• 沒有找到結果。

Table II Intrusion energy and adhesion energy between the pentacene film on

the AlN surface in various experimental conditions.

Table III Extracted parameters of conventional and patterned OTFTs.

Table VI Extracted parameters of OTFTs under various AlN aging

conditions.

Chapter 4 Conclusion

Pentacene patterning on the AlN dielectric surface and the aging effect on AlN surface in pentacene based OTFTs were developed in this thesis. A simple pentacene patterning process has been demonstrated using water dipping. The pentacene was completely lifted-off by water dipping on the area of AlN treated with O2 plasma. The AlN surface treated with O2 plasma becomes more polar after the O2 plasma treatment based on surface energy measurements. The polar surface energy enhanced the intrusion energy of water and helped lift-off the pentacene film on the O2 plasma treated AlN surface. The high intrusion energy associated with high polar surface energy of the O2 plasma treated AlN surface explained the water-removable pentacene patterning mechanism. The simple pentacene patterning process is compatible with conventional lithography and is applicable to future OTFT array processes.

The aging effect on the AlN gate dielectric in pentacene based OTFTs were investigated. The relationship between the carbon absorption and the electrical characteristics in pentacene based OTFTs was established. The OTFTs fabricated on the aged 14 days AlN surface with larger carbon absorption have large field effect mobility. The mobility was enhanced from 0.05 cm2/Vs to 0.67 cm2/Vs with the

limited aging time (14 days). The improved mobility was due to the carbon accumulation on the AlN surface, lowered the surface energy and increased the pentacene coverage in the first few layers. The electrical performance in pentacene based OTFTs is closely related to the carbon accumulation on the dielectric surface.

The carbon accumulation issues must be considered when developing process for preparing pentacene based OTFTs and other interface sensitive devices.

Reference

[1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. Heeger,

“Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x”, J. Chem. Soc. Chem. Commun, Vol. 00, pp. 578, (1977).

[2] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular Electronic Devices:

Field-Effect Transistor with a Polythiophene Thin Film”, Appl. Phys. Lett. Vol.49, pp.

1210, (1986).

[3] G. Horowitz, D. Fichou, X. Peng, Z. Xu, and F. Garnier, “A Field-Effect Transistor Based On Conjugated Alpha-Sexithienyl”, Solid State Commun. 72, 381 (1989).

[4] Lee S, Koo B, Shin J, E Lee, Park H. and Kim H. 2006 Appl. Phys. Lett. 88 162109.

[5] C.W. Chu, S.H. Li, C.W. Chen, V. Shrotriya, Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode” , Applied Physics Letters, Vol. 87, pp.193508, (2005).

[6] K. Puntambekar, J. Dong, G. Hangstad, C.D. Frisbie, “Structural and electrostatic complexity at a pentacene/insulator interface” , Adv. Funct. Mater, Vol.16, pp.679 (2006).

[7] M. Kawasaki, S. Imazeki, M. Ando, Y. Sekiguchi, S. Hirota, “High-resolution full-color LCD driven by OTFTs using novel passivation film”, IEEE

Transactions on Electron Devices, Vol. 53, pp. 435- 441, (2006).

[8] K. Tsukagoshi, J. Tanabe, I. Yagi, K. Shigeto, “Organic light-emitting diode

driven by organic thin film transistor on plastic substrates”, Journal of Applied Physics, Vol. 99, pp.064506.

[9] Z. Bao, A. Dodabalapur, A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility” Appl. Phys. Lett. Vol. 69, pp.4108, (1996).

[10] Y. Y. Lin, D. J. Gundlach, S. Nelson, T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics”, IEEE Electron Device Lett, Vol. 18, pp.606, (1997).

[11] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, H.E. Katz, “Performance Limits of Organic Transistors”, Science, 1996, P 1462.

[12] H. E. Katz, C. Kloc, V. Sundar, J. Zaumseil, A. L. Briseno, Z. Bao, “Field-Effect Transistors made from Macroscopic Single Crystals of Teracene and Related Semiconductors on Polymer Dielectrics”, Journal of Material Research, Vol. 19, No.

7, Jul 2004, P1995-1998.

[13] C. Reese, M. Roberts, Mang-mang Ling, and Z. Bao, “Organic thin film transistors”, Materialstoday, Vol. 7, pp. 20-27, (2004).

[14] C. D. Dimitrakopoulos, D. J. Mascaro, “Organic Thin-Film Transistors: A Review of Recent Advances”, IBM Journal of Research and Development, Vol. 45, No. 1, Jan 2001, P 11-27.

[15] Yanming Sun, Yunqi Liu, and Daoben Zhu, “Advances in organic field-effect transistors”, J. Mater. Chem., vol 15, pp. 53, (2005).

[16] G. M. Wang, J. Swensen, D. Moses, and A. J. Heeger, “Increased mobility from regioregular poly (3-hexylthiophene) field-effect transistors”, J. Appl. Phys, Vol 93,

pp 6137, (2003).

[17] Y. S. Yang, S. H. Kim, J. Lee, H.Y. Chu, L. Do, “Deep-level defect characteristics in pentacene organic thin films”, Applied Physics Letters, Vol. 80, pp. 1595-1597, (2002).

[18] H. Yanagisawa, T. Tamaki, M. Nakamura, K. Kudo, “Structural and electrical characterization of pentacene films on SiO2 grown by molecular beam” Thin Solid Films, Vol. 464-465, pp.398, (2004).

[19] D. Knipp, R. A. Street, A Vo lkel, J. Ho. “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”

Journal of Applied Physics, Vol. 93, pp. 247, (2003).

[20] Marcus Halik, Hagen Klauk, Ute Zschieschang, Gunter Schmid, Christine Dehm, Markus Schutz, Steffen Maisch, Franz Effenberger, Markus Brunnbauer, and Francesco Stellacci, Nature (London) 431, (2004) 963.

[21] A. –L Deman, J. Tardy, Organic Electronics 6 (2005) 78.

[22] Hsiao-Wen Zan, Kuo-Hsi Yen, Pu-Kuan Liu, Kuo-Hsin Ku, Chien-Hsun Chen J ennchang Hwang, J. J. Appl. Phys. 45 (2006) L1093.

[23] Laurie Valbin, Laure Sevely, and Serge Spirkovitch, Proceeding of SPIE 4174, (2000) 154.

[24] D. J. Gundlach, T. N. Jackson, D. G. Schlom, S.F. Nelson, “Olvent-induced phase transition in thermally evaporated pentacene film”, Applied Physics letters, May, (1999).

[25] C. D. Sheraw, L. Zhoy, J. R. Huang, D. J. Gundlach, T. N. Jackson, “Organic

thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates”, Applied Physics Letters, Vol. 80, pp1088, (2002).

[26] J. W. Kim, “Process temperature dependency on electrical performance of OTFTs in the pattering of a pentacene active layer by PVA photo resistor.” SMDL, Annual Report, (2003).

[27] I. Kymissis, C. D. dimitrakopoulos, and S. Purushothaman, J. Vac. Sci. Technol. B 20, 956 (2002).

[28] K. H. Kim, K. W. Bong, and H. H. Lee, “Alternative to pentacene patterning for organic thin film transistor” Applied Physics Letters, Vol. 90, pp. 093505, (2007).

[29] S.Y. Park, T. Kwon, and H. H. Lee, Adv. Mater. ( Weinheim, Ger.) 18, 1861 (2006).

[30] Sung Hwan Kim, Hye Young Choi, Seung Hoon Han, Ji Ho Hur, Jin Jang,

“Self-organized organic thin-film transistor for flexible active-matrix display”, SID, pp.1294 (2004).

[31] M. Ando, M. Kawasaki, S. Imazeki, “Organic thin-film transistors fabricated with alignment-free printing technique”, Materials Research Society, Vol. 814, (2004).

[32] C. -M. Yeh, C.H. Chen, J.-Y. Gan, C.S. Kou, and J. Hwang, Thin Solid Films 483, (2005) 6.

[33] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications”. J. Appl. Phys., vol. 80, pp. 2501, (1996).

[34] K. N. Narayanan Unni, Sylvie Dabos-Seignon, and Jean-Michel Nunzi, “Improved performance of pentacene field-effect transistors using a polyimide gate dielectric

layer”, J. Phys. D: Appl. Phys., vol 38, pp. 1148, (2005).

[35] C. M. Chan, Polymer Surface Modification and Characterization (Hanser Gardner, New York, 1994), Chap. 2, p. 35.

[36] Drew Myers, Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd Edition, Wiley, New–York NY, 1999, P.430.

[37] Fowkes, F. M., J Phys Chem. 67 (1963) 2538.

[38] H. W. Zan, C. W. Chou, and K. H. Yen, Thin Solid Film 516 (2008) 2231.

[39] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A.-M. Hor, and H. Aziz, Appl. Phys. Lett., 78 (2001) 2595.

[40] D. C. Boyd, R. T. Haasch, D. R. Mantell, R. K. Schulze, J. F. Evans, and W. L.

Gladfelter, Chem. of Mater., 1 (1989) 119.

[41] J. A. Kovacich, J. Kasperkiewicz, D. Lichtman, and C. R. Aita, J. Appl. Phys. 15 (1984) 2935.

[42] K. Shin, S. Y. Yang, C. Yang, H. Jeon, C. E. Park, Org. Electron. 8 (2007) 336.

[43] D. Knipp, R. A. Street, A. R. Völkel, Appl. Phys. Lett. 82 (2003) 3907.

[44] D. Knipp, R. A. Street, A. R. Völkel, J. Ho, J. Appl. Phys. 93 (2003) 347.

[45] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, P. Heremans, Appl. Phys. Lett. 85 (2004) 4400.

[46] S. E. Fritz, T. W. Kelley, C. D. Frisbie, J. Phys. Chem. B 109 (2005) 10574.

[47] K. Shin, C. Yang, S. Y. Yang, H. Jean, C.E. Park, Appl. Phys. Lett. 88 (2006) 072109.

[48] Sang Yoon Yang, Kwonwoo Shin, Chan Eon Park, Adv. Mater. 15 (2005) 1806.

[49] Hitoshi Nagata and Akira Kawai, Jpn. J. Appl. Phys. 28 (1989) 2137.

[50] D. H. Kaelble, J. Appl. Polym. Sci. 18 (1974) 1869.

[51] C. M. Chan, Polymer Surface Modification and Characterization (Hanser Gardner, New York, 1994), Chap. 6, p. 261.

[52] C. M. Chan, Polymer Surface Modification and Characterization (Hanser Gardner, New York, 1994), Chap. 6, p. 237.

[53] C. J. Huang and W. C. Shih, J. Electron. Mater. 32 (2003) 478.

[54] C.C. Yeh, Y.J. Lin, S. K. Lin, Y. H. Wang, S. F. Chung, L. M. Huang, and T.C. Wen, J. Vac. Sci. Technol. B 25 (2007) 1635.

[55] Iwao Yagi, Kazuhito Tsukagoshi, Yoshinobu Aoyagi, Appl. Phys. Lett., 86 (2005) 103502.

[56] M. McDowell, I. G. Hill, J. E. McDermott, S. L. Bernasek, J. Schwartz, Appl. Phys.

Lett. 88 (2006) 073505.

[57] A. Inoue, T. Ishida, N. Choi, Appl. Phys. Lett. 73 (1998) 14.

[58] A. Zhu, M. Zhang, J. Wu, J. Shen, Biomaterials 23 (2002)4657.

[59] G.J. Fleming, K. Adib, J.A. Rodriguez, M.A. Barteau, J.M. White, H. Idriss, Surf.

Sci. 602 (2008) 2029.

[60] A. M. Shanmugharaj, S. Sabharwal, A. B. Majali, V. K. Tikku, A. K. Bhowmick, J.

Mater. Sci. 37 (2002)2781.

[61] M.J. Alam, D.C. Cameron, Thin Solid Films 377–378 (2000) 455.

[62] J.A. Chaney, P.E. Pehrsson, Appl. Surf. Sci. 180 (2001) 214.

[63] J. Zhang, J. Hu, Z.Q. Zhu, H. Gong, S.J. O’Shea, Colloids Surf. A 236 (2004).

[64] W.Y. Chou, C.W. Kuo, Y.S. Mai, S.T. Lin, H.L. Cheng, Proceedings of SPIE 5522 (2004) 97.

[65] H Sugimura, N Saito, N Maeda, I Ikeda, Y Ishida, K Hayashi, L Hong, O Takai, Nanotechnology 15 (2004) s69-s75.

[66] D. L. Smith, Thin-Film Deposition; Principles and Practice, McGraw-Hill, New York 1995, Ch. 5.

[67] T. W. Kelley, L. D. Boardman, T. D. Dunbar, D. V. Muyres, M. J. Pellerite, T. P.

Smith, J. Phys. Chem. B 107 (2003) 5877.

[68] J. X. Tang, C.S. Lee, M.Y. Chan, S.T. Lee, Appl. Surface Sci. (2008) in press.

[69] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. S. Mai, F. C. Tang, S. T. Lin, C. Y. Yeh, J.

B. Horng, C. T. Chia, C. C. Liao, D. Y. Shu, Jpn. J. Appl. Phys. 45 (2006) 7922.

Resume

相關文件