• 沒有找到結果。

Chapter 6 Conclusions and Perspectives

6.2 Perspectives

The electron collection and dye-loading area (light harvesting) is the most important tasks of photoanode electrode (PE) to make a high efficiency cell.

However, these two tasks are trade-off missions. The thinner thickness of PE has better electron collection, and the thicker thickness one has the larger surface area to anchor the dye molecular for improving the light harvesting. And the film quality of PE is also a main issue to affect the electron collection efficiency. So, at this stage, the PE with unique optical structure, such as photonic crystal structure or surface plasma enhanced structure, to minimize the film thickness and to hugely increase the light harvesting may be the next research topic.

100

References

[1] I.E.O. Energy Information Administration, July 2010.

[2] United Nations Development Programme (UNDP) World Energy Assessment, New York (2000).

[3] http://en.wikipedia.org/wiki/List_of_photovoltaic_power_stations.

[4] T. Markvart, Solar electricity. 2nd Edition, John Wiley & Sons, Chichester, 2000.

[5] K.A. Tsokos, Physics for the IB Diploma Fifth edition, Cambridge University Press, 2008.

[6] R. Audubert, C. Compt. rend., 194 (1932) 1124.

[7] K.J. Wu X, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P., in: Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, 2001, pp. 995–1000.

[8] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Progress in Photovoltaics:

Research and Applications, 19 (2010) 84-92.

[9] C.P. Wojtczuk S, Zhang X, Derkacs D, Harris C, Pulver D, Timmons M., in:

35th IEEE PVSC, Honolulu.

[10] http://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust [11] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Journal of the American Chemical Society, 115 (1993) 6382-6390.

[12] M. K. Nazeeruddin, P. Pechy, M. Gratzel, Chemical Communications, (1997) 1705-1706.

[13] Q. Wang, W.M. Campbell, E.E. Bonfantani, K.W. Jolley, D.L. Officer, P.J. Walsh, K. Gordon, R. Humphry-Baker, M.K. Nazeeruddin, M. Grätzel, The Journal of

Physical Chemistry B, 109 (2005) 15397-15409.

[14] L. Luo, C. J. Lin, C.S. Hung, C.F. Lo, C.Y. Lin, E.W.G. Diau, Physical Chemistry Chemical Physics, 12 (2010) 12973-12977.

[15] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, Journal of the American Chemical Society, 126 (2004) 12218-12219.

[16] A. Mishra, M.K.R. Fischer, P. Bäuerle, Angewandte Chemie International Edition, 48 (2009) 2474-2499.

[17] A. Hagfeldt, M. Grätzel, Chemical Reviews, 95 (1995) 49-68.

[18] P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M.

Grätzel, Nat Mater, 2 (2003) 402-407.

[19] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S.M. Zakeeruddin, M. Grätzel, ACS

101

Nano, 3 (2009) 3103-3109.

[20] M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 3-14.

[21] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, Journal of Photochemistry and Photobiology a-Chemistry, 164 (2004) 153-157.

[22] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature, 395 (1998) 583-585.

[23] N.G. Park, J. van de Lagemaat, A.J. Frank, The Journal of Physical Chemistry B, 104 (2000) 8989-8994.

[24] E.M. Kaidashev, M. Lorenz, H.v. Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Applied Physics Letters, 82 (2003) 3901-3903.

[25] J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, L. Vayssieres, Nanotechnology, 17 (2006) 4995-4998.

[26] D.Y. Song, A.G. Aberle, J. Xia, Applied Surface Science, 195 (2002) 291-296.

[27] F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Materials Science & Engineering R-Reports, 62 (2008) 1-35.

[28] W. Water, S.Y. Chu, Y.D. Juang, S.J. Wu, Mater. Lett., 57 (2002) 998-1003.

[29] D.R. Sahu, S.Y. Lin, J.L. Huang, Applied Surface Science, 252 (2006) 7509-7514.

[30] J.B. Baxter, E.S. Aydil, Applied Physics Letters, 86 (2005).

[31] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nat. Mater., 4 (2005) 455-459.

[32] F. Xu, M. Dai, Y.N. Lu, L.T. Sun, J. Phys. Chem. C, 114 (2010 ) 2776-2782.

[33] A.E. Suliman, Y.W. Tang, L. Xu, Solar Energy Materials and Solar Cells, 91 (2007) 1658-1662.

[34] E. Hosono, Y. Mitsui, H.S. Zhou, Dalton Transactions, (2008) 5439-5441.

[35] H.M. Cheng, W.H. Chiu, C.H. Lee, S.Y. Tsai, W.F. Hsieh, J. Phys. Chem. C, 112 (2008) 16359-16364.

[36] C.T. Wu, W.P. Liao, J.J. Wu, Journal of Materials Chemistry, 21 (2011) 2871-2876.

[37] H.M. Cheng, W.F. Hsieh, Nanotechnology, 21 (2010) 485202.

[38] H.M. Cheng, W.F. Hsieh, Energy & Environmental Science, 3 (2010) 442-447.

[39] W.H. Chiu, C.H. Lee, H.M. Cheng, H.F. Lin, S.C. Liao, J.M. Wu, W.F. Hsieh, Energy & Environmental Science, 2 (2009) 694-698.

[40] C.H. Lee, W.H. Chiu, K.M. Lee, W.H. Yen, H.F. Lin, W.F. Hsieh, J.M. Wu, Electrochim. Acta, 55 (2010) 8422-8429.

102

[41] Y.F. Hsu, Y.Y. Xi, C.T. Yip, A.B. Djurisic, W.K. Chan, Journal of Applied Physics, 103 (2008).

[42] Y. Li, F. Qian, J. Xiang, C.M. Lieber, Materials Today, 9 (2006) 18-27.

[43] M.Y.A. Rahman, M.M. Salleh, I.A. Talib, M. Yahaya, Ionics, 11 (2005) 275-280.

[44] G. Veerappan, K. Bojan, S.W. Rhee, Acs Applied Materials & Interfaces, 3 (2011 ) 857-862.

[45] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, M. Grätzel, J. Electrochem. Soc., 153 (2006) A2255-A2261.

[46] P.J. Li, J.H. Wu, J.M. Lin, M.L. Huang, Y.F. Huang, Q.G. Li, Sol. Energy, 83 (2009) 845-849.

[47] G.R. Li, F. Wang, Q.W. Jiang, X.P. Gao, P.W. Shen, Angew. Chem.-Int. Edit., 49 (2010) 3653-3656.

[48] K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Chemistry Letters, 32 (2003) 28-29.

[49] K. Imoto, M. Suzuki, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K.

Murata, Electrochemistry, 71 (2003) 944-946.

[50] W.J. Hong, Y.X. Xu, G.W. Lu, C. Li, G.Q. Shi, Electrochemistry Communications, 10 (2008) 1555-1558.

[51] K.M. Lee, C.Y. Hsu, P.Y. Chen, M. Ikegami, T. Miyasaka, K.C. Ho, Physical Chemistry Chemical Physics, 11 (2009) 3375-3379.

[52] K. Kalyanasundaram, M. Grätzel, Coordination Chemistry Reviews, 177 (1998) 347-414.

[53] N. Papageorgiou, W.F. Maier, M. Grätzel, J. Electrochem. Soc., 144 (1997) 876-884.

[54] G. Schlichthörl, S.Y. Huang, J. Sprague, A.J. Frank, The Journal of Physical Chemistry B, 101 (1997) 8141-8155.

[55] S.Y. Huang, G. Schlichthorl, A.J. Nozik, M. Gratzel, A.J. Frank, The Journal of Physical Chemistry B, 101 (1997) 2576-2582.

[56] P.J. Cameron, L.M. Peter, The Journal of Physical Chemistry B, 109 (2005) 7392-7398.

[57] S. Lee, J.H. Noh, H.S. Han, D.K. Yim, D.H. Kim, J.-K. Lee, J.Y. Kim, H.S. Jung, K.S. Hong, The Journal of Physical Chemistry C, 113 (2009) 6878-6882.

[58] S.-Q. Fan, B. Fang, H. Choi, S. Paik, C. Kim, B.-S. Jeong, J.-J. Kim, J. Ko, Electrochim. Acta, 55 (2010) 4642-4646.

[59] http://en.wikipedia.org/wiki/Air_mass_coefficient

[60] K.i. Ishibashi, Y. Kimura, M. Niwano, Journal of Applied Physics, 103 (2008) 094507.

103

[61] M. Wolf, H. Rauschenbach, Advanced Energy Conversion, 3 (1963) 455-479.

[62] F.A. Lindholm, J.G. Fossum, E.L. Burgess, Electron Devices, IEEE Transactions on, 26 (1979) 165-171.

[63] D. Gentilini, D. D'Ercole, A. Gagliardi, A. Brunetti, A. Reale, T. Brown, A. Di Carlo, Superlattices and Microstructures, 47 (2010) 192-196.

[64] J. Bisquert, Physical Chemistry Chemical Physics, 5 (2003) 5360-5364.

[65] J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N.S. Ferriols, P.

Bogdanoff, E.C. Pereira, The Journal of Physical Chemistry B, 104 (2000) 2287-2298.

[66] S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H.

Imai, The Journal of Physical Chemistry B, 110 (2006) 25210-25221.

[67] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, The Journal of Physical Chemistry B, 110 (2006) 13872-13880.

[68] L. Grinis, S. Dor, A. Ofir, A. Zaban, Journal of Photochemistry and Photobiology A: Chemistry, 198 (2008) 52-59.

[69] H. Tian, L. Liu, B. Liu, S. Yuan, X. Wang, Y. Wang, T. Yu, Z. Zou, J. Phys.

D-Appl. Phys., 42 (2009) 5.

[70] D. Vanmaekelbergh, P.E. de Jongh, The Journal of Physical Chemistry B, 103 (1999) 747-750.

[71] A.L. Roest, P.E. de Jongh, D. Vanmaekelbergh, Physical Review B, 62 (2000) 16926.

[72] H.W. Ham, Y.S. Kim, Thin Solid Films, 518 (2010) 6558-6563.

[73] Z.H. Xu Jie, Liang Guijie, Wang Luoxin, Weilin Xu, Cui Weigang, Zengchang Li, Journal of the Serbian Chemical Society, 75 (2010) 259-269.

[74] W. Chen, H. Zhang, I.M. Hsing, S. Yang, Electrochemistry Communications, 11 (2009) 1057-1060.

[75] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B, 110 (2006) 13872-13880.

[76] Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T.

Bessho, H. Imai, The Journal of Physical Chemistry B, 110 (2006) 25210-25221.

[77] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, The Journal of Physical Chemistry B, 107 (2003) 4374-4381.

[78] T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Solar Energy Materials and Solar Cells, 94 (2010) 812-816.

[79] H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, Journal of Photochemistry and Photobiology A: Chemistry, 145 (2001) 107-112.

[80] H.M. Cheng, W.F. Hsieh, Energy & Environmental Science, 3 (2010) 442-447.

[81] Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coordination Chemistry

104

Reviews, 248 (2004) 1381-1389.

[82] M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, T. Miyasaka, Solar Energy Materials and Solar Cells, 93 (2009) 836-839.

[83] Z. Zhang, S. Ito, J.-E. Moser, S.M. Zakeeruddin, M. Grätzel, ChemPhysChem, 10 (2009) 1834-1838.

[84] K.M. Lee, S.J. Wu, C.Y. Chen, C.G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka, K.C. Ho, Journal of Materials Chemistry, 19 (2009) 5009-5015.

[85] C.Y. Chen, N. Pootrakulchote, S.J. Wu, M. Wang, J.Y. Li, J.H. Tsai, C.G. Wu, S.M. Zakeeruddin, M. Grätzel, The Journal of Physical Chemistry C, 113 (2009) 20752-20757.

105

2004-2011 Ph.D. studies in Institute of Electro-Optical Engineering, National Chiao Tung University 2002-2004 MS studies in Institute of Electro-Optical

Engineering, National Chiao Tung University 1998-2002 Undergraduate studies in Department of Physics,

National Sun Yat-Sen University International Journal Papers

1. “Transverse excess noise factor and transverse mode locking in a gain-guided laser”

Optics Communications 245, 301-308 (2005)

Ching-Hsua Chen, Po-Tse Tai, Wei-How Chiu, Wen-Feng Hsieh

2. “Formation of branched ZnO nanowires from solvothermal method and dye-Sensitized solar cells applications”

Journal of Physical Chemistry C 112, 16359 (2008)

Hsin-Ming Cheng, Wei-Hao Chiu, Chia-Hua Lee, Song-Yeu Tsai, and Wen-Feng Hsieh

3. “Efficient electron transport in tetrapod-like ZnO metal-free dye sensitized solar cells”

Energy & Environmental Science, 2, 694 (2009)

Wei-Hao Chiu, Chia-Hua Lee, Hsin-Ming Cheng, Hsiu-Fen Lin, Shih-Chieh Liao, Jehn-Ming Wu and Wen-Feng Hsieh

106

4. Dye-sensitized solar cells with a micro-porous TiO2 electrode and gel polymer electrolytes prepared by in situ cross-link reaction

Solar Energy Materials and Solar Cells 93, 2003-2007 (2009)

Kun-Mu Lee, Chih-Yu Hsu, Wei-Hao Chiu, Meng-Chin Tsui, Yung-Liang Tung, Song-Yeu Tsai, and Kuo-Chuan Ho

5. “Effects of Mesoscopic Poly(3,4-ethylenedioxythiophene) Films as Counter Electrodes for Dye-Sensitized Solar Cells”

Thin Solid Films, 518, 1716-1721 (2010)

Kun-Mu Lee, Wei-Hao Chiu, Hung-Yu Wei, Chih-Wei Hu, Vembu Suryanarayanan , Weng-Feng Hsieh and Kuo-Chuan Ho

6. “Influence of tetrapod-like ZnO morphology and electrolytes on energy conversion efficiency of dye-sensitized solar cells”

Electrochimica Acta, 55, 8422-8429(2010)

Chia-Hua Lee, Wei-Hao Chiu, Kun-Mu Lee, Wen-Hsiang Yen, Hsiu-Fen Lin , Wen-Feng Hsieh, Jenn-Ming Wu

7. “High efficiency flexible dye-sensitized solar cells by multiple electrophoretic deposition processes”

Journal of Power Sources 196, 3683-3687 (2011) Wei-Hao Chiu, Kun-Mu Lee, and Wen-Feng Hsieh

8. “Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates”

Journal of Materials Chemistry 21, 5114-5119 (2011)

Chia-Hua Lee, Wei-Hao Chiu, KunMu Lee, Wen-Feng Hsieh, and Jenn-Ming Wu

9. “Improvement on the long-term stability of flexible plastic dye-sensitized solar cells”

Journal of Materials Chemistry (Accepted)

Kun-Mu Lee, Wei-Hao Chiu, Ming-De Lu, and Wen-Feng Hsieh

107

Conference Papers

1. "Branched ZnO nanowires for enhancing energy conversion efficiency of dye-Sensitized Solar Cells"

2008 MRS-T (中華民國材料科學學會年會), Paper No. P07-008 (佳作)

Hsin-Ming Cheng, Wei-Hao Chiu, Chia-Hua Lee, Song-Yeu Tsai, and Wen-Feng Hsieh

2. "Branched ZnO nanowires for enhancing energy conversion efficiency of dye-Sensitized Solar Cells"

2008 International Symposium on Solar Cell Technologies (ISSCT), Paper No.

DP-007

Hsin-Ming Cheng, Wei-Hao Chiu, Chia-Hua Lee, Song-Yeu Tsai, and Wen-Feng Hsieh

3. "The influence of the iodine concentrations in ionic liquid-type electrolyte"

2008 International Symposium on Solar Cell Technologies (ISSCT) Yung-Liang Tung, Jia-Yin Wu, Wei-Hao Chiu, Jen-An Chen, Hsin-Yi Hsu

4. "Excellent electron diffusion property in tetrapod-like ZnO metal-free dye sensitized solar cell"

3rd INTERNATIONAL CONFERENCE on the INDUSTRIALISATION of DSC (2009)

Wei-Hao Chiu, Chia-Hua Lee, Hsin-Ming Cheng, Hsiu-Fen Lin, and Wen-Feng Hsieh

5. "Tetrapod-shaped ZnO nanostructure film as photoelectrode in dye-sensitized solar cells"

3rd INTERNATIONAL CONFERENCE on the INDUSTRIALISATION of DSC (2009)

Chia-Hua Lee, Wei-Hao Chiu, Hsin-Ming Cheng, Hsiu-Fen Lin

6. "High-Efficiency ZnO Nanoparticle Based Dye-Sensitized Solar Cells with Metal-Free Indoline Sensitizers"

2009 MRS-T (中華民國材料科學學會年會)

Hsin-Ming Cheng , Wei-Hao Chiu , and Wen-Feng Hsieh

108

7. "Tetrapod-like ZnO metal-free dye-sensitized solar cells with outstanding electron transport properties"

2009 Conference on Optics and Photonics Taiwan (OPT)

Wei-Hao Chiu, Chia-Hua Lee, Hsin-Ming Cheng, Hsiu-Fen Lin, Shih-Chieh Liao, Jenn-Ming Wu and Wen-Feng Hsieh

8. Performances of tetrapod-like ZnO dye-sensitized solar cells with ionic liquid electrolyte

2009 International Symposium on Dye-Sensitized Solar Cells (Taiwan) Wei-Hao Chiu, Kun-Mu Lee, Hsin-Ming Cheng, and Wen-Feng Hsieh

9. Hierarchical frameworks film assembled by tetrapod-like nanoparticles for dye-sensitized solar cells applications

2010 中華民國物理年會

Wei-Hao Chiu, Hsin-Ming Cheng, Kun-My Lee, Chia-Hua Lee, Meng-Chin Ysui, Hsiu-Fen Lin Shih-Chieh Liao, Wen-Feng Hsieh

10. CYC B6L 老化探討

5th Aseanian conference on dye-sensitized and organic solar cell

Yung-Liang Tung, Meng-Chin Tsui, Yao-Shan Wu, Kun-Mu Lee, Sz-Ping Fu, Wei-Hao Chiu, and Chun-Guey Wu

11. Fabrication of high quality TiO2 thin films for high conversion efficiency dye-sensitized solar cells by multiple electrophoresis depositions

2010 International Conference on Solid State Devices and Materials (SSDM 2010) Wei-Hao Chiu, Kun-Mu Lee, and Wen-Feng Hsieh

12. Efficient flexible dye-sensitized solar cells with high quality TiO2 photoanode prepared by multiple electrophoresis deposition

2010 Conference on Optics and Photonics Taiwan (OPT) Wei-Hao Chiu, Kun-Mu Lee, and Wen-Feng Hsieh

13. Surface passivation: effects of CDCA co-adsorbent on the durability of dye-sensitized solar cells

2010 Conference on Optics and Photonics Taiwan (OPT)

Kun-Mu Lee, Wei-Hao Chiu, Chia-Yuan Chen, Shi-Jhang Wu, Jia-Yin Wu, Yao-Shan Wu, Chuan-Ya Hung and Chun-Guey Wu