• 沒有找到結果。

Ⅳ THREE DIMENSIONAL ELASTIC SOLUTIONS OF A

7.2 R ECOMMENDATIONS FOR F UTURE W ORK

The work accomplished in this thesis can be improved and enhanced by further research on the following points:

• By using the method of undetermined coefficients, it is possible to expand the approach to solve the multi-layer or multi-material problems.

• If the singular points can be completely found in the process of inverse transforms, then the proposed solutions could be easily extended to determine the displacements, strains, and stresses resulting from three-dimensional point loads in an inclined transversely isotropic half-space. The interesting results would be addressed in the

near future.

• Using the relation of the determinant of

[ ]

d , and the velocity of body waves, it is ij

possible to solve the loading problem for the cubic and orthotropic materials.

REFERENCES

Amadei B., Pan E. Ravitational stresses in anisotropic rock masses with inclined strata. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(3), 225-236 (1992).

Amadei B., Savage W. Z. and Swolfs H. S., Gravitational Stresses in Anisotropic Rock Masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 24(1), 5-14 (1987).

Barden L., Stresses and displacements in a cross-anisotropic soil.

Géotechnique, 13(3), 198-210 (1963).

Boussinesq J., Application des Potentiels à L’Étude de L’Équilibre et due Mouvement des Solides Élastiques. Gauthier-Villars, Paris (1885).

Bray J., Unpublished notes. (1977).

Cerruti V., Sulla deformazione di un corpo elastico isotropo per alsune speciali condizioni ai limiti. Roma. Acc. Linc. Rend. Series 4, 785 (1888).

Chen WT., On some problems in transversely isotropic elastic materials.

Journal of Applied Mechanics, ASME, 33(6), 347-355 (1966).

Chiang CM., Mathematical Analysis in Engineering-How to Use the Basic Tools, Cambridge University (1997).

Chowdhury KL., On the axisymmetric Mindlin’s problem for a semi-space of granular material. Acta Mechanica, 66, 145-160 (1987).

Dean W. R., Parsons H. W. and Sneddon I. N., A type of stress distribution on the surface of a semi-infinite elastic solid. Proc. Cambridge Phil. Soc.

40(1), 5-18 (1944).

Ding H. J., Chen B. and Liang J., General solutions for coupled equations for piezoelectric media. International Journal of Solids and Structures, 39(33), 2283-2298 (1996).

Ding H. J., Chen W. and Zhang L., Elasticity of Transversely Isotropic Materials. Springer, Netherlands (2006).

Ding H. J., Liang J. and Chen B., The United Point Force Solution for Both Isotropic and Transversely Isotropic Media. Communications in

Numerical Methods in Engineering, 13(2),.95-102 (1997).

Ding H. J., On the stress function of axisymmetric deformation in a solid of revolution. Shanghai Journal of Mechanic, 8(1) 42-48. 54 (1987)

Doring T., Das Gleichgewicht zerklufteter Gebirgskorper mit einer parallelen kluftschar. Rock Mechanics and Engineering Geology 1965;

3:62 (1965).

Doring T., Uber den einfuss der kluftung auf die spannungsverteilung im fels. Rock Mechanics and Engineering Geology, Supplement III:19 (1967).

Elliott HA., Three-dimensional stress distributions in hexagonal aeolotropic crystals. Proceedings of the Cambridge Philosophical Society,

44(4):522-533 (1948).

Eringen A. C. and Suhubi E. S., Elastodynamics Vol. II. Academic Press, New York (1975).

Fabrikant, V. I., A New Form of the Green Function for a Transversely Isotropic Body. Acta Mechanica, 167(1-2),101-111 (2004).

Fabrikant VI., Applications of Potential Theory in Mechanics. A Selection

of New Results . Kluwer Academic Publishers, The Netherlands (1989).

Gaziev E., Erlikhman S., Stresses and strains in anisotropic foundations (modern studies). Proceedings Symposium on Rock Fracture, ISRM;

PaperⅡ-1 (1971).

Georgiadis H.G., Rigatos A. P. and Brock L. M., Thermoelastodynamic disturbances in a half-space under the action of buried thermal/mechanic line source. International Journal of Solids and Structures, 36, 3639-3660 (1999).

Gerrard C.M., Background to Mathematical Modeling in Geomechanics:

the Roles of Fabric and Stress History. Proceedings of the International Symposium on Numerical Methods, Karlsruhe, 22-120 (1975).

Gerrard C.M., Harrison W.J., The effect of inclined planar fabric features on the behavior of a loaded rock mass. Proceedings of the 2nd Congress International Society of Rock Mechanics, 1, 415-422 (1970).

Grishin M.M., Orekhov. V.G., Pystogov V.I., Schimelmitz G. The effect of heterogeneous character of rock foundation on the stresses on concrete dams investigated experimentally. Proceedings of the 1st Congress International Society of Rock Mechanics, 2, ;567 (1966).

Hanson M.T., Elastic Fields for Point and Partial Line Loading in Transversely Isotropic Linear Elasticity. Journal of Elasticity, 55(2), 143-162 (1999).

Ke T.C., Lin C.Y., Study on stress increments in an inclined transversely isotropic rock stratum subjected to surface strip loading using FLAC.

Proceedings of 9th Conference on Current Researches in Geotechnical Engineering, B022(2001) (in Chinese).

Koning H. Stress distribution in a homogenous, anisotropic, elastic semi-infinite solid. Proc. 4th Int. Conf. on Soil Mech. Found. Engrg. 1, 335-338 (1957).

Kröner E., Das fundamentalintegral der anisotropen elastischen

different-ialgleichungen. Zeitschrift für Physik 136, 402-410 (1953).

Hanson M.T. and Wang Y., Concentrated ring loadings in a full space or half space: solutions for transverse isotropy and isotropy. Int. J. Solids Structures 34(11), 1379-1418 (1997).

Hata K.I. Some remarks on the three-dimensional problems concerned with the isotropic and anisotropic elastic solids. Mem. Fac. Eng. Hokkaido Univ. 10(2), 129 (1956).

Hu T.B., Wang C. D. and Liao J. J., Elastic Solutions of Displacements for a Transversely Isotropic Full-Space with Inclined Planes of Symmetry Subjected to a Point Load. International Journal for Numerical and Analytical Methods in Geomechanics, 31(12), 1401-1442 (2007).

Lee N.G., Elastic Green’s function for an infinite half-space of a hexagonal continuum with its basal plane as surface. Int. J. Engrg. Sci. 17, 681-689 (1979).

Lekhnitskii S.G., Symmetrical deformation and torsion of a body of revolution with a special kind of anisotropy. PMM 4(3), 43-60 (1940).

Lekhnitskii S.G., Theory of Elasticity of an Anisotropic Elastic Body.

Holden-Day, San Francisco (1963).

Lekhnitskii S.G., Theory of Elasticity of an Anisotropic Elastic Body.

Moscow: Mir Publishers (1981).

Liao J.J. and Wang C. D., Elastic Solutions for a Transversely Isotropic Half-Space Subjected to a Point Load. International Journal for Numerical and Analytical Methods in Geomechanics, 22(6), 425-447 (1998).

Liew K.M., Liang J., Ding H. J. and Lu C., Elastic Fields in Two-Joined Half-Spaces Subject to Point Force and Uniform Ring Loads. Computer Methods in Applied Mechanics and Engineering, 190(29-30), 3749-3769 (2001).

Lin W., Kuo C.H. and Keer L.M., Analysis of a transversely isotropic half space under normal and tangential loadings. J. Tribology ASME, 113(4), 335-338 (1991).

Lodge A.S., The transformation to isotropic form of the equilibrium

equations for a class of anisotropic elastic solids. Q. J. Mech. Appl. Math.

8(2), 211-225 (1955).

Lu CC., Study on the fundamental solutions of poroelasticity and

consolidation analysis. Ph.D. Thesis, National Cheng Kung University, Taiwan, Taiwan, (1991).

Lykotrafitis G., Georgiadis H.G. and Brock L.M., Three-dimensional thermoelastic wave motions in a half-space under the action of buried source. International Journal of Solids and Structures, 38, 4857-4878 (2001).

Mathematica® 4. Wolfram Research Inc. Wolfram Media, U.S.A.,(1999).

Mathematica® 5.2, Wolfram Research Inc., U.S.A (2006).

Martin P.A., Richardson J.D., Gray L.J., Berger J.R., On Green’s function for a three-dimensional exponentially graded elastic solid. Proceedings of the Royal Society of London. Series A, Mathematical and Physical and Engineering Sciences; 458, 1931-1947 (2002).

Michell J.H., The stress in an aeolotropic elastic solid with an infinite plane boundary. Proc. London Math. Soc. 32, 247-258 (1900).

Mindlin R.D., Force at a point in the interior of a semi-infinite solid.

Physics 7, 195-202 (1936).

Mindlin R.D. and Cheng D.H., Nuclei of strain in the semi-infinite solid. J.

Appl. Phys. 21(9), 926-930 (1950).

Misra B. and Sen B.R., Stresses and displacements in granular materials due to surface load. Int. J. Engrg. Sci. 13, 743-761 (1975).

Okumura I.A. and Dohba H., Generalization of Elliott’s solution to

transversely isotropic elasticity problems in Cartesian coordinates. JSME Int. J., Series I, Solid Mech., Strength of Materials 32(3), 331-336 (1989).

Pan E., Concentrate force in an infinite space of transversely isotropic material. Acta Mechanica; 80(1-2),127-135(1989).

Pan E., Mindlin’s Problem for an Anisotropic Piezoelectric Half-Space with General Boundary Conditions. Proceedings of the Royal Society of

London. Series A, 458(2017), 181-208 (2002).

Pan E. and Tonon F., Three-Dimensional Green’s Functions in Anisotropic Piezoelectric Solids. International Journal of Solids and Structures, 37(6), 943-958 (2000).

Pan E. Yang B., Efficient evaluation of three-dimensional Green’s functions

in anisotropic elastostatic multilayered composites. Engineering Analysis with Boundary Elements; 26:355-366(2002).

Pan E., Yuan F.G., Three-Dimensional Green’s Functions in Anisotropic Piezoelectric Bimaterials. International Journal of Engineering Science, 38(17), 1939-1960 (2000).

Pan E. and Yuan F.G., Three-Dimensional Green’s Functions in Anisotropic Bimaterial. International Journal of Solids and Structures, 37(38),

5329-5351 (2000).

Pan Y.C., Chou T.W., Point force solution for an infinite transversely isotropic solid. Journal of Applied Mechanics, ASME, 43(12), 608-612 (1976).

Pan Y.C. and Chou T.W., Green’s function solutions for semi-infinite transversely isotropic materials. Int. J. Engrg. Sci. 17(5), 545-551 (1979).

Rahman M., Singular solutions of elastodynamics. Q. J. Mech. Appl. Math.

48(3), 329-342 (1995).

Sheu G.Y., Deformations resulting from the movements of a shear or tensile fault in an anisotropic half space. International Journal for Numerical and Analytical Methods in Geomechanics, 28(5), 437-463 (2004).

Shield R.T., Notes on problems in hexagonal aeolotropic materials. Proc.

Cambridge Phil. Soc. 47, 401-409 (1951).

Sneddon I.N., Fourier Transform, Mcgraw-Hill Book Company, Inc.

(1951).

Steinbrenner W., A rational method for the determination of the vertical

normal stresses under foundations. Proc. 1st Int. Conf. on Soil Mech.

Found. Engrg. 2, 142-143 (1936).

Sveklo V.A. Boussinesq type problems for the anisotropic half space. PMM 28(5), 908-913 (1964).

Sveklo V.A. Concentrated force in a transversely isotropic half space and in a composite space. PMM 33(3), 532-537 (1969).

Sveklo V.A. The action of a stamp on an elastic anisotropic half-space.

PMM 34(1), 172-178 (1970).

Tarn J. Q. and Wang Y. M., A Fundamental Solution for a Transversely Isotropic Elastic Space. Journal of the Chinese Institute of Engineers, 10(1), 13-21 (1987).

Tarn J.Q., A state space formalism for anisotropic elasticity. Part Ⅰ:

Rectilinear anisotropy. International Journal of Solids and Structures, 39(33), 5143-5155 (2002)

Thompson J.C., Lelievre B., Beckie R.D. and Negus K.J., A simple procedure for computation of vertical soil stresses for surface regions of arbitrary shape and loading. Can. Geotech. J. 24(1), 143-145 (1987).

Thompson W.S. (Lord Kelvin), Note on the integration of the equations of equilibrium of an elastic solid. Cambridge and Dublin Math. J., February (1848).

Ting T.C.T., Lee V.G., The three-dimensional elastostatic Green’s function for general anisotropic linear elastic solids. Quarterly Journal of

Mechanics and Applied Mathematics ; 50(3):407-426 (1997).

Tonon F., Pan E. and Amadei B., Green’s Functions and Boundary Element Method Formulation for 3D Anisotropic Media. Computers & Structures, 79(5), 469-482 (2001).

Urena R.D., Piquer J.S., Muzas F. and Saracho J.M.S., Stress distribution in cross-anisotropic media. Proc. 1st ISRM Congr. Lisbon, 1, 313-317

(1966).

Wang C.D. and Liao J.J., Elastic Solutions for a Transversely Isotropic Half-Space Subjected to a Buried Asymmetric-Loads. International Journal for Numerical and Analytical Methods in Geomechanics, 23(2), 115-139 (1999).

Wang M.Z. and Wang L.N., Derivation of some special stress function from Beltrami-Schaefer stress function. Applied Mathematics and Mechanics, 10, 665-673. 54(1989)

Willis J.R., The elastic interaction energy of dislocation loops in anisotropic media. Quarterly Journal of Mechanics and Applied Mathematics, 18(4), 419-433 (1965).

Wolf K., Ausbreitung der kraft in der halbebene und in halbraum bei anisotropen material. Z. Angew. Math. und Mech. 15, 249-254 (1935).

Zou D.Q., Liang J. and Ding H.J., General solution of Transversely

isotropic elasticity problem, Journal of Zhejiang University, 28, 273-282.

39, 41, 64, 374 (1994)

APPENDIX A THE EXPRESSIONS OF aij (i, j=1-6)

The elastic constants in Eq. (3.06) can be expressed as:

1

11 a

a =

φ

φ 3 5 2

2 4 1 21

12 a (a 2a )cos (a a )sin

a = = − + −

φ

φ 1 4 2

2 5 3 31

13 a (a a )cos (a 2a )sin

a = = − + −

φ φsin cos ) 2

( 1 3 4 5

41

14 a a a a a

a = = − − +

φ φ

φ

φ 3 5 2 2 2 4

4 1

22 a cos 2(a a )cos sin a sin

a = + + +

} 4 cos )]

( 2 [

10 6 8{

1

5 3 2 1 5 3 2 1 32

23 a a a a a a a a a φ

a = = + + + +

φ φ}sin2 2 cos )]

( 2 [

4{ 1

5 3 2 1 2 1 42

24 a a a a a a a

a = = + + +

φ φ

φ

φ 3 5 2 2 1 4

4 2

33 a cos 2(a a )cos sin a sin

a = + + +

φ φ}sin2 2 cos )]

( 2 [

4{ 1

5 3 2 1 2 1 43

34 a a a a a a a

a = = + + + +

} 4 cos )]

( 2 [

6 2 8{

1

5 3 2 1 5 3 2 1

44 a a a a a a a a φ

a = + + + +

φ φ 4 2

2 5

55 a cos a sin

a = +

φ φsin cos ) ( 4 5

65

56 a a a

a = = −

φ φ 5 2

2 4

66 a cos a sin

a = +

64 0

63 62 61 54 53 52 51 46 45 36 35 26 25 16

15 =a =a =a =a =a =a =a =a =a =a =a =a =a =a =a =

a

APPENDIX B THE DERIVATION OF THE CHARACTERISTIC EQUATION According to Eq. (3.02), the x’ and y’ axes are in the plane of transversely isotropy.

The generalized Hooke’s law for a transversely isotropic material can be expressed as:

The strain-displacement relationship for small strain condition is:

[ ]

co-ordinate system.

The equation of force equilibrium is:

For the elastic dynamic problem, an arbitrary time-harmonic body force in x’, y’, and z’ direction with angular frequency ω can be written as:

)

Further, Eqs. (B.5a)-(B.5c) are preformed the triple Fourier transforms as:

'

Substituting Eqs. (B.5a)-(B.5c) and Eqs. (B.6a)-(B.6c) into Eqs. (B.4a)-(B.4c), we have the triple Fourier-type integrals as:

*x'

Rearranging Eqs. (B.7a)-(B.7c) as:

[

* *z'

]

'

* y '

x u u

u

[

0 0 0

]

is called the eigenvalue of this matrix.

2 }

) (

a a ) (

{ a

2 }

) (

a a ) (

{ a )]}

( a a [ {

d d

d

d d

d

d d

d

2 2 5 2

2 2 2 1 2

2

2 2 5 2

2 2 2 1 2

2 2

4 2 5 2 2

33 2 32

31

2 23 22

21

13 2 12

11

Δ

γ + β + α + γ + β +

α ρω

Δ + γ + β + α + γ + β +

α ρω

β + α + γ

ρω

=

ρω

ρω

ρω

(B.9)

where Δ= [(a1a5)(α2+β2)(a2a5)γ2]2+4a32(α2+β2)γ2 .

In addition, the variables α, β, γ can be expressed in terms of k, θx', θz' as:

' x ' z cos sin

k θ θ

=

α ,

' x ' z sin sin

k θ θ

=

β ,

'

cos z

k θ

=

γ .

Hence, the relationships between α, β, γ, and k, θx', θz' are:

' 2 z 2 2

2 ) k sin

(α +β = θ ,

' 2 z 2 2=k cos θ

γ .

Moreover, by introducing 2 22

V =ωk (V denotes the body-wave velocity), the final results for the three body-wave velocities are identical with those in a transversely

isotropic medium, as follows:

⎪⎭

⎪⎩

+

= +

2 1

2 1 2

5 2

32 2 2 1 5 5

2 33 2 2 1

3 5 a

4a a

a a a a a a

a a a a a 2

A 1 .

As depicted in Fig. B1, considering a new co-ordinate system x, y, z and the original system x’, y’, z’ with a common origin point be taken so that x and x’ axes lie in the xy plane (basic plane). The angle between the x and x’ axes is taken as one co ordinate, ϕ, and the angle between the y’ axis and the xy plane as the other co-ordinate, φ. We assign the cosines of the angles between the axes of the old and new co-ordinate system by Table B1.

Table B1 the cosines of the angles between the old and new axes

x’ y’ z’

x cosϕ sinϕ 0

y -cosφ sinϕ cosφ cosϕ sinφ z sinφ sinϕ -sinφ cosϕ cosφ

Then, the value of D in Eq. (B.11) can be presented as:

[

2 t

]

2 t i 3

1 i 6 52 2

t 2 , , SV t , , P t , , 6 SH 3

cos sin

A k a a

) V V

V ( k D

θ + θ

=

ρ

=

Π=

θ θ

θ (B.12)

where θt is the angle between the vector (α, β, γ) and the z axis, and it can be expressed in terms of α, β, γ, and φ as:

2 2 2

cos cos

sin sin

cos sin

γ β α

φ γ ϕ φ β ϕ φ θ α

+ +

+

=

t (B.13)

Additionally, from Eq. (B.13), 2 2 2

Hence, Eq. (B.12) can be rearranged as:

[ ]

Eventually, the six eigenroots can be generated by setting D=0 in Eq. (B.14) (also in Eq. (3.45)). They are respectively expressed as follow:

φ

(j=1-3)(B.15a)

φ

(j=4-6)(B.15b) As depicted in Fig. 1, considering a new co-ordinate system x, y, z is obtained from the original system x’, y’, z’ by rotation an angle φ about the x=x’ axis, ϕ =0. Then, the eigenvalue, γ of Eqs. (B.15a)-(B.15b), can be presented as:

φ φ

φ φ

α β φ

φ β β

α

γ 2 2

2 2

2 2

sin cos

)}

sin (cos

{ )

1 ( sin ) cos

, (

j

j j

j

j A

A A

i A

+

+ +

+

= (j=1-3) (B.16a)

φ φ

φ φ

α β φ

φ β β

α

γ 2 2

2 2

2 2

sin cos

)}

sin (cos

{ )

1 ( sin ) cos

, (

j

j j

j

j A

A A

i A

+

+ +

+ +

= (j=4-6) (B.16b)

If we further set iγ=uj, then, Eq. (B.16a)-Eq.(B.16b) can be respectively expressed in Eqs. (3.47a)-(3.47f).

APPENDIX C THE EXPRESSIONS OF Dij (i, j=1-3)

The complete expressions for Dij (i, j=1-3) in Eqs. (3.53a)-(3.53f) are presented as:

)

66 22 4 66 12 12 22 11 2 2 66 11 4

66 24 56 22 2 56 14 12 66 14 24 11 2

2 66 44 56 24 55 22 2 2 56 14 66 55 44 11 2

3 56 44 55 24

4 55 44 33

)) 2 ( (

))) (

)) (

( ( 2 (

))) 4

( ) ) (

( (

) (

2 ) ( ) (

a a a

a a a a a

a

u a a a a a

a a a a a a i

u a a a a a a a

a a a a a

u a a a a i

u a a u D

j j j

j j

β β

α α

β α

β

β α

β

+ +

+

+

+ +

+

+

+ +

+

+

+

+

=

APPENDIX D THE EXPRESSIONS OF fij (i, j=1-6)

The expressions of fij (i, j=1-6) can be presented as:

)) (

) (

( 56 111 121 55 311 111 1

11 i a D D a D iD u

f = β +α + α ,

)) (

) (

( 56 112 212 55 312 112 2

12 i a D D a D iD u

f = β +α + α ,

)) (

) (

( 56 113 213 55 313 113 3

13 ia D D a D iD u

f = β +α + α ,

)) (

) (

( 56 114 214 55 314 114 4

14 i a D D a D iD u

f = β +α + α ,

)) (

) (

( 56 115 215 55 315 115 5

15 i a D D a D iD u

f = β +α + α ,

)) (

) (

( 56 116 216 55 316 116 6

16 i a D D a D iD u

f = β +α + α ,

1 1 31 34 1 21 44 1 31 44 1 21 24 1 11 14

21 i( a D a D a D ) (a D a D )u

f = α +β +β + ,

2 2 31 34 2 21 44 2 31 44 2 21 24 2 11 14

22 i( a D a D a D ) (a D a D )u

f = α +β +β + ,

3 3 31 34 3 21 44 3 31 44 3 21 24 3 11 14

23 i( a D a D a D ) (a D a D )u

f = α +β +β + ,

4 4 31 34 4 21 44 4 31 44 4 21 24 4 11 14

24 i( a D a D a D ) (a D a D )u

f = α +β +β + + ,

5 5 31 34 5 21 44 5 31 44 5 21 24 5 11 14

25 i( a D a D a D ) (a D a D )u

f = α +β +β + + ,

6 6 31 34 6 21 44 6 31 44 6 21 24 6 11 14

26 i( a D a D a D ) (a D a D )u

f = α +β +β + + ,

1 1 31 33 1 21 34 1 31 34 1 21 23 1 11 13

31 i( a D a D a D ) (a D a D )u

f = α +β +β + ,

2 2 31 33 2 21 34 2 31 34 2 21 23 2 11 13

32 ( a D a D a D ) (a D a D )u

f =α +β +β + ,

3 3 31 33 3 21 34 3 31 34 3 21 23 3 11 13

33 i( a D a D a D ) (a D a D )u

f = α +β +β + ,

4 4 31 33 4 21 34 4 31 34 4 21 23 4 11 13

34 i( a D a D a D ) (a D a D )u

f = α +β +β + + ,

5 5 31 33 5 21 34 5 31 34 5 21 23 5 11 13

35 i( a D a D a D ) (a D a D )u

f = α +β +β + + ,

6 6 31 33 6 21 34 6 31 34 6 21 23 6 11 13

36 i( a D a D a D ) (a D a D )u

f = α +β +β + + ,

1 11

41 D

f = , f42=D112, f43=D113, f44=D114, f45=D115, f46=D116,

1 21

51 D

f = , f52=D212 , f53=D213, f54=D214 , f55=D215, f56=D216 ,

1 31

61 D

f = , f62=D312, f63=D313, f64=D314, f65=D315, f66=D316 .

APPENDIX E BOUNDARY CONDITIONS

In order to demonstrate the Eq. (4.15), considering the pertinent continuity and discontinuity conditions at z=0:

In region Ι of Fig. 3.1, for z= 0+, the Cauchy′s theory of residues are utilized to integrate the contours, and a closed contour by adding a large semicirle on the upper γ-plane, is shown in Fig. E.1

γ

Fig. E.1 Path of integration for Eqs. (E.01a)-(E.01c)

Similarly, as depicted in Fig. 3.1, the region Ⅱ, for z= 0, a closed contour by adding a large semicirle on the lower γ-plane is utilized.

)

C

R

γ

Imγ

Reγ

1

γ γ

3

γ

4

γ

5

γ

6

Fig. E.2 Path of integration for Eqs. (E.02a)-(E.02c)

From Eqs. (E.01a)-(E.01c), Eqs. (E.02a)-(E.02c), and Fig. E.3, we can find that:

0 ) ) , , ( )

, , ( 2 (

) 1 , , ( ) , , (

2

2 1

1 α β zu α β z = π

U α β γ eγdγ

U α β γ eγ dγ =

u x iz

C z

i C x

x

x S S

(E.03a) 0

) ) , , ( )

, , ( 2 (

) 1 , , ( ) , , (

2

2 1

1 α β zu α β z = π

U α β γ eγdγ

U α β γ eγdγ =

u y iz

C z i C y

y

y S S

(E.03b) 0

) ) , , ( )

, , ( 2 (

) 1 , , ( ) , , (

2

2 1

1 α β zu α β z = π

U α β γ eγdγ

U α β γ eγdγ =

u z iz

C z

i C z

z

z S S

(E.03c)

γ6 γ

Fig. E.3. Path of integration for Eqs. (E.03a)-(E.03c)

From Eqs. (4.16a)-(4.16c), Eqs. (4.17a)-(4.17c), and the relations of Eqs.

(E.03a)-(E.03c), we observe that:

0

when z=0, substituting Eqs. (E.04a)-(E.04c) into Eqs. (E.05a)-(E.05c) can obtain the following expressions:

)

By using the method of Laurent′s theorem, we find that:

x

z

Replacing Eqs. (E.07a)-(E.07c) into Eqs. (E.06a)-(E.06c), we prove that:

τ π According to the Cauchy′s theory of residues and the method of Laurent′s theorem,

we already accomplish the purpose desired and demonstrate the Eq. (4.15).

作 者 簡 歷

姓名: 胡廷秉

籍貫:台灣省南投縣

出生年月日: 民國 59 年 04 月 15 日

學歷: 交通大學土木工程學士 (民國 78-82 年)

交通大學土木工程碩士 (民國 82-84 年)

交通大學土木工程博士 (民國 89-98 年)

經歷:工研院材料所機械性能實驗室副研究員 台灣省石門水庫管理局薦任技士

長豐土木結構大地技師事務所負責人 世合工程技術顧問股份有限公司負責人 考試:土木工程技師高等考試及格(民國 82 年)

大地工程技師高等考試及格(民國 83 年) 結構工程技師高等考試及格(民國 84 年) 公務人員高等考試二級及格(民國 85 年) 消防設備師特考及格(民國 86 年)

著作清單:

期刊論文

1. Liao, J.J., Hu, T.-B., and Chang, C.-w. (1997), ”Determination of Dynamic Elastic Constants of Transversely Isotropic Rocks Using a Single Cylindrical Specmen”, Internation Journal of Rock mechanics and Mining Science, Vol. 34, No. 7, pp.1045-1054.(SCI)

NSC852211E009038

2. Tin-Bin Hu; Cheng-Der Wang; Jyh-Jong Liao (2007),“Elastic Solutions of Displacements for a Transversely Isotropic Full-Space with Inclined Planes of Symmetry

Subjected to a Point Load”, International Journal for Numerical and Analytical Methods in Geomechanics ,2007; 31:1401-1442( Accepted on 11 Augustl 2006, Published online 7 February 2007 in Wiley InterScience

(www.interscience.wiley.com). DOI:10.1002/nag.602.

3. Jyh-Jong Liao, Tin-Bin Hu , Cheng-Der Wang (2008) , “Elastic Solutions for an Inclined Transversely Isotropic Material Due to Three-Dimensional Point Load”, Journal of Mechanics of Materials and Structures, Vol. 3, No. 8,

pp.1521-1547.mathematical sciences publishers.

碩士論文:

胡廷秉,“ 超音波儀器之組裝及異向性岩石之超音波特性“,交大土木研究所,

1995

研討會論文:

1. 胡廷秉, 廖志中, 黃安斌 (1996). "壓電複合材料於岩石超音波量測的應用", 1996 岩盤工程研討會論文集, 民國 85 年 12 月, 台北,

325-332.NSC-84-2611-E009-004

2. 張峻維,廖志中,胡廷秉(1997)”受單軸壓力下異向性岩石之超音波及聲射特性,”

第七屆大地工程學術研討會論文集,第 1165-1170 頁.842611E009 004

3. 胡廷秉 王承德 廖志中,,” Elastic Solutions of Displacements for an Inclined Transversely Isotropic Full-Space Subjected to Three-Dimensional Point Loads”,

岩盤工程研討會 2004

4. 胡廷秉 王承德 廖志中, “承受三向度點荷重作用下之無限域傾斜橫向等向性 岩石之應力解析解”, 岩盤工程研討會 2006.