• 沒有找到結果。

CHAPTER 6 DISCUSSIONS AND CONCLUSION

6.3 P ERSPECTIVE

We count the number of TF binding site and provide the graphical representation of TF binding sites by weblogo [128] in Figure 14. In the future, we would like to design suitable model for another TFs to identify cis-elements in the promoter regions of sRNAs.

Another interesting question for bacterial sRNAs is whether they have their origins in the RNA world or are newly evolving regulators [17]. The rapid accumulation of genome sequence information together with the interest in uncovering sRNAs in a wide range of bacteria have provided glimpses into the evolution of these RNAs that may help to discern their history.

81

Figure 14 The statistic and sequence logo of TF binding site (Top 8).

82

References

1. Argaman, L., et al., Novel small RNA-encoding genes in the intergenic regions of

Escherichia coli. Curr Biol, 2001. 11(12): p. 941-50.

2. Vogel, J., et al., RNomics in Escherichia coli detects new sRNA species and indicates

parallel transcriptional output in bacteria. Nucleic Acids Res, 2003. 31(22): p.

6435-43.

3. Wassarman, K.M., et al., Identification of novel small RNAs using comparative

genomics and microarrays. Genes Dev, 2001. 15(13): p. 1637-51.

4. Gottesman, S., Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet, 2005. 21(7): p. 399-404.

5. Altuvia, S., et al., A small, stable RNA induced by oxidative stress: role as a

pleiotropic regulator and antimutator. Cell, 1997. 90(1): p. 43-53.

6. Polayes, D.A., et al., Cyclic AMP-cyclic AMP receptor protein as a repressor of

transcription of the spf gene of Escherichia coli. J Bacteriol, 1988. 170(7): p.

3110-4.

7. Kawano, M., et al., Detection of 5'- and 3'-UTR-derived small RNAs and cis-encoded

antisense RNAs in Escherichia coli. Nucleic Acids Res, 2005. 33(3): p. 1040-50.

8. Brennan, R.G. and T.M. Link, Hfq structure, function and ligand binding. Curr Opin Microbiol, 2007. 10(2): p. 125-33.

9. Storz, G., J.A. Opdyke, and A. Zhang, Controlling mRNA stability and translation

with small, noncoding RNAs. Curr Opin Microbiol, 2004. 7(2): p. 140-4.

10. Soper, T., et al., Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci U S A, 2010. 107(21): p. 9602-7.

11. Repoila, F. and F. Darfeuille, Small regulatory non-coding RNAs in bacteria:

physiology and mechanistic aspects. Biol Cell, 2009. 101(2): p. 117-31.

12. Liu, J.M. and A. Camilli, A broadening world of bacterial small RNAs. Curr Opin Microbiol, 2010. 13(1): p. 18-23.

13. Thomason, M.K. and G. Storz, Bacterial Antisense RNAs: How Many Are There, and

What Are They Doing? Annu Rev Genet, 2010.

14. Wassarman, K.M. and G. Storz, 6S RNA regulates E. coli RNA polymerase activity.

Cell, 2000. 101(6): p. 613-23.

15. Liu, M.Y., et al., The RNA molecule CsrB binds to the global regulatory protein CsrA

and antagonizes its activity in Escherichia coli. J Biol Chem, 1997. 272(28): p.

17502-10.

16. Weilbacher, T., et al., A novel sRNA component of the carbon storage regulatory

system of Escherichia coli. Mol Microbiol, 2003. 48(3): p. 657-70.

17. Gottesman, S. and G. Storz, Bacterial Small RNA Regulators: Versatile Roles and

83

Rapidly Evolving Variations. Cold Spring Harb Perspect Biol, 2010.

18. De Lay, N. and S. Gottesman, The Crp-activated small noncoding regulatory RNA

CyaR (RyeE) links nutritional status to group behavior. J Bacteriol, 2009. 191(2): p.

461-76.

19. Masse, E. and S. Gottesman, A small RNA regulates the expression of genes involved

in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A, 2002. 99(7): p.

4620-5.

20. Vanderpool, C.K. and S. Gottesman, Involvement of a novel transcriptional activator

and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol, 2004. 54(4): p.

1076-89.

21. Gama-Castro, S., et al., RegulonDB version 7.0: transcriptional regulation of

Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res, 2011. 39(Database issue): p. D98-105.

22. Keseler, I.M., et al., EcoCyc: a comprehensive database of Escherichia coli biology.

Nucleic Acids Res, 2011. 39(Database issue): p. D583-90.

23. Glasner, J.D., et al., ASAP, a systematic annotation package for community analysis

of genomes. Nucleic Acids Res, 2003. 31(1): p. 147-51.

24. He, S., et al., NONCODE v2.0: decoding the non-coding. Nucleic Acids Res, 2008.

36(Database issue): p. D170-2.

25. Wu, T., et al., NPInter: the noncoding RNAs and protein related biomacromolecules

interaction database. Nucleic Acids Res, 2006. 34(Database issue): p. D150-2.

26. Cao, Y., et al., sRNATarBase: a comprehensive database of bacterial sRNA targets

verified by experiments. RNA, 2010. 16(11): p. 2051-7.

27. Barrett, T., et al., NCBI GEO: mining tens of millions of expression profiles--database

and tools update. Nucleic Acids Res, 2007. 35(Database issue): p. D760-5.

28. Masse, E., N. Majdalani, and S. Gottesman, Regulatory roles for small RNAs in

bacteria. Curr Opin Microbiol, 2003. 6(2): p. 120-4.

29. Chen, S., et al., A bioinformatics based approach to discover small RNA genes in the

Escherichia coli genome. Biosystems, 2002. 65(2-3): p. 157-77.

30. Yachie, N., et al., Prediction of non-coding and antisense RNA genes in Escherichia

coli with Gapped Markov Model. Gene, 2006. 372: p. 171-81.

31. Lease, R.A., M.E. Cusick, and M. Belfort, Riboregulation in Escherichia coli: DsrA

RNA acts by RNA:RNA interactions at multiple loci. Proc Natl Acad Sci U S A, 1998.

95(21): p. 12456-61.

32. Vogel, J. and E.G. Wagner, Target identification of small noncoding RNAs in bacteria.

Curr Opin Microbiol, 2007. 10(3): p. 262-70.

33. Schneider, K.L., et al., The UCSC Archaeal Genome Browser. Nucleic Acids Res, 2006.

84

34(Database issue): p. D407-10.

34. Chang, T.H., J.T. Horng, and H.D. Huang, RNALogo: a new approach to display

structural RNA alignment. Nucleic Acids Res, 2008.

35. Hofacker, I.L., Vienna RNA secondary structure server. Nucleic Acids Res, 2003.

31(13): p. 3429-31.

36. Rudd, K.E., EcoGene: a genome sequence database for Escherichia coli K-12. Nucleic Acids Res, 2000. 28(1): p. 60-4.

37. Misra, R.V., et al., EchoBASE: an integrated post-genomic database for Escherichia

coli. Nucleic Acids Res, 2005. 33(Database issue): p. D329-33.

38. Baba, T., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout

mutants: the Keio collection. Mol Syst Biol, 2006. 2: p. 2006 0008.

39. Serres, M.H., S. Goswami, and M. Riley, GenProtEC: an updated and improved

analysis of functions of Escherichia coli K-12 proteins. Nucleic Acids Res, 2004.

32(Database issue): p. D300-2.

40. Benson, D.A., et al., GenBank. Nucleic Acids Res, 2008. 36(Database issue): p.

D25-30.

41. McGinnis, S. and T.L. Madden, BLAST: at the core of a powerful and diverse set of

sequence analysis tools. Nucleic Acids Res, 2004. 32(Web Server issue): p. W20-5.

42. Shimada, T., et al., Novel Roles of cAMP Receptor Protein (CRP) in Regulation of

Transport and Metabolism of Carbon Sources. PLoS One, 2011. 6(6): p. e20081.

43. Fic, E., et al., cAMP receptor protein from escherichia coli as a model of signal

transduction in proteins--a review. J Mol Microbiol Biotechnol, 2009. 17(1): p.

1-11.

44. Papenfort, K. and J. Vogel, Sweet business: Spot42 RNA networks with CRP to

modulate catabolite repression. Mol Cell, 2011. 41(3): p. 245-6.

45. Finn, R.D., J. Clements, and S.R. Eddy, HMMER web server: interactive sequence

similarity searching. Nucleic Acids Res, 2011. 39 Suppl 2: p. W29-37.

46. Kel, A.E., et al., MATCH: A tool for searching transcription factor binding sites in

DNA sequences. Nucleic Acids Res, 2003. 31(13): p. 3576-9.

47. Garner, M.M. and A. Revzin, A gel electrophoresis method for quantifying the

binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res, 1981. 9(13):

p. 3047-60.

48. Liu, Z., et al., Structure-based prediction of transcription factor binding sites using a

protein-DNA docking approach. Proteins, 2008. 72(4): p. 1114-24.

49. Bailey, T.L., et al., MEME: discovering and analyzing DNA and protein sequence

motifs. Nucleic Acids Res, 2006. 34(Web Server issue): p. W369-73.

50. Roth, F.P., et al., Finding DNA regulatory motifs within unaligned noncoding

85

sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol, 1998.

16(10): p. 939-45.

51. Liu, X., D.L. Brutlag, and J.S. Liu, BioProspector: discovering conserved DNA motifs

in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput, 2001:

p. 127-38.

52. Wang, T. and G.D. Stormo, Combining phylogenetic data with co-regulated genes to

identify regulatory motifs. Bioinformatics, 2003. 19(18): p. 2369-80.

53. Siddharthan, R., E.D. Siggia, and E. van Nimwegen, PhyloGibbs: a Gibbs sampling

motif finder that incorporates phylogeny. PLoS Comput Biol, 2005. 1(7): p. e67.

54. Thomas-Chollier, M., et al., RSAT: regulatory sequence analysis tools. Nucleic Acids Res, 2008. 36(Web Server issue): p. W119-27.

55. Carlson, J.M., et al., SCOPE: a web server for practical de novo motif discovery.

Nucleic Acids Res, 2007. 35(Web Server issue): p. W259-64.

56. Wijaya, E., et al., MotifVoter: a novel ensemble method for fine-grained integration

of generic motif finders. Bioinformatics, 2008. 24(20): p. 2288-95.

57. Loots, G.G. and I. Ovcharenko, rVISTA 2.0: evolutionary analysis of transcription

factor binding sites. Nucleic Acids Res, 2004. 32(Web Server issue): p. W217-21.

58. Larkin, M.A., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007.

23(21): p. 2947-8.

59. Morita, T., et al., Regulatory effect of a synthetic CRP recognition sequence placed

downstream of a promoter. Nucleic Acids Res, 1988. 16(15): p. 7315-32.

60. Durand, S. and G. Storz, Reprogramming of anaerobic metabolism by the FnrS small

RNA. Mol Microbiol, 2010. 75(5): p. 1215-31.

61. Backofen, R. and W.R. Hess, Computational prediction of sRNAs and their targets in

bacteria. RNA Biol, 2010. 7(1): p. 33-42.

62. Tjaden, B., et al., Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res, 2006. 34(9): p. 2791-802.

63. Zhang, Y., et al., Identifying Hfq-binding small RNA targets in Escherichia coli.

Biochem Biophys Res Commun, 2006. 343(3): p. 950-5.

64. Mandin, P., et al., Identification of new noncoding RNAs in Listeria monocytogenes

and prediction of mRNA targets. Nucleic Acids Res, 2007. 35(3): p. 962-74.

65. Busch, A., A.S. Richter, and R. Backofen, IntaRNA: efficient prediction of bacterial

sRNA targets incorporating target site accessibility and seed regions.

Bioinformatics, 2008. 24(24): p. 2849-56.

66. Tafer, H. and I.L. Hofacker, RNAplex: a fast tool for RNA-RNA interaction search.

Bioinformatics, 2008. 24(22): p. 2657-63.

67. Cao, Y., et al., sRNATarget: a web server for prediction of bacterial sRNA targets.

Bioinformation, 2009. 3(8): p. 364-6.

86

68. Peer, A. and H. Margalit, Accessibility and evolutionary conservation mark bacterial

small-rna target-binding regions. J Bacteriol, 2011. 193(7): p. 1690-701.

69. Mandin, P. and S. Gottesman, Integrating anaerobic/aerobic sensing and the

general stress response through the ArcZ small RNA. EMBO J, 2010. 29(18): p.

3094-107.

70. Papenfort, K., et al., Specific and pleiotropic patterns of mRNA regulation by ArcZ, a

conserved, Hfq-dependent small RNA. Mol Microbiol, 2009. 74(1): p. 139-58.

71. Johansen, J., et al., Down-regulation of outer membrane proteins by noncoding

RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case. J Mol Biol, 2008. 383(1): p. 1-9.

72. Papenfort, K., et al., Systematic deletion of Salmonella small RNA genes identifies

CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol Microbiol,

2008. 68(4): p. 890-906.

73. Tetart, F. and J.P. Bouche, Regulation of the expression of the cell-cycle gene ftsZ by

DicF antisense RNA. Division does not require a fixed number of FtsZ molecules. Mol

Microbiol, 1992. 6(5): p. 615-20.

74. Majdalani, N., et al., DsrA RNA regulates translation of RpoS message by an

anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A, 1998. 95(21): p. 12462-7.

75. Majdalani, N., D. Hernandez, and S. Gottesman, Regulation and mode of action of

the second small RNA activator of RpoS translation, RprA. Mol Microbiol, 2002.

46(3): p. 813-26.

76. Resch, A., et al., Translational activation by the noncoding RNA DsrA involves

alternative RNase III processing in the rpoS 5'-leader. RNA, 2008. 14(3): p. 454-9.

77. Sledjeski, D.D., A. Gupta, and S. Gottesman, The small RNA, DsrA, is essential for the

low temperature expression of RpoS during exponential growth in Escherichia coli.

EMBO J, 1996. 15(15): p. 3993-4000.

78. Sledjeski, D. and S. Gottesman, A small RNA acts as an antisilencer of the

H-NS-silenced rcsA gene of Escherichia coli. Proc Natl Acad Sci U S A, 1995. 92(6):

p. 2003-7.

79. Urban, J.H. and J. Vogel, Translational control and target recognition by Escherichia

coli small RNAs in vivo. Nucleic Acids Res, 2007. 35(3): p. 1018-37.

80. Boysen, A., et al., Translational regulation of gene expression by an anaerobically

induced small non-coding RNA in Escherichia coli. J Biol Chem, 2010. 285(14): p.

10690-702.

81. Opdyke, J.A., J.G. Kang, and G. Storz, GadY, a small-RNA regulator of acid response

genes in Escherichia coli. J Bacteriol, 2004. 186(20): p. 6698-705.

82. Sharma, C.M., et al., A small RNA regulates multiple ABC transporter mRNAs by

87

targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes

Dev, 2007. 21(21): p. 2804-17.

83. Pulvermacher, S.C., L.T. Stauffer, and G.V. Stauffer, Role of the sRNA GcvB in

regulation of cycA in Escherichia coli. Microbiology, 2009. 155(Pt 1): p. 106-14.

84. Pulvermacher, S.C., L.T. Stauffer, and G.V. Stauffer, The small RNA GcvB regulates

sstT mRNA expression in Escherichia coli. J Bacteriol, 2009. 191(1): p. 238-48.

85. Pulvermacher, S.C., L.T. Stauffer, and G.V. Stauffer, The role of the small regulatory

RNA GcvB in GcvB/mRNA posttranscriptional regulation of oppA and dppA in Escherichia coli. FEMS Microbiol Lett, 2008. 281(1): p. 42-50.

86. Urbanowski, M.L., L.T. Stauffer, and G.V. Stauffer, The gcvB gene encodes a small

untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol, 2000. 37(4): p. 856-68.

87. Reichenbach, B., et al., The small RNA GlmY acts upstream of the sRNA GlmZ in the

activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Nucleic Acids Res, 2008. 36(8): p. 2570-80.

88. Urban, J.H. and J. Vogel, Two seemingly homologous noncoding RNAs act

hierarchically to activate glmS mRNA translation. PLoS Biol, 2008. 6(3): p. e64.

89. Vogel, J., et al., The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide.

Curr Biol, 2004. 14(24): p. 2271-6.

90. Moon, K. and S. Gottesman, A PhoQ/P-regulated small RNA regulates sensitivity of

Escherichia coli to antimicrobial peptides. Mol Microbiol, 2009. 74(6): p. 1314-30.

91. Coornaert, A., et al., MicA sRNA links the PhoP regulon to cell envelope stress. Mol Microbiol, 2010. 76(2): p. 467-79.

92. Rasmussen, A.A., et al., Regulation of ompA mRNA stability: the role of a small

regulatory RNA in growth phase-dependent control. Mol Microbiol, 2005. 58(5): p.

1421-9.

93. Udekwu, K.I., et al., Hfq-dependent regulation of OmpA synthesis is mediated by an

antisense RNA. Genes Dev, 2005. 19(19): p. 2355-66.

94. Bossi, L. and N. Figueroa-Bossi, A small RNA downregulates LamB maltoporin in

Salmonella. Mol Microbiol, 2007. 65(3): p. 799-810.

95. Chen, S., et al., MicC, a second small-RNA regulator of Omp protein expression in

Escherichia coli. J Bacteriol, 2004. 186(20): p. 6689-97.

96. Aiba, H., et al., Function of micF as an antisense RNA in osmoregulatory expression

of the ompF gene in Escherichia coli. J Bacteriol, 1987. 169(7): p. 3007-12.

97. Andersen, J. and N. Delihas, micF RNA binds to the 5' end of ompF mRNA and to a

protein from Escherichia coli. Biochemistry, 1990. 29(39): p. 9249-56.

98. Mizuno, T., M.Y. Chou, and M. Inouye, A unique mechanism regulating gene

expression: translational inhibition by a complementary RNA transcript (micRNA).

88

Proc Natl Acad Sci U S A, 1984. 81(7): p. 1966-70.

99. Ramani, N., M. Hedeshian, and M. Freundlich, micF antisense RNA has a major role

in osmoregulation of OmpF in Escherichia coli. J Bacteriol, 1994. 176(16): p.

5005-10.

100. Schmidt, M., P. Zheng, and N. Delihas, Secondary structures of Escherichia coli

antisense micF RNA, the 5'-end of the target ompF mRNA, and the RNA/RNA duplex.

Biochemistry, 1995. 34(11): p. 3621-31.

101. Figueroa-Bossi, N., et al., Caught at its own game: regulatory small RNA inactivated

by an inducible transcript mimicking its target. Genes Dev, 2009. 23(17): p.

2004-15.

102. Mandin, P. and S. Gottesman, A genetic approach for finding small RNAs regulators

of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. Mol Microbiol, 2009. 72(3): p. 551-65.

103. Rasmussen, A.A., et al., A conserved small RNA promotes silencing of the outer

membrane protein YbfM. Mol Microbiol, 2009. 72(3): p. 566-77.

104. Fozo, E.M., et al., Repression of small toxic protein synthesis by the Sib and OhsC

small RNAs. Mol Microbiol, 2008. 70(5): p. 1076-93.

105. Holmqvist, E., et al., Two antisense RNAs target the transcriptional regulator CsgD

to inhibit curli synthesis. EMBO J, 2010. 29(11): p. 1840-50.

106. Guillier, M. and S. Gottesman, The 5' end of two redundant sRNAs is involved in the

regulation of multiple targets, including their own regulator. Nucleic Acids Res,

2008. 36(21): p. 6781-94.

107. Guillier, M. and S. Gottesman, Remodelling of the Escherichia coli outer membrane

by two small regulatory RNAs. Mol Microbiol, 2006. 59(1): p. 231-47.

108. Altuvia, S., et al., The Escherichia coli OxyS regulatory RNA represses fhlA

translation by blocking ribosome binding. EMBO J, 1998. 17(20): p. 6069-75.

109. Argaman, L. and S. Altuvia, fhlA repression by OxyS RNA: kissing complex formation

at two sites results in a stable antisense-target RNA complex. J Mol Biol, 2000.

300(5): p. 1101-12.

110. Majdalani, N., et al., Regulation of RpoS by a novel small RNA: the characterization

of RprA. Mol Microbiol, 2001. 39(5): p. 1382-94.

111. Douchin, V., C. Bohn, and P. Bouloc, Down-regulation of porins by a small RNA

bypasses the essentiality of the regulated intramembrane proteolysis protease RseP in Escherichia coli. J Biol Chem, 2006. 281(18): p. 12253-9.

112. Johansen, J., et al., Conserved small non-coding RNAs that belong to the sigmaE

regulon: role in down-regulation of outer membrane proteins. J Mol Biol, 2006.

364(1): p. 1-8.

113. Muckstein, U., et al., Thermodynamics of RNA-RNA binding. Bioinformatics, 2006.

89

22(10): p. 1177-82.

114. Papenfort, K., et al., Evidence for an autonomous 5' target recognition domain in an

Hfq-associated small RNA. Proc Natl Acad Sci U S A, 2010. 107(47): p. 20435-40.

115. Prevost, K., et al., The small RNA RyhB activates the translation of shiA mRNA

encoding a permease of shikimate, a compound involved in siderophore synthesis.

Mol Microbiol, 2007. 64(5): p. 1260-73.

116. Desnoyers, G., et al., Small RNA-induced differential degradation of the

polycistronic mRNA iscRSUA. EMBO J, 2009. 28(11): p. 1551-61.

117. Vecerek, B., I. Moll, and U. Blasi, Control of Fur synthesis by the non-coding RNA

RyhB and iron-responsive decoding. EMBO J, 2007. 26(4): p. 965-75.

118. Afonyushkin, T., et al., Both RNase E and RNase III control the stability of sodB

transcriptional and metabolic remodeling. Proc Natl Acad Sci U S A, 2010. 107(34):

p. 15223-8.

121. Kawamoto, H., et al., Base-pairing requirement for RNA silencing by a bacterial

small RNA and acceleration of duplex formation by Hfq. Mol Microbiol, 2006. 61(4):

p. 1013-22.

122. Kawamoto, H., et al., Implication of membrane localization of target mRNA in the

action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli. Genes Dev, 2005. 19(3): p. 328-38.

123. Kimata, K., et al., Expression of the glucose transporter gene, ptsG, is regulated at

the mRNA degradation step in response to glycolytic flux in Escherichia coli. EMBO J,

2001. 20(13): p. 3587-95.

124. Moller, T., et al., Spot 42 RNA mediates discoordinate expression of the E. coli

galactose operon. Genes Dev, 2002. 16(13): p. 1696-706.

125. Rice, J.B. and C.K. Vanderpool, The small RNA SgrS controls sugar-phosphate

accumulation by regulating multiple PTS genes. Nucleic Acids Res, 2011. 39(9): p.

3806-19.

126. Chang, C.-C. and C.-J. Lin, LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011. 2(3): p. 27:1--27:27.

127. Smoot, M.E., et al., Cytoscape 2.8: new features for data integration and network

visualization. Bioinformatics, 2011. 27(3): p. 431-2.

128. Crooks, G.E., et al., WebLogo: a sequence logo generator. Genome Res, 2004. 14(6):

90

p. 1188-90.

91

相關文件