• 沒有找到結果。

4-5-2 The morphologic evidence of somatovisceral reflex – a possible neuronal pathway of acupuncture

Previous study suggested that acupuncture may influence visceral function via the activation of the somatosensory neurons (Kim, et al., 2012). However, most researches focused on the physiological responses induced by acupuncture (Chao, et al., 1999, Peng, 2002, Sun and Yao, 1985). The purpose of our study is to investigate and provide the

33

morphological evidence of somatovisceral reflex and possible neuronal pathway of

acupuncture. Our result suggests that the PVN, NTS, and DMX could be the relay center of the somatovisceral reflex. The visceral organs usually receive sympathetic and

parasympathetic dual interacted and the interaction is antagonistic. Therefore, our study proved morphological evidence of both sympathetic and parasympathetic pathways of somatovisceral reflex between the groin A-shi point and the uterus (Fig. 10). The somato-parasympathetic pathway starts from the stimulation of the groin A-shi point, which activates neurons in the spinal dorsal horn. The signal in turn elicits noxious input to the NTS (Esteves, et al., 1993). Neurons in the NTS relay the information and project to the DMX (Norgren, 1978), which innervates the uterus through the vagus nerve

(Ortega-Villalobos, et al., 1990) (Fig. 10 A). The somato-sympathetic pathways from the neurons in the spinal dorsal horn project to the NTS (Esteves, et al., 1993) than direct connection to the PVN (Ter Horst, et al., 1989), it innervates the visceral organ through the sympathetic pre- and postganglionic neurons (Hosoya, et al., 1991) (Fig. 10 B). These complementary somato-sympathetic and -parasympathetic systems coincidentally match the concept of yin-yang theory in traditional Chinese medicine (Paton, et al., 2005, World Health Organization. Regional Office for the Western Pacific., 1993).

The present study provides the morphological evidences of the neuronal connection between somatic groin A-shi point and its corresponding visceral organ-uterus. Therefore,

34

we come up to the conclusion that the somato-sympathetic/-parasympathetic pathways are the morphological basis of somatovisceral reflex and also the neuronal substrate of

acupuncture pathways.

In conclusion, the study helps us better understanding the interaction between somatic and visceral system. The mechanism of somatovisceral reflex, acupuncture and referred pain are all involved the connection between somatic and visceral system. This study provides the morphological evidences of the pathways between somatic and visceral system.

35

36

Figure 1

Fos expression neurons in dorsal root ganglia

A:Fos expression neuron (arrow) in T13 DRG (scale bar : 100um)

B:Fos expression neurons in T10-S1 DRG, T10(8.7±3.4), T11(5.0±1.5), T12(6.3±1.5), T13(7.9±3.4), L1(13.1±4.4), L2(5.4±1.9), L3(0.9±0.5), L4(0.±0.1), L6(5.1±2.1) and S1(10.3±4.6) (±SEM)

37

38

Figure 2

Fos expression neurons in the spinal cord after bee venom injection in the left groin region (n =9) A: Neurons express Fos protein (arrow) in ipsilateral L2 spinal dorsal horn. B:

Higher magnification of Fos expression neurons in A (scale bar : 100um). C: Mean number of Fos expression neurons in T10 to S3 spinal segments (±SEM). *P<0.05 D: Mean number of Fos expression neurons in lamina I to V of L2 spinal segment.

39

40

Figure 3

Fos expression neurons (arrow) in the supraspinal area after bee venom injection in the left groin region (n=9). A: nucleus of solitary tract (NTS). B: locus coeruleus (LC),

parabrachial nucleus (PB) C: raphe pallidus nucleus (RPa). D: paraventricular

hypothalamic nucleus (PVN). E: lateral hypothalamic area. F: paraventricular thalamic nucleus (PV). 3 V: third ventricle; 4 V: fourth ventricle; D3 V: dorsal third ventricle; d:

dorsal; f: fornix; ic: internal capsule; l: lateral; m: medial; opt: optic tract; scp: superior cerebellar peduncle; v: ventral (scale bar : 100um).

41

42

Table 1

Fos expression neurons in supraspinal area between saline and bee venom injection group.

(*:significant difference between saline group, p<0.1)

43

Fig. 4

PrV infected neurons in dorsal root ganglia 7~8 days after PrV injection in left uterine horn A:PrV infected neuron (arrow) in L1 dorsal root ganglion

B:Mean of PrV infected neurons in T10~S1 dorsal root ganglia (±SEM)

44

Figure 5

PrV-infected neurons in spinal cord after 6 to 8 d PrV-injection in the left uterine horn (n=8). A: PrV-infected neuron (arrow) in T12 spinal segment. B: Higher magnification of PrV-infected neuron in A (arrow) (scale bar : 100um) C: Mean number of PrV-infected neurons inT10 to S2 spinal segments (±SEM).

45

46

Figure 6

PrV-infected neurons (arrow) in the supraspinal area after 7-8 d PrV injection in the left uterus horn (n=8). A: PrV-infected neurons in the NTS and DMX. B: PrV-infected neurons in the A5 noradrenaline cell group. C: PrV-infected neurons in the RPa and RMg. D:

PrV-infected neurons in the Gi. E: PrV-infected neurons in the PVN. 3 V: third ventricle;

AP: area postrema; DMX: motor nucleus of vagus; Gi: gigantocellular reticular nucleus;

Gr: gracile nucleus; NTS: nucleus of solitary tract; PVN: paraventricular hypothalamic nucleus; RPa: raphe pallidus nucleus; RMg: raphe magnus nucleus (scale bar : 100um).

47

Table 2

PrV infected neurons in supraspinal area. (+:1-3 infected neurons, ++:4-8 infected neurons, +++:>9 infected neurons)

48

Figure 7

Double labeled of Fos expression and PrV infected neurons in dorsal root ganglia Fos expression neurons (A, red), PrV infected neurons (B, green) and merged double labeled Fos expression and PrV infected neuron (C, yellow) in T11 DRG.

D:Percentage of Fos expression and PrV infected double dorsal root ganglion neurons (double labeled / PrV infected neurons) through T10-S1 spinal segment.

49

50

Figure 8

Double-labeled neurons of Fos expression and PrV infection (n=8)

Fos expression neurons (A, red, arrow) in the PVN (A1), NTS (A2, A3) and DMX (A2, A4). PrV-infected neurons (B, green, arrow) in the PVN (B1), NTS (B2, B3) and DMX (B2, B4). Merged double labeling Fos expression and PrV-infected neurons (C, yellow, arrow) in the PVN (C1), NTS (C2, C3), and DMX (C2, C4) (scale bar : 1000um). D : The percentage of double labeled neurons in PVN, DMX and NTS between saline and bee venom injection groups (*:p<0.1)

51

Figure 9

Diagram showing the peripheral process of dichotomizing DRG neurons receive afferents from both the uterus and groin. The central process of the dichotomizing DRG neurons projects to the NTS.

52

Figure 10

Schematic drawing three neuronal pathway of somatovisceral reflex.

A:Somato-parasympathetic reflex pathway through the vagus nerve B:Somato-sympathetic reflex pathways through the NTS and PVN

DMX:dorsal motor nucleus of vagus DRG:dorsal root ganglia NTS:nucleus of solitary tract

SPN:sympathetic preganglionic neurons PVN:paraventricular hypothalamic nucleus Blue:somatic afferent Red:visceral efferent

53

Reference

1. Al-Chaer, E. D., Feng, Y., and Willis, W. D., 1998. A role for the dorsal column in nociceptive visceral input into the thalamus of primates. J Neurophysiol 79, 3143-3150.

2. Altschuler, S. M., Ferenci, D. A., Lynn, R. B., and Miselis, R. R., 1991.

Representation of the cecum in the lateral dorsal motor nucleus of the vagus nerve and commissural subnucleus of the nucleus tractus solitarii in rat. J Comp Neurol 304, 261-274.

3. Appia, F., Ewart, W. R., Pittam, B. S., and Wingate, D. L., 1986. Convergence of sensory information from abdominal viscera in the rat brain stem. Am J Physiol 251, G169-175.

4. Arvidsson, J., and Pfaller, K., 1990. Central projections of C4-C8 dorsal root ganglia in the rat studied by anterograde transport of WGA-HRP. J Comp Neurol 292, 349-362.

5. Ballegaard, S., Jensen, G., Pedersen, F., and Nissen, V. H., 1986. Acupuncture in severe, stable angina pectoris: a randomized trial. Acta Med Scand 220, 307-313.

6. Bao, Y. X., Yu, G. R., Lu, H. H., Zhen, D. S., Cheng, B. H., and Pan, C. Q., 1982.

Acupuncture in acute myocardial infarction. Chin Med J (Engl) 95, 824-828.

7. Berkley, K. J., Robbins, A., and Sato, Y., 1988. Afferent fibers supplying the uterus in the rat. J Neurophysiol 59, 142-163.

8. Bolser, D. C., Hobbs, S. F., Chandler, M. J., Ammons, W. S., Brennan, T. J., and Foreman, R. D., 1991. Convergence of phrenic and cardiopulmonary spinal afferent information on cervical and thoracic spinothalamic tract neurons in the monkey:

implications for referred pain from the diaphragm and heart. J Neurophysiol 65, 1042-1054.

9. Brinkman, J., Bush, B. M., and Porter, R., 1978. Deficient influence of peripheral stimuli on precentral neurones in monkeys with dorsal column lesions. J Physiol 276, 27-48.

10. Brumovsky, P. R., and Gebhart, G. F., 2010. Visceral organ cross-sensitization — An integrated perspective. Autonomic Neuroscience 153, 106-115.

11. Burton, H., 1968. Somatic sensory properties of caudal bulbar reticular neurons in the cat (Felis domestica). Brain Res 11, 357-372.

12. Calaresu, F. R., and Henry, J. L., 1970. The mechanism of the cardio-acceleration elicited by electrical stimulation of the parahypoglossal area in the cat. J Physiol 210, 107-120.

13. Cardona, F., 1950. [Study of the medullary pyramidal tracts in cerebral hemiplegia

54

due to capsular lesions]. Riv Patol Nerv Ment 71, 216-224.

14. Carstens, E., and Trevino, D. L., 1978. Anatomical and physiological properties of ipsilaterally projecting spinothalamic neurons in the second cervical segment of the cat's spinal cord. J Comp Neurol 182, 167-184.

15. Cervero, F., 1983. Somatic and visceral inputs to the thoracic spinal cord of the cat:

effects of noxious stimulation of the biliary system. J Physiol 337, 51-67.

16. Cervero, F., 1985. Visceral nociception: peripheral and central aspects of visceral nociceptive systems. Philosophical transactions of the Royal Society of London.

Series B, Biological sciences 308, 325-337.

17. Cervero, F., 1995. Visceral pain: mechanisms of peripheral and central sensitization.

Ann Med 27, 235-239.

18. Cervero, F., and Connell, L. A., 1984. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J Comp Neurol 230, 88-98.

19. Cervero, F., Connell, L. A., and Lawson, S. N., 1984. Somatic and visceral primary afferents in the lower thoracic dorsal root ganglia of the cat. J Comp Neurol 228, 422-431.

20. Cervero, F., and Laird, J. M., 1999. Visceral pain. Lancet 353, 2145-2148.

21. Chaban, V., Christensen, A., Wakamatsu, M., McDonald, M., Rapkin, A., McDonald, J., and Micevych, P., 2007. The same dorsal root ganglion neurons innervate uterus and colon in the rat. Neuroreport 18, 209-212.

22. Chang, H. Y., Mashimo, H., and Goyal, R. K., 2003. Musings on the wanderer:

what's new in our understanding of vago-vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 284, G357-366.

23. Chao, D. M., Shen, L. L., Tjen, A. L. S., Pitsillides, K. F., Li, P., and Longhurst, J.

C., 1999. Naloxone reverses inhibitory effect of electroacupuncture on sympathetic cardiovascular reflex responses. Am J Physiol 276, H2127-2134.

24. Chen, Y., Song, B., Jin, X. Y., Xiong, E. Q., and Zhang, J. H., 2005. Possible mechanism of referred pain in the perineum and pelvis associated with the prostate in rats. J Urol 174, 2405-2408.

25. Chernigovskii, V. N., and Musiashchikova, S. S., 1969. [Participation of the ventral posterior-lateral nucleus of the cat's thalamus in the transmission of afferent

visceral signals]. Izv Akad Nauk SSSR Biol 1, 5-19.

26. Chien, C. H., Shieh, J. Y., Liao, M. H., Ling, E. A., and Wen, C. Y., 1998. Neuronal connections between the auricular skin and the sympathetic pre- and postganglionic neurons of the dog as studied by using pseudorabies virus. Neurosci Res 30,

169-175.

55

27. Christianson, J. A., Liang, R., Ustinova, E. E., Davis, B. M., Fraser, M. O., and Pezzone, M. A., 2007. Convergence of bladder and colon sensory innervation occurs at the primary afferent level. Pain 128, 235-243.

28. Cliffer, K. D., and Giesler, G. J., Jr., 1989. Postsynaptic dorsal column pathway of the rat. III. Distribution of ascending afferent fibers. J Neurosci 9, 3146-3168.

29. Collins, J. J., Lin, C. E., Berthoud, H. R., and Papka, R. E., 1999. Vagal afferents from the uterus and cervix provide direct connections to the brainstem. Cell Tissue Res 295, 43-54.

30. Coote, J. H., and Macleod, V. H., 1974. Evidence for the involvement in the baroreceptor reflex of a descending inhibitory pathway. J Physiol 241, 477-496.

31. Craig, A. D., 1991. Spinal distribution of ascending lamina I axons anterogradely labeled with Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. J Comp Neurol 313, 377-393.

32. Craig, A. D., Jr., Linington, A. J., and Kniffki, K. D., 1989. Cells of origin of

spinothalamic tract projections to the medial and lateral thalamus in the cat. J Comp Neurol 289, 568-585.

33. Curran, T., and Morgan, J. I., 1995. Fos: an immediate-early transcription factor in neurons. J Neurobiol 26, 403-412.

34. Danilov, A. B., and Vein, A. M., 1996. [The nociceptive flexor reflex: a method for studying the brain mechanisms of pain control]. Zh Nevrol Psikhiatr Im S S

Korsakova 96, 107-111.

35. Dawson, N. J., Schmid, H., and Pierau, F. K., 1992. Pre-spinal convergence between thoracic and visceral nerves of the rat. Neurosci Lett 138, 149-152.

36. de Medeiros, M. A., Canteras, N. S., Suchecki, D., and Mello, L. E., 2003.

Analgesia and c-Fos expression in the periaqueductal gray induced by electroacupuncture at the Zusanli point in rats. Brain Res 973, 196-204.

37. DeGroat, W. C., and Saum, W. R., 1976. Synaptic transmission in parasympathetic ganglia in the urinary bladder of the cat. J Physiol 256, 137-158.

38. Dmitriev, V. D., 1957. [Morphological and physiological analysis of compensatory mechanisms of sensory and motor functions following injuries of the spinal cord].

Arkh Patol 19, 50-57.

39. Ellrich, J., Andersen, O. K., Messlinger, K., and Arendt-Nielsen, L., 1999.

Convergence of meningeal and facial afferents onto trigeminal brainstem neurons:

an electrophysiological study in rat and man. Pain 82, 229-237.

40. Esteves, F., Lima, D., and Coimbra, A., 1993. Structural types of spinal cord marginal (lamina I) neurons projecting to the nucleus of the tractus solitarius in the rat. Somatosens Mot Res 10, 203-216.

56

41. Foreman, R. D., Blair, R. W., and Weber, R. N., 1984. Viscerosomatic convergence onto T2-T4 spinoreticular, spinoreticular-spinothalamic, and spinothalamic tract neurons in the cat. Exp Neurol 85, 597-619.

42. Gebhart, G. F., and Ness, T. J., 1991. Central mechanisms of visceral pain. Can J Physiol Pharmacol 69, 627-634.

43. Gerendai, I., Toth, I. E., Kocsis, K., Boldogkoi, Z., Medveczky, I., and Halasz, B., 2001. Transneuronal labelling of nerve cells in the CNS of female rat from the mammary gland by viral tracing technique. Neuroscience 108, 103-118.

44. Ghanima, A., Bennis, M., and Rampin, O., 2002. c-Fos expression as endogenous marker of lumbosacral spinal neuron activity in response to

vaginocervical-stimulation. Brain Res Brain Res Protoc 9, 1-8.

45. Giamberardino, M. A., Berkley, K. J., Iezzi, S., deBigontina, P., and Vecchiet, L., 1997. Pain threshold variations in somatic wall tissues as a function of menstrual cycle, segmental site and tissue depth in non-dysmenorrheic women,

dysmenorrheic women and men. Pain 71, 187-197.

46. Goldman, P. L., Collins, W. F., Taub, A., and Fitzmartin, J., 1972. Evoked bulbar reticular unit activity following delta fiber stimulation of peripheral somatosensory nerve in cat. Exp Neurol 37, 597-606.

47. Gray, T. S., Hazlett, J. C., and Martin, G. F., 1981. Organization of projections from the gracile, medial cuneate and lateral nuclei in the North American opossum.

Horseradish peroxidase study of the cells projecting to the cerebellum, thalamus and spinal cord. Brain Behav Evol 18, 140-156.

48. Groenewegen, H. J., Boesten, A. J., and Voogd, J., 1975. The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: an autoradiographic study. J Comp Neurol 162, 505-517.

49. Guevara-Guzman, R., Buzo, E., Larrazolo, A., de la Riva, C., Da Costa, A. P., and Kendrick, K. M., 2001. Vaginocervical stimulation-induced release of classical neurotransmitters and nitric oxide in the nucleus of the solitary tract varies as a function of the oestrus cycle. Brain Res 898, 303-313.

50. Herman, M. A., Niedringhaus, M., Alayan, A., Verbalis, J. G., Sahibzada, N., and Gillis, R. A., 2008. Characterization of noradrenergic transmission at the dorsal motor nucleus of the vagus involved in reflex control of fundus tone. Am J Physiol Regul Integr Comp Physiol 294, R720-729.

51. Ho, M., Huang, L. C., Chang, Y. Y., Chen, H. Y., Chang, W. C., Yang, T. C., Tsai, H.

D. C. I. N. T. J. O. G. S., and author reply, P., 2009. Electroacupuncture reduces uterine artery blood flow impedance in infertile women. Taiwanese journal of obstetrics & gynecology 48, 148-151.

57

52. Hobbs, S. F., Chandler, M. J., Bolser, D. C., and Foreman, R. D., 1992. Segmental organization of visceral and somatic input onto C3-T6 spinothalamic tract cells of the monkey. J Neurophysiol 68, 1575-1588.

53. Hosoya, Y., Sugiura, Y., Okado, N., Loewy, A. D., and Kohno, K., 1991.

Descending input from the hypothalamic paraventricular nucleus to sympathetic preganglionic neurons in the rat. Exp Brain Res 85, 10-20.

54. Hubscher, C. H., and Berkley, K. J., 1994. Responses of neurons in caudal solitary nucleus of female rats to stimulation of vagina, cervix, uterine horn and colon.

Brain Res 664, 1-8.

55. Hui, K. K., Nixon, E. E., Vangel, M. G., Liu, J., Marina, O., Napadow, V., Hodge, S.

M., Rosen, B. R., Makris, N., and Kennedy, D. N., 2007. Characterization of the

"deqi" response in acupuncture. BMC Complement Altern Med 7, 33.

56. Kawamura, K., and Chiba, M., 1979. Cortical neurons projecting to the pontine nuclei in the cat. An experimental study with the horseradish peroxidase technique.

Exp Brain Res 35, 269-285.

57. Keast, J. R., and De Groat, W. C., 1992. Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats. J Comp Neurol 319, 615-623.

58. Kim, J. S., Enquist, L. W., and Card, J. P., 1999. Circuit-specific coinfection of neurons in the rat central nervous system with two pseudorabies virus recombinants.

J Virol 73, 9521-9531.

59. Kim, M. H., Park, Y. C., and Namgung, U., 2012. Acupuncture-stimulated activation of sensory neurons. J Acupunct Meridian Stud 5, 148-155.

60. Kuo, D. C., Krauthamer, G. M., and Yamasaki, D. S., 1981. The organization of visceral sensory neurons in thoracic dorsal root ganglia (DRG) of the cat studied by horseradish peroxidase (HRP) reaction using the cryostat. Brain Res 208, 187-191.

61. Kuo, D. C., Oravitz, J. J., and DeGroat, W. C., 1984. Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res 321, 111-118.

62. Lassek, A. M., 1948. The human pyramidal tract; reaction of individual axons in selected cases with acute cerebral lesions. J Neuropathol Exp Neurol 7, 89-93.

63. Laurberg, S., and Sorensen, K. E., 1985. Cervical dorsal root ganglion cells with collaterals to both shoulder skin and the diaphragm. A fluorescent double labelling study in the rat. A model for referred pain? Brain Res 331, 160-163.

64. Lee, J. H., and Beitz, A. J., 1993. The distribution of brain-stem and spinal cord nuclei associated with different frequencies of electroacupuncture analgesia. Pain 52, 11-28.

58

65. Lee, J. W., and Erskine, M. S., 2000. Pseudorabies virus tracing of neural pathways between the uterine cervix and CNS: effects of survival time, estrogen treatment, rhizotomy, and pelvic nerve transection. J Comp Neurol 418, 484-503.

66. Li, J., Micevych, P., McDonald, J., Rapkin, A., and Chaban, V., 2008. Inflammation in the uterus induces phosphorylated extracellular signal-regulated kinase and substance P immunoreactivity in dorsal root ganglia neurons innervating both uterus and colon in rats. J Neurosci Res 86, 2746-2752.

67. Li, P., and Longhurst, J. C., 2010. Neural mechanism of electroacupuncture's hypotensive effects. Autonomic neuroscience : basic & clinical 157, 24-30.

68. Li, P., Pitsillides, K. F., Rendig, S. V., Pan, H. L., and Longhurst, J. C., 1998.

Reversal of reflex-induced myocardial ischemia by median nerve stimulation: a feline model of electroacupuncture. Circulation 97, 1186-1194.

69. Liu, T., 2011. [Rethinking on Ashi points]. Zhongguo Zhen Jiu 31, 929-931.

70. Llewelyn, M. B., Azami, J., and Roberts, M. H., 1986. Brainstem mechanisms of antinociception. Effects of electrical stimulation and injection of morphine into the nucleus raphe magnus. Neuropharmacology 25, 727-735.

71. Luo, C., Chen, J., Li, H. L., and Li, J. S., 1998. Spatial and temporal expression of c-Fos protein in the spinal cord of anesthetized rat induced by subcutaneous bee venom injection. Brain Res 806, 175-185.

72. Marson, L., 1995. Central nervous system neurons identified after injection of pseudorabies virus into the rat clitoris. Neurosci Lett 190, 41-44.

73. Marson, L., Platt, K. B., and McKenna, K. E., 1993. Central nervous system innervation of the penis as revealed by the transneuronal transport of pseudorabies virus. Neuroscience 55, 263-280.

74. Martinez, V., Wang, L., and Tache, Y., 2006. Proximal colon distension induces Fos expression in the brain and inhibits gastric emptying through capsaicin-sensitive pathways in conscious rats. Brain Res 1086, 168-180.

75. McCrea, D. A., 1986. Spinal cord circuitry and motor reflexes. Exerc Sport Sci Rev 14, 105-141.

76. Melzack, R., and Belanger, E., 1989. Labour pain: correlations with menstrual pain and acute low-back pain before and during pregnancy. Pain 36, 225-229.

77. Monnikes, H., Ruter, J., Konig, M., Grote, C., Kobelt, P., Klapp, B. F., Arnold, R., Wiedenmann, B., and Tebbe, J. J., 2003. Differential induction of c-fos expression in brain nuclei by noxious and non-noxious colonic distension: role of afferent C-fibers and 5-HT3 receptors. Brain Res 966, 253-264.

78. Moore, R. Y., Speh, J. C., and Card, J. P., 1995. The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352,

59

351-366.

79. Nadelhaft, I., Vera, P. L., Card, J. P., and Miselis, R. R., 1992. Central nervous system neurons labelled following the injection of pseudorabies virus into the rat urinary bladder. Neurosci Lett 143, 271-274.

80. Nance, D. M., Burns, J., Klein, C. M., and Burden, H. W., 1988. Afferent fibers in the reproductive system and pelvic viscera of female rats: anterograde tracing and immunocytochemical studies. Brain Res Bull 21, 701-709.

81. Ness, T. J., and Gebhart, G. F., 1990. Visceral pain: a review of experimental studies.

Pain 41, 167-234.

82. Niel, J. P., Gonella, J., and Roman, C., 1980. [Horseradish peroxidase localization of the cell bodies of the sympathetic and parasympathetic neurones controlling the lower oesophageal sphincter in the cat (author's transl)]. J Physiol (Paris) 76, 591-599.

83. Norgren, R., 1978. Projections from the nucleus of the solitary tract in the rat.

Neuroscience 3, 207-218.

84. Oliveras, J. L., Redjemi, F., Guilbaud, G., and Besson, J. M., 1975. Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1, 139-145.

85. Ortega-Villalobos, M., Garcia-Bazan, M., Solano-Flores, L. P., Ninomiya-Alarcon, J. G., Guevara-Guzman, R., and Wayner, M. J., 1990. Vagus nerve afferent and efferent innervation of the rat uterus: an electrophysiological and HRP study. Brain Res Bull 25, 365-371.

86. Otake, K., Reis, D. J., and Ruggiero, D. A., 1994. Afferents to the midline thalamus issue collaterals to the nucleus tractus solitarii: an anatomical basis for thalamic and visceral reflex integration. J Neurosci 14, 5694-5707.

87. Pan, B., Castro-Lopes, J. M., and Coimbra, A., 1994. C-fos expression in the hypothalamo-pituitary system induced by electroacupuncture or noxious stimulation. Neuroreport 5, 1649-1652.

88. Pan, B., Castro-Lopes, J. M., and Coimbra, A., 1999. Central afferent pathways conveying nociceptive input to the hypothalamic paraventricular nucleus as revealed by a combination of retrograde labeling and c-fos activation. J Comp Neurol 413, 129-145.

89. Papka, R. E., Williams, S., Miller, K. E., Copelin, T., and Puri, P., 1998. CNS location of uterine-related neurons revealed by trans-synaptic tracing with

pseudorabies virus and their relation to estrogen receptor-immunoreactive neurons.

Neuroscience 84, 935-952.

90. Park, M., Kim, J., Bae, Y., Son, B., Park, Y., Lee, B., Cho, K., Kim, D., Sung, E.,

60

and Yoon, Y. W., 1997. CNS innervation of the urinary bladder demonstrated by immunohistochemical study for c-fos and pseudorabies virus. J Korean Med Sci 12, 340-352.

91. Patisaul, H. B., Melby, M., Whitten, P. L., and Young, L. J., 2002. Genistein affects ER beta- but not ER alpha-dependent gene expression in the hypothalamus.

Endocrinology 143, 2189-2197.

92. Paton, J. F., Boscan, P., Pickering, A. E., and Nalivaiko, E., 2005. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Brain Res Rev 49, 555-565.

93. Peng, L., 2002. Neural mechanisms of the effect of acupuncture on cardiovascular diseases. International Congress Series 1238, 71-77.

94. Peters, L. C., Kristal, M. B., and Komisaruk, B. R., 1987. Sensory innervation of the external and internal genitalia of the female rat. Brain Res 408, 199-204.

95. Pierau, F. K., Fellmer, G., and Taylor, D. C., 1984. Somato-visceral convergence in cat dorsal root ganglion neurones demonstrated by double-labelling with

fluorescent tracers. Brain Res 321, 63-70.

96. Pinto, M., Lima, D., and Tavares, I., 2006. Correlation of noxious evoked c-fos expression in areas of the somatosensory system during chronic pain: involvement of spino-medullary and intra-medullary connections. Neurosci Lett 409, 100-105.

97. Ralston, D. D., and Ralston, H. J., 3rd, 1985. The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol 242, 325-337.

98. Richter, A., Herlitz, J., and Hjalmarson, A., 1991. Effect of acupuncture in patients with angina pectoris. Eur Heart J 12, 175-178.

99. Rinaman, L., Card, J. P., Schwaber, J. S., and Miselis, R. R., 1989. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J Neurosci 9, 1985-1996.

100. Roh, D. H., Kim, H. W., Yoon, S. Y., Kang, S. Y., Kwon, Y. B., Cho, K. H., Han, H.

J., Ryu, Y. H., Choi, S. M., Lee, H. J., Beitz, A. J., and Lee, J. H., 2006. Bee venom injection significantly reduces nociceptive behavior in the mouse formalin test via capsaicin-insensitive afferents. J Pain 7, 500-512.

101. Rothermel, M., Schobel, N., Damann, N., Klupp, B. G., Mettenleiter, T. C., Hatt, H., and Wetzel, C. H., 2007. Anterograde transsynaptic tracing in the murine

101. Rothermel, M., Schobel, N., Damann, N., Klupp, B. G., Mettenleiter, T. C., Hatt, H., and Wetzel, C. H., 2007. Anterograde transsynaptic tracing in the murine

相關文件