• 沒有找到結果。

What is the optimal polygonal complexity for 3D floorplans for chordal graphs?

在文檔中 圖的接觸表示法 (頁 135-142)

Conclusion and Future Perspectives

Question 8.7. What is the optimal polygonal complexity for 3D floorplans for chordal graphs?

Question 8.7 remains interesting even for interval graphs.

In addition to polygonal complexity, the volume of the drawing, which can be mea-sured by the size of the underlying grid or the number of grid planes, is another important quality measure.

In Corollary 7.2, we showed that interval graphs admit a 2-layer 3D floorplan which fits into a O(1)× O(k) × O(|V (G)|) grid, where k is the size of the maximum clique in G. In other words, it requires O(|V (G)|) grid planes. We conjecture that it is optimal.

Question 8.8. Is it possible to construct a 3D floorplan using o(|V (G)|) grid planes for every interval graph G?

The following research directions are also interesting:

1. improving the constant behind Corollary 7.2; and

2. reducing the number of grid planes in our algorithm for constructing 3D floorplans of chordal graphs.

Bibliography

[1] Nieke Aerts. Geometric Representations of Planar Graphs. PhD thesis, Technis-chen Universität Berlin, 2015.

[2] Nieke Aerts and Stefan Felsner. Straight line triangle representations. In Stephen Wismath and Alexander Wolff, editors, Graph Drawing, volume 8242 of Lecture Notes in Computer Science, pages 119--130. Springer International Publishing, 2013.

[3] Md. Jawaherul Alam, Therese Biedl, Stefan Felsner, Andreas Gerasch, Michael Kaufmann, and Stephen G. Kobourov. Linear-time algorithms for hole-free rec-tilinear proportional contact graph representations. Algorithmica, 67(1):3--22, 2013.

[4] Md. Jawaherul Alam, Therese Biedl, Stefan Felsner, Michael Kaufmann, Stephen G. Kobourov, and Torsten Ueckerdt. Computing cartograms with optimal complexity. Discrete & Computational Geometry, 50(3):784--810, 2013.

[5] Md. Jawaherul Alam, Stephen G. Kobourov, Giuseppe Liotta, Sergey Pupyrev, and Sankar Veeramoni. 3d proportional contact representations of graphs. In The 5th International Conference on Information, Intelligence, Systems and Applica-tions (IISA 2014), pages 27--32, 2014.

[6] Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and opti-mal orthogonal drawings. SIAM Journal on Computing, 27(6):1764--1811, 1998.

[7] Michael A. Bekos, Michael Kaufmann, Robert Krug, Stefan Näher, and Vincenzo Roselli. Slanted orthogonal drawings. In Stephen Wismath and Alexander Wolff, editors, Graph Drawing, volume 8242 of Lecture Notes in Computer Science, pages 424--435. Springer International Publishing, 2013.

[8] Therese Biedl and Lesvia Elena Ruiz Velázquez. Orthogonal cartograms with few corners per face. In Frank Dehne, John Iacono, and Jörg-Rüdiger Sack, editors, Algorithms and Data Structures, volume 6844 of Lecture Notes in Computer Sci-ence, pages 98--109. Springer Berlin Heidelberg, 2011.

[9] Yi-Jun Chang and Hsu-Chun Yen. On orthogonally convex drawings of plane graphs. In Stephen Wismath and Alexander Wolff, editors, Graph Drawing, vol-ume 8242 of Lecture Notes in Computer Science, pages 400--411. Springer Inter-national Publishing, 2013.

[10] Yi-Jun Chang and Hsu-Chun Yen. Rectilinear duals using monotone staircase polygons. In Zhao Zhang, Lidong Wu, Wen Xu, and Ding-Zhu Du, editors, binatorial Optimization and Applications, volume 8881 of Lecture Notes in Com-puter Science, pages 86--100. Springer International Publishing, 2014.

[11] Yi-Jun Chang and Hsu-Chun Yen. A new approach for contact graph represen-tations and its applications. To be presented in the 14th Algorithms and Data Structures Symposium (WADS'15), LNCS 9214, 2015.

[12] Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimization. In Marc van Kreveld and Bettina Speckmann, editors, Graph Drawing, volume 7034 of Lecture Notes in Computer Science, pages 111--122. Springer Berlin Heidel-berg, 2012.

[13] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and Computation, 85(1):12--75, 1990.

[14] Bruno Courcelle and Engelfriet Joost. Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach. Cambridge University Press, 2012.

[15] Hubert de Fraysseix and Patrice Ossona de Mendez. Barycentric systems and stretchability. Discrete Applied Mathematics, 155(9):1079 -- 1095, 2007.

[16] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer-Verlag London, 2013.

[17] Christian A. Duncan, Emden R. Gansner, Yifan Hu, Michael Kaufmann, and Stephen G. Kobourov. Optimal polygonal representation of planar graphs. Al-gorithmica, 63(3):672--691, 2012.

[18] Christian A. Duncan and Michael T. Goodrich. Planar orthogonal and polyline drawing algorithms. In Handbook of Graph Drawing and Visualization, chapter 7.

CRC Press.

[19] David Eppstein, Elena Mumford, Bettina Speckmann, and Kevin Verbeek. Area-universal and constrained rectangular layouts. SIAM Journal on Computing, 41(3):

537--564, 2012.

[20] William Evans, Stefan Felsner, Michael Kaufmann, Stephen G. Kobourov, De-bajyoti Mondal, Rahnuma Islam Nishat, and Kevin Verbeek. Table cartograms.

In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms – ESA 2013, volume 8125 of Lecture Notes in Computer Science, pages 421--432. Springer Berlin Heidelberg, 2013.

[21] J. Joseph Fowler. Strongly-connected outerplanar graphs with proper touching triangle representations. In Stephen Wismath and Alexander Wolff, editors, Graph Drawing, volume 8242 of Lecture Notes in Computer Science, pages 155--160.

Springer International Publishing, 2013.

[22] Emden R. Gansner, Yifan Hu, and Stephen G. Kobourov. On touching triangle graphs. In Ulrik Brandes and Sabine Cornelsen, editors, Graph Drawing, vol-ume 6502 of Lecture Notes in Computer Science, pages 250--261. Springer Berlin Heidelberg, 2011.

[23] Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear planarity testing. SIAM Journal on Computing, 31(2):601--625, 2001.

[24] Paul Horn and Gabor Lippner. Two layer 3d floor planning. The Electronic Journal of Combinatorics, 20(4):P16, 2013.

[25] Bapi Kar, Susmita Sur-Kolay, Sridhar H. Rangarajan, and Chittaranjan R. Man-dal. A faster hierarchical balanced bipartitioner for vlsi floorplans using monotone staircase cuts. In Hafizur Rahaman, Sanatan Chattopadhyay, and Santanu Chat-topadhyay, editors, Progress in VLSI Design and Test, volume 7373 of Lecture Notes in Computer Science, pages 327--336. Springer Berlin Heidelberg, 2012.

[26] Akifumi Kawaguchi and Hiroshi Nagamochi. Drawing slicing graphs with face areas. Theoretical Computer Science, 410(11):1061--1072, 2009.

[27] Gunnar W. Klau and Petra Mutzel. Quasi–orthogonal drawing of planar graphs.

Technical Report MPI-I-98-1-013, Max-Planck-Institut für Informatik, Saar-brücken, 1998.

[28] Stephen G. Kobourov, Debajyoti Mondal, and Rahnuma Islam Nishat. Touch-ing triangle representations for 3-connected planar graphs. In Walter Didimo and Maurizio Patrignani, editors, Graph Drawing, volume 7704 of Lecture Notes in Computer Science, pages 199--210. Springer Berlin Heidelberg, 2013.

[29] Paul Koebe. Kontaktprobleme der konformen abbildung. Ber. Verh. Sächs.

Akademie der Wissenschaften Leipzig, Math.-Phys., Klasse 88:141--164, 1936.

[30] Krzysztof Koźmiński and Edwin Kinnen. Rectangular duals of planar graphs.

Networks, 15(2):145--157, 1985.

[31] Chien-Chih Liao, Hsueh-I Lu, and Hsu-Chun Yen. Compact floor-planning via orderly spanning trees. J. Algorithms, 48(2):441--451, 2003.

[32] Subhashis Majumder, Susmita Sur-Kolay, Bhargab B. Bhattacharya, and Swarup Kumar Das. Hierarchical partitioning of vlsi floorplans by staircases.

ACM Trans. Des. Autom. Electron. Syst., 12(1):7:1--7:19, 2007.

[33] Kazuyuki Miura, Hiroki Haga, and Takao Nishizeki. Inner rectangular drawings of plane graphs. International Journal of Computational Geometry & Applications, 16(02n03):249--270, 2006.

[34] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, Lecture Notes Series on Computing 12. World Scientific, 2004.

[35] Md. Saidur Rahman, Shinichi Nakano, and Takao Nishizeki. A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic plane graphs. J. Graph Algorithms Appl, 3:31--62, 1999.

[36] Md. Saidur Rahman, Takao Nishizeki, and Mahmuda Naznin. Orthogonal draw-ings of plane graphs without bends. Journal of Graph Algorithms and Applica-tions, 7(4):335--362, 2003.

[37] Md.Saidur Rahman, Noritsugu Egi, and Takao Nishizeki. No-bend orthogonal drawings of series-parallel graphs. In Patrick Healy and Nikola S. Nikolov, editors, Graph Drawing, volume 3843 of Lecture Notes in Computer Science, pages 409--420. Springer Berlin Heidelberg, 2006.

[38] Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'90, pages 138--148, Philadelphia, PA, USA, 1990. Society for Industrial and Applied Math-ematics.

[39] Jonathan Stott, Peter Rodgers, Juan Carlos Martínez-Ovando, and Stephen G.

Walker. Automatic metro map layout using multicriteria optimization. Visual-ization and Computer Graphics, IEEE Transactions on, 17(1):101--114, 2011.

[40] Yachyang Sun and Majid Sarrafzadeh. Floorplanning by graph dualization: L-shaped modules. In IEEE International Symposium on Circuits and Systems, vol-ume 4, pages 2845--2848, 1990.

[41] Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing, 16(3):421--444, 1987.

[42] Carsten Thomassen. Plane representations of graphs. In J.A. Bondy and U.S.R.

Murty, editors, Progress in Graph Theory, pages 43--69. Academic Press, Toronto, 1984.

[43] Torsten Ueckerdt. Geometric Representations of Graphs with Low Polygonal Complexity. PhD thesis, Technischen Universität Berlin, 2011.

[44] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.

[45] Kok-Hoo Yeap and Majid Sarrafzadeh. Floor-planning by graph dualization: 2-concave rectilinear modules. SIAM Journal on Computing, 22(3):500--526, 1993.

在文檔中 圖的接觸表示法 (頁 135-142)