• 沒有找到結果。

Scaled Form Factor of Birefringent Sphere

I=

0N a I a da (a.12)

where N a( ) is a size distribution function of the sphere. As the simplest example we assumed a Gaussian distribution function

A.3 Scaled Form Factor of Birefringent Sphere

The major purpose of the studying scaled structure factor is to determine the universal structure features in the spatiotemporal evolution of aggregation or decomposition systems.8 The same is true of scaled form factor. For a nucleation-growth system, the volume fraction of growing new phase is the function of time. In order to obtain a universal feature, the time evolution of the scaled form factor should be reduced with the invariant, Q. For depolarized scattering, the scaled form factor,

sphere( )

( )

45 2

0 Hv

Q=

I ° q q dq (a.15)

On the basis of the Meeten et al.’s theory, Q is ascribed to both mean-square optical anisotropy, δ2

〈 〉 , and the mean-square density fluctuation, 〈 〉 . A problem now arises: due to the excess η2 scattering intensity of which arises from 〈 〉 , η2 IHv45°( )q q2 shows a divergent behavior in high- q regime, and Q does not converge to a constant. To avoid this problem, we may expediently neglect the isotropic term in eqs 10 and 11 to calculate the equivalent invariant, Qan, and9

2 2

an s

Q ∝ δ = ∆ (a.16) φ µ

where φ is the volume fraction of the birefringent sphere. Thus, we can clarify the relative s contribution of the volume fraction of the growing new phase on the scaled form factor.

In previous work we demonstrated PHvsphere( )qa to show the universal feature of the depolarized scattering from a birefringent sphere, but some deviate at qa<4. At that time, we incorrectly related the deviation to the long-range correlation of the dispersed spheres according to the observation that the excess scattering intensity is biased with q2. Later we knew that the observed excess scattering yields important information concerning the elastic background.

Reference

1.

Coniglio, A.; Stanley, H. E.; Klein, W. Phys. Rev. Lett. 1977, 42, 518.

2.

Stauffer, D.; Coniglio, A.; Adam, M. Adv. Polym. Sci. 1982, 44, 103.

3.

Adam, M.; Lairez, D. In Physical Properties of Polymer Gels, Ch. 4; Cohen Addad, J.

P., Ed.; John Wiley & Sons: New York, 1996.

4.

De Gennes, P. G. J. Physique Lett. 1976, 37, L1.

5.

Stauffer, D. J. Chem. Soc. Farad. Trans. II 1976, 72, 1354.

6.

Zallen, R. The Physics of Amorphous Solids; Wiley-VCH: New York, 1998.

7.

Te Nijenhuis, K. Thermoreversible Networks: Viscoelastic Properties and Structure of Gels; Springer: New York, 1997.

8.

Guenet, J. M. Thermoreversible Gelation of Polymer and Biopolymer; Academic Press:

New York, 2002.

9.

Keller, A. Faraday Discuss. 1995, 101, 1.

10.

Flory, P. J. Faraday Discuss. Chem. Soc. 1974, 57, 7.

11.

De Gennes, P. G. Scaling Concept in Polymer Science; Cornell University Press: New York, 1985.

12.

Weiss, R. G., Ed. Molecular and Polymer Gels; Materials with Self-Assembled Fibrillar Networks; Langmuir, Special Issue, Vol. 25, 2009.

13.

Chou, C. M.; Hong, P. D. Macromolecules 2010, 43, 10621–10627.

14.

Chou, C. M.; Hong, P. D. Macromolecules 2008, 41, 6540–6545.

15.

Chou, C. M.; Hong, P. D. Macromolecules 2008, 41, 6147–6153.

16.

Chou, C. M.; Hong, P. D. Macromolecules 2004, 37, 5596–5606.

17.

Chou, C. M.; Hong, P. D. Macromolecules 2003, 36, 7331–7337.

18.

Lu, P. J.; Zaccarelli, E.; Ciulla, F.; Schofield, A. B.; Sciortino, F.; Weitz, D. A. Nature (London) 2008, 453, 499.

19.

Weiss, R. G.; Terech, P. Molecular Gels: Materials with Self-Assembled Fibrillar Networks; Springer: Dordrecht, 2006.

20.

Douglas, J. F. Langmuir 2009, 25, 8386.

21.

Raghavan, S. R. Langmuir 2009, 25, 8382.

22.

Guenet, J. M. J. Rheol. 2000, 44, 947.

23.

Adam, M.; Lairez, D. In Physical Properties of Polymer Gels, Ch. 4; Cohen Addad, J.

P., Ed.; John Wiley & Sons: New York, 1996.

24.

Stauffer, D. J. Chem. Soc. Farad. Trans. II 1976, 72, 1354

25.

Tanaka, T.; Swislow, G.; Ohmine, I. Phys. Rev. Lett. 1979, 42, 1556.

26.

Heermann, D. W.; Stauffer, D. Z. Phys. B 1981, 44, 339.

27.

Kroy, K.; Cates, M. E.; Poon, W. C. K. Phys. Rev. Lett. 2004, 92, 148302.

28.

Trappe, V.; Prasad, V.; Cipelletti, L.; Segre, P. N.; Weitz, D. A. Nature (London) 2001, 411, 772–775.

29.

Gránásy, L.; Pusztai, T.; Börzsönyi, T.; Warren, J. A.; Douglas, J. F. Nat. Mater. 2004, 3, 645

30.

Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. The Rate of Crystallization of Linear Polymers with Chain Folding. In Treatise on Solid State Chemistry; Hannay, N., Ed.;

Plenum Press: New York, 1976; Vol. 3, Chap. 7.

31.

Guerra, G.; Musto, P.; Karasz, F. E.; MacKnight, W. J. Makmmol. Chem. 1990, 191, 2111.

32.

Daniel, C.; Deluca, M. D.; Guenet, J. M.; Brûlet, A.; Menelle, A. Polymer 1996, 37, 1273.

33.

Kobayashi M.; Kozasa, T. Appl. Spectrosc. 1993, 47, 1417.

34.

Murakami, Y.; Hayashi, N.; Hashimoto, T.; Kawai, H. Polym. J. 1973, 4, 452.

35.

Stein, R. S.; Rhodes, M. B. J. Appl. Phys. 1960, 31, 1873

36.

Higgins, J. S.; Benoît, H. C. Polymers and Neutron Scattering; Oxford University Press: Oxford, 1994.

37.

Kerker, M. The Scattering of Light and Other Electromagnetic Radiation; Academic:

New York, 1969.

38.

Ferri, F.; Greco, M.; Arcòvito, G.; de Spirito, M.; Rocco, M. Phys. Rev. E 2002, 66, 011913.

39.

Debye, P.; Bueche, A. M. J. Appl. Phys. 1949, 20, 518.

40.

Desborder, M.; Meeten, G. H.; Navard, P. J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 2037.

41.

Van de Hulst, H. C. Light Scattering by Small Particles; John Wiley & Sons: New York, 1957.

42.

Kawanish, K.; Takeda, Y.; Inoue, T. Polym. J. 1986, 18, 411.

43.

Matsuo, M.; Tanaka, T.; Ma, L. Polymer 2002, 43, 5299.

44.

Matsuo, M.; Miyoshi, S.; Azuma, M.; Bin, Y.; Agari, Y.; Sato, Y.; Kondo, A.

Macromolecules 2005, 38, 6688.

45.

Takeshita, H.; Kanaya, T.; Nishida, K.; Kaji, K. Macromolecules 1999, 32, 7815.

46.

Hong, P. D.; Chou, C. M. Macromolecules 2000, 33, 9673.

47.

Takeshita,H.; Kanaya, T.; Nishida, K.; Kaji, K. Macromolecules 2001, 34, 7894.

48.

Bailey, A. E.; Poon, W. C. K.; Christianson, R. J.; Schofield, A. B.; Gasser, U.; Prasad, V.; Manley, S.; Segre, P. N.; Cipelletti, L.; Meyer, W. V.; Doherty, M. P.; Sankaran, S.;

Jankovsky, A. L.; Shiley, W. L.; Bowen, J. P.; Eggers, J. C.; Kurta, C.; Lorik, Jr., T.;

Pusey, P. N.; Weitz, D. A. Phys. Rev. Lett. 2007, 99, 205701.

49.

Cahn, J. W. J. Chem. Phys. 1965, 42, 93.

50.

Hashimoto, T. In Structure and Properties of Polymers, Ch. 6; Thomas, E. L., Ed.;

55.

Kaji, K.; Nishida, K.; Kanaya, T.; Matsuba, G.; Konishi, T.; Imai, M. Adv. Polym. Sci.

2005, 191, 187.

56.

Muthukumar, M. Adv. Polym. Sci. 2005, 191, 241.

57.

Cavagna, A.; Attanasi, A.; Lorenzana, J. Phys. Rev. Lett. 2005, 95, 115702.

58.

Gagne, C. J.; Gould, H.; Klein, W.; Lookman, T.; Saxena, A. Phys. Rev. Lett. 2005, 95, 095701.

59.

Shinbrot, T.; Muzzio, F. J. Nature (London) 2001, 410, 251.

60.

Gollub, J. P.; Langer, J. S. Rev. Mod. Phys. 1999, 71, S396.

61.

Debenedetti, P. G. Nature (London) 2006, 441, 168.

62.

Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.

63.

Kostorz, G., Ed. Phase Transformations in Materials; Wiley-VCH: New York, 2001.

64.

Hoffman, J. D.; Davis, G. T.; Lauritzen, Jr., J. I., In Treatise on Solid State Chemistry, Vol. 3, Ch. 7; Hannay, N. B., Ed.; Plenum Press: New York, 1976.

65.

Hoffman, J. D.; Lauritzen, Jr., J. I. J. Res. Nat. Bur. Std. 1960, 64A, 73.

66.

Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd; Prentice-Hall: New Jersey, 1998.

67.

Witten, T. A. Rev. Mod. Phys. 1999, 71, S367.

68.

Frenkel, D. Physica A 1999, 263, 26.

69.

Snir Y.; Kamine, R. D. Science 2005, 307, 1067.

70.

Kalikmanov, V. I. J. Chem. Phys. 2004, 121, 8916-8923.

71.

Klein, W. Phys. Rev. Lett. 1981, 47, 1569–1572.

72.

Heermann, D. W.; Klein, W. Phys. Rev. Lett. 1983, 50, 1062–1065.

73.

Olafsen, J., Ed. Experimental and Computational Techniques in Soft Condensed Matter Physics; Cambridge University Press: Cambridge, England, 2010.

74.

Weitz, D. A. Science 2004, 303, 968–969.

75.

Park, I. H.; Yoon, J. E.; Kim, Y. C.; Yun, L.; Lee, S. C. Macromolecules 2004, 37, 6170–6176.

76.

Heermann, D. W.; Klein, W.; Stauffer, D. Phys. Rev. Lett. 1982, 49, 1262–1264.

77.

Klein, W.; Lookman, T.; Saxena, A.; Hatch, D. Phys. Rev. Lett. 2002, 88, 085701.

78.

Gagne, C.; Gould, H.; Klein, W.; Lookman, T.; Saxena, A. Phys. Rev. Lett. 2005, 95, 095701.

79.

Dainty, J. C., Ed. Laser Speckle and Related Phenomena. In Topics in Applied Physics;

Springer-Verlag: New York, 1975; Vol. 9.

80.

Meeten, G. H.; Navard, P. J. Polym. Sci. B: Polym. Phys. 1989, 27, 2023–2035.

81.

Voice, A. M.; Davies, G. R.; Ward, I. M. Polym. Gels Networks 1997, 5, 123–144.

相關文件