nygaard, S., et al., Identification and analysis of miRNAs in human breast cancer and teratoma samples using deep sequencing. BMC Med Genomics, 2009. 2: p. 35.

20. Jima, D.D., et al., Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. Blood, 2010. 116(23): p. e118-27.

21. Pantaleo, V., et al., Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology, 2010. 408(1): p. 49-56.

22. Marti, E., et al., A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing. Nucleic Acids Res, 2010. 38(20): p. 7219-35.

23. Ribeiro-dos-Santos, A., et al., Ultra-deep sequencing reveals the microRNA expression pattern of the human stomach. PLoS One, 2010. 5(10): p. e13205.

24. Xu, M.J., et al., Identification and characterization of microRNAs in Clonorchis sinensis of human health significance. BMC Genomics, 2010. 11: p. 521.

25. Shao, N.Y., et al., Comprehensive survey of human brain microRNA by deep sequencing. BMC Genomics, 2010. 11: p. 409.

26. Liao, J.Y., et al., Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS One, 2010. 5(5): p. e10563.

27. Szczyrba, J., et al., The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res, 2010. 8(4): p. 529-38.

28. Schulte, J.H., et al., Deep sequencing reveals differential expression of

microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res, 2010. 38(17): p. 5919-28.

29. Creighton, C.J., et al., Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One, 2010. 5(3): p. e9637.

30. Xu, G., et al., Characterization of the small RNA transcriptomes of androgen dependent and independent prostate cancer cell line by deep sequencing.

PLoS One, 2010. 5(11): p. e15519.

31. Fehniger, T.A., et al., Next-generation sequencing identifies the natural killer

94

cell microRNA transcriptome. Genome Res, 2010. 20(11): p. 1590-604.

32. Beck, D., et al., Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in Myelodysplastic Syndromes.

BMC Med Genomics, 2011. 4: p. 19.

33. Persson, H., et al., Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res, 2011. 71(1): p. 78-86.

34. Vaz, C., et al., Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics, 2010. 11: p. 288.

35. Hackl, M., et al., Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of

microRNAs as targets for cellular engineering. J Biotechnol, 2011.

36. Ling, K.H., et al., Deep sequencing analysis of the developing mouse brain reveals a novel microRNA. BMC Genomics, 2011. 12(1): p. 176.

37. Ruby, J.G., et al., Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell, 2006. 127(6): p.

1193-207.

38. Stark, A., et al., Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 2007. 450(7167): p. 219-32.

39. Burnside, J., et al., Deep sequencing of chicken microRNAs. BMC Genomics, 2008. 9: p. 185.

40. Glazov, E.A., et al., A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res, 2008. 18(6): p.

957-64.

41. Chen, X., et al., Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol, 2009. 10(7): p. R78.

42. Friedlander, M.R., et al., High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci U S A, 2009. 106(28): p. 11546-51.

43. Rathjen, T., et al., High throughput sequencing of microRNAs in chicken somites. FEBS Lett, 2009. 583(9): p. 1422-6.

44. Jagadeeswaran, G., et al., Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics, 2010. 11: p. 52.

45. Legeai, F., et al., Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid,

Acyrthosiphon pisum. BMC Genomics, 2010. 11: p. 281.

46. Huang, Q.X., et al., MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing. PLoS One, 2010. 5(10): p.

95

e13271.

47. Chen, X., et al., Next-generation small RNA sequencing for microRNAs profiling in the honey bee Apis mellifera. Insect Mol Biol, 2010. 19(6): p.

799-805.

48. Li, S.C., et al., Discovery and characterization of medaka miRNA genes by next generation sequencing platform. BMC Genomics, 2010. 11 Suppl 4: p. S8.

49. Wei, Z., et al., Novel and conserved micrornas in dalian purple urchin

(strongylocentrotus nudus) identified by next generation sequencing. Int J Biol Sci, 2011. 7(2): p. 180-92.

50. Wang, X.J., T. Gaasterland, and N.H. Chua, Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana.

Genome Biol, 2005. 6(4): p. R30.

51. Rajagopalan, R., et al., A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 2006. 20(24): p. 3407-25.

52. Fahlgren, N., et al., High-throughput sequencing of Arabidopsis microRNAs:

evidence for frequent birth and death of MIRNA genes. PLoS One, 2007. 2(2):

p. e219.

53. Kasschau, K.D., et al., Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol, 2007. 5(3): p. e57.

54. Mi, S., et al., Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell, 2008. 133(1): p. 116-27.

55. Hsieh, L.C., et al., Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol, 2009. 151(4): p.

2120-32.

56. Qi, X., F.S. Bao, and Z. Xie, Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One, 2009. 4(3): p. e4971.

57. Zhang, W., et al., Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol, 2011.

75(1-2): p. 93-105.

58. Sunkar, R., et al., Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 2008. 8: p. 25.

59. Lu, C., et al., Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A, 2008.

105(12): p. 4951-6.

60. Zhou, X., et al., Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Res, 2009. 19(1): p. 70-8.

96

61. Nakano, M., et al., Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res, 2006.

34(Database issue): p. D731-5.

62. Yao, Y., et al., Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol, 2007. 8(6): p. R96.

63. Szittya, G., et al., High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics, 2008. 9: p. 593.

64. Moxon, S., et al., Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res, 2008. 18(10): p.

1602-9.

65. Mica, E., et al., High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics, 2009. 10: p. 558.

66. Wei, B., et al., Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics, 2009. 9(4): p. 499-511.

67. Zhang, L., et al., A genome-wide characterization of microRNA genes in maize.

PLoS Genet, 2009. 5(11): p. e1000716.

68. Zhang, J., et al., Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 2009. 10: p. 449.

69. Zhao, C.Z., et al., Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol, 2010. 10: p. 3.

70. Song, C., et al., Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics, 2010. 11: p. 431.

71. Pantaleo, V., et al., Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J, 2010.

62(6): p. 960-76.

72. Martinez, G., et al., High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem. Mol Plant Pathol, 2010. 11(3):

p. 347-59.

73. Song, Q.X., et al., Identification of miRNAs and their target genes in

developing soybean seeds by deep sequencing. BMC Plant Biol, 2011. 11: p. 5.

74. Lu, Y.C., et al., Deep sequencing identifies new and regulated microRNAs in Schmidtea mediterranea. RNA, 2009. 15(8): p. 1483-91.

75. Huang, J., et al., Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS One, 2009. 4(12): p.

e8206.

97

76. Chen, X.S., et al., High throughput genome-wide survey of small RNAs from the parasitic protists Giardia intestinalis and Trichomonas vaginalis. Genome Biol Evol, 2009. 1: p. 165-75.

77. Irnov, I., et al., Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res, 2010. 38(19): p. 6637-51.

78. Donaire, L., et al., Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology, 2009. 392(2): p. 203-14.

79. Zhu, J.Y., et al., Identification and analysis of expression of novel microRNAs of murine gammaherpesvirus 68. J Virol, 2010. 84(19): p. 10266-75.

80. Varshney, R.K., et al., Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol, 2009. 27(9): p.

522-30.

81. Turner, D.J., et al., Next-generation sequencing of vertebrate experimental organisms. Mamm Genome, 2009. 20(6): p. 327-38.

82. Mardis, E.R., The impact of next-generation sequencing technology on genetics. Trends Genet, 2008. 24(3): p. 133-41.

83. Schadt, E.E., S. Turner, and A. Kasarskis, A window into third-generation sequencing. Hum Mol Genet, 2010. 19(R2): p. R227-40.

84. He, L. and G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004. 5(7): p. 522-31.

85. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in cancer.

Nat Rev Cancer, 2006. 6(4): p. 259-69.

86. Denli, A.M., et al., Processing of primary microRNAs by the Microprocessor complex. Nature, 2004. 432(7014): p. 231-5.

87. Ketting, R.F., et al., Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev, 2001.

15(20): p. 2654-9.

88. Meister, G., et al., Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell, 2004. 15(2): p. 185-97.

89. Ohrt, T., et al., Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res, 2008. 36(20): p.

6439-49.

90. Diederichs, S. and D.A. Haber, Dual role for argonautes in microRNA

processing and posttranscriptional regulation of microRNA expression. Cell, 2007. 131(6): p. 1097-108.

91. Grimson, A., et al., MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 2007. 27(1): p. 91-105.

98

92. Selbach, M., et al., Widespread changes in protein synthesis induced by microRNAs. Nature, 2008. 455(7209): p. 58-63.

93. Wang, X., et al., Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One, 2008. 3(7): p. e2557.

94. Yu, B., et al., Methylation as a crucial step in plant microRNA biogenesis.

Science, 2005. 307(5711): p. 932-5.

95. Vaucheret, H., Post-transcriptional small RNA pathways in plants:

mechanisms and regulations. Genes Dev, 2006. 20(7): p. 759-71.

96. Papp, I., et al., Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol, 2003. 132(3): p. 1382-90.

97. Reinhart, B.J., et al., MicroRNAs in plants. Genes Dev, 2002. 16(13): p.

1616-26.

98. Park, W., et al., CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002. 12(17):

p. 1484-95.

99. Park, M.Y., et al., Nuclear processing and export of microRNAs in Arabidopsis.

Proc Natl Acad Sci U S A, 2005. 102(10): p. 3691-6.

100. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.

101. Kim, V.N., Small RNAs: classification, biogenesis, and function. Mol Cells, 2005.

19(1): p. 1-15.

102. Du, T. and P.D. Zamore, microPrimer: the biogenesis and function of microRNA.

Development, 2005. 132(21): p. 4645-52.

103. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p.

350-5.

104. Palatnik, J.F., et al., Control of leaf morphogenesis by microRNAs. Nature, 2003. 425(6955): p. 257-63.

105. Mallory, A.C., et al., MicroRNA control of PHABULOSA in leaf development:

importance of pairing to the microRNA 5' region. EMBO J, 2004. 23(16): p.

3356-64.

106. Jones-Rhoades, M.W. and D.P. Bartel, Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004. 14(6): p. 787-99.

107. Rhoades, M.W., et al., Prediction of plant microRNA targets. Cell, 2002. 110(4):

p. 513-20.

108. Sunkar, R., et al., Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci, 2007. 12(7): p. 301-9.

99

109. Sunkar, R., A. Kapoor, and J.K. Zhu, Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 2006. 18(8): p.

2051-65.

110. Navarro, L., et al., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006. 312(5772): p. 436-9.

111. Chiou, T.J., et al., Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 2006. 18(2): p. 412-21.

112. Fujii, H., et al., A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol, 2005. 15(22): p. 2038-43.

113. Yoshikawa, M., et al., A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev, 2005. 19(18): p. 2164-75.

114. Allen, E., et al., microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005. 121(2): p. 207-21.

115. Vazquez, F., et al., Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 2004. 16(1): p. 69-79.

116. Bonnet, E., Y. Van de Peer, and P. Rouze, The small RNA world of plants. New Phytol, 2006. 171(3): p. 451-68.

117. Jin, H., et al., Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol, 2008. 9: p. 6.

118. Henz, S.R., et al., Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol, 2007. 144(3): p. 1247-55.

119. Zhang, Y., et al., Genome-wide in silico identification and analysis of cis

natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res, 2006.

34(12): p. 3465-75.

120. Wang, H., N.H. Chua, and X.J. Wang, Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol, 2006. 7(10): p. R92.

121. Steigele, S. and K. Nieselt, Open reading frames provide a rich pool of

potential natural antisense transcripts in fungal genomes. Nucleic Acids Res, 2005. 33(16): p. 5034-44.

122. Rosok, O. and M. Sioud, Systematic identification of sense-antisense transcripts in mammalian cells. Nat Biotechnol, 2004. 22(1): p. 104-8.

123. Yelin, R., et al., Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol, 2003. 21(4): p. 379-86.

124. Osato, N., et al., Antisense transcripts with rice full-length cDNAs. Genome Biol, 2003. 5(1): p. R5.

125. Shendure, J. and G.M. Church, Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biol, 2002. 3(9): p.

100

RESEARCH0044.

126. Borsani, O., et al., Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005.

123(7): p. 1279-91.

127. Iida, K., et al., Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res, 2004. 32(17): p. 5096-103.

128. Sureau, A., et al., Characterization of multiple alternative RNAs resulting from antisense transcription of the PR264/SC35 splicing factor gene. Nucleic Acids Res, 1997. 25(22): p. 4513-22.

129. Munroe, S.H. and M.A. Lazar, Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem, 1991. 266(33): p. 22083-6.

130. Sunkar, R., T. Girke, and J.K. Zhu, Identification and characterization of

endogenous small interfering RNAs from rice. Nucleic Acids Res, 2005. 33(14):

p. 4443-54.

131. Aravin, A. and T. Tuschl, Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett, 2005. 579(26): p. 5830-40.

132. Xie, Z., et al., Genetic and functional diversification of small RNA pathways in plants. PLoS Biol, 2004. 2(5): p. E104.

133. Chen, X., Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol, 2009. 25: p. 21-44.

134. Pontes, O., et al., The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell, 2006. 126(1): p.

79-92.

135. Herr, A.J., et al., RNA polymerase IV directs silencing of endogenous DNA.

Science, 2005. 308(5718): p. 118-20.

136. Chan, S.W., et al., RNA silencing genes control de novo DNA methylation.

Science, 2004. 303(5662): p. 1336.

137. Zilberman, D., X. Cao, and S.E. Jacobsen, ARGONAUTE4 control of

locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003. 299(5607): p. 716-9.

138. Zimmerman, A.L. and S. Wu, MicroRNAs, cancer and cancer stem cells. Cancer Lett, 2011. 300(1): p. 10-9.

139. Rayner, K.J., et al., MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010. 328(5985): p. 1570-3.

140. Najafi-Shoushtari, S.H., et al., MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010. 328(5985): p.

1566-9.

101

141. Horie, T., et al., MicroRNA-33 encoded by an intron of sterol regulatory

element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A, 2010. 107(40): p. 17321-6.

142. Meng, Y., et al., MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun, 2010. 393(3): p. 345-9.

142. Meng, Y., et al., MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun, 2010. 393(3): p. 345-9.