• 沒有找到結果。

CHAPTER 6 Experimental Section

6.2 General Experimental Procedures

6.2.25 Statistical analysis

Two-tailed Student’s t test was used to determine the significance of the differences between the survivals in polymyxin B assay/phagocytosis, the levels of β-galactosidase activity and CPS amounts. P values less than 0.01 were considered statistically significant.

6.3 Table

Table 6.1. Bacterial strains used in this study

Strain Description Reference or source

K. pneumponiae

CG43 Clinical isolate (36)

CG43-101 CG43-101 (37)

CG43S3 CG43 Smr (130)

ΔlacZ CG43S3ΔlacZ Smr (142)

ΔrcsB (B2202) CG43S3ΔrcsB Smr (130)

ΔrmpA2 (R2035) CG43S3ΔrmpA2 Smr (130)

ΔgalU (U9451) CG43S3ΔgalU Smr Laboratory stock

Δfur CG43S3Δfur Smr This study

ΔphoP CG43S3ΔphoP Smr This study

ΔpmrA CG43S3ΔpmrA Smr This study

ΔpmrD CG43S3ΔpmrD Smr This study

ΔpmrF CG43S3ΔpmrF Smr This study

ΔrmpA CG43S3ΔrmpA Smr This study

ΔrstA CG43S3ΔrstA Smr This study

ΔrstB CG43S3ΔrstB Smr This study

Δugd CG43S3Δugd Smr This study

Δwza CG43S3Δwza Smr This study

ΔlacZΔfur CG43S3ΔlacZΔfur Smr This study

117

Strain Description Reference or source

ΔlacZΔphoP CG43S3ΔlacZΔphoP Smr This study

ΔlacZΔpmrA CG43S3ΔlacZΔpmrA Smr This study

ΔlacZΔpmrD CG43S3ΔlacZΔpmrD Smr This study

ΔlacZΔrmpA CG43S3ΔlacZΔrmpA Smr This study

ΔlacZΔrmpA2 CG43S3ΔlacZΔrmpA2 Smr This study

ΔpmrAΔphoP CG43S3ΔpmrAΔphoP Smr This study

ΔrcsBΔphoP CG43S3ΔrcsBΔphoP Smr This study

ΔrcsBΔpmrA CG43S3ΔrcsBΔpmrA Smr This study

ΔrcsBΔpmrD CG43S3ΔrcsBΔpmrD Smr This study

ΔrcsBΔpmrF CG43S3ΔrcsBΔpmrF Smr This study

ΔrmpAΔrmpA2 CG43S3ΔrmpAΔrmpA2 Smr This study

ΔrstAΔgalU CG43S3ΔrstAΔgalU Smr This study

ΔrstAΔrstB CG43S3ΔrstAΔrstB Smr This study

E. coli

BL21(DE3) F- ompT hsdSB(rB -mB

-) gal dcm trxB15::kan (DE3) Novagen

BL21(DE3) [pLysS] F- ompT hsdSB(rB -mB

-) gal dcm trxB15::kan (DE3) [pLysS] Novagen

JM109 endA1 glnV44 thi-1 relA1 gyrA96 recA1 mcrB+ Δ(lac-proAB) e14- [F' traD36 proAB+ lacIq lacZΔM15]

hsdR17(rK -mK

+) New England Biolabs

S17-1λpir hsdR recA pro RP4-2 (Tc::Mu; Km::Tn7)(λpir) (218)

XL1-Blue MRF’ Kan Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F’ proAB

lacIqZ ΔM15 Tn5 (Kanr)] Stratagene

Table 6.1. (continued)

118

Table 6.2. Plasmids used in this study

Plasmid Description Reference or source

yT&A Apr, T/A-type PCR cloning vector, Yeastern

pBT Cmr, bait plasmid, p15A origin of replication, lac-UV5 promoter, λ-cI open reading frame Stratagene pTRG Tcr, target plasmid, ColE1 origin of replication, lac-UV5 promoter, RNAPα open reading frame Stratagene

pET30a-c Kmr, His-tagged protein expression vector Novagen

pBT-LGF2 Cmr, control plasmid containing a fragment encoding the yeast transcriptional activator Gal4

fused with λ-cI Stratagene

pTRG-GAL11P Tcr, control plasmid containing a fragment encoding a mutant form of Gal11 protein, called

Gal11P, fused with RNAPα Stratagene

pGEX-5X-1 Apr, GST-tagged protein expression vector GH Hleathcare

pACYC184 Cmr, Tcr, plasmid with p15A origin of replication (35)

pKAS46 Apr, Kmr, suicide vector, rpsL (218)

pRK415 Tcr, shuttle vector, mob+ (121)

pYC084 Tcr, 2.1-kb HindIII/BamHI fragment containing the entire rmpA2 locus cloned into pRK415 (130)

placZ15 Cmr, promoter selection vector, lacZ+ (142)

pOrf12 Cmr, 500-bp fragment containing the region upstream of Klebsiella K2 cps orf1-orf2 cloned into

placZ15 (142)

pOrf315 Cmr, 900-bp fragment containing the region upstream of Klebsiella K2 cps orf3-orf15 cloned into

placZ15 (142)

pOrf1617 Cmr, 300-bp fragment containing the region upstream of Klebsiella K2 cps orf16-orf17 cloned

into placZ15 (142)

119

Plasmid Description Reference or source pHY048 Cmr, 450-bp fragment containing the upstream region of the K. pneumoniae rstA gene cloned

into placZ15 This study

pHY050 Cmr, 200-bp fragment containing the upstream region of the K. pneumoniae rstA gene cloned

into placZ15 This study

pHY053 Cmr, 150-bp fragment containing the upstream region of the K. pneumoniae rstA gene cloned

into placZ15 This study

pHY083 Kmr, Apr, the Porf1-2::lacZ reporter cassette cloned into pKAS46 This study pHY115 Apr, 550-bp fragment containing a pmrD allele cloned intoyT&A This study pHY118 Apr, 300-bp fragment containing the upstream region of the K. pneumoniae pmrD gene cloned in

the same direction to lacZα in yT&A, This study

pHY290 Apr, 299-bp fragment encoding residues 1-100 of RmpA cloned in-frame with lacZα into yT&A This study pHY291 Apr, 299-bp fragment encoding residues 1-100 of RmpA cloned in the opposite direction to lacZα

into yT&A This study

pHY305 Apr, 347-bp fragment encoding residues 1-116 of RmpA2 cloned in-frame with lacZα into yT&A This study pHY306 Apr, 347-bp fragment encoding residues 1-116 of RmpA2 cloned in the opposite direction to

lacZα into yT&A This study

pACYC184-RcsB Tcr, 1.1-kb EcoRI fragment containing full-length RcsB-His and the upstream T7 promoter

region from pET30b-RcsB cloned into pACYC184 This study

pBT-PmrA Cmr, 669-bp fragment encoding full-length PmrA cloned into pBT This study pBT-RcsB Cmr, 648-bp fragment encoding full-length RcsB cloned into pBT This study pET30b-PhoP Kmr, 711-bp fragment encoding full-length PhoP cloned into pET30b This study pET30b-PhoPN Kmr, 447-bp fragment encoding residues 1-149 of PhoP cloned into pET30b This study pET30b-PmrBC Kmr, 828-bp fragment encoding residues 90-365 of PmrB cloned into pET30b This study Table 6.2. (continued)

120

Plasmid Description Reference or source pET-PmrA Kmr, 669-bp fragment encoding full-length PmrA cloned into pET29b Courtesy of Dr.

Chinpan Chen pET-PmrD Kmr, 243-bp fragment encoding full-length PmrD cloned into pET29b Courtesy of Dr.

Chinpan Chen pET30b-RcsB Kmr, 648-bp fragment encoding full-length RcsB cloned into pET30b This study pET30c-Fur Kmr, 450-bp fragment encoding full-length Fur cloned into pET30c This study pGEX-RcsA Apr, 621-bp fragment encoding full-length RcsA cloned into pGEX-5X-1 This study pGEX-RmpA Apr, 585-bp fragment encoding full-length RmpA cloned into pGEX-5X-1 This study pGEX-RmpAN Apr, 252-bp fragment encoding residues 1-84 of RmpA cloned into pGEX-5X-1 This study pGEX-RmpA2 Apr, 636-bp fragment encoding full-length RmpA2 cloned into pGEX-5X-1 This study placZ15-PiroB Cmr, 450-bp fragment containing the upstream region of the K. pneumoniae iroBCD genes

cloned into placZ15 This study

placZ15-PiucA Cmr, 700-bp fragment containing the upstream region of the K. pneumoniae iucABCD genes

cloned into placZ15 This study

placZ15-PpmrD Cmr, 350-bp fragment containing the upstream region of the K. pneumoniae pmrD gene cloned

into placZ15 This study

placZ15-PpmrH Cmr, 500-bp fragment containing the upstream region of the K. pneumoniae pbgP genes cloned

into placZ15 This study

placZ15-PrmpA Cmr, 500-bp fragment containing the upstream region of the K. pneumoniae rmpA gene cloned

into placZ15 This study

placZ15-PrmpA2 Cmr, 500-bp fragment containing the upstream region of the K. pneumoniae rmpA2 gene cloned

into placZ15 This study

pRK415-Fur Tcr , 0.8-kb fragment containing a fur allele cloned into pRK415 This study Table 6.2. (continued)

121

Plasmid Description Reference or source pRK415-PhoP Tcr , 900-bp fragment containing a phoP allele cloned into pRK415 This study pRK415-PmrA Tcr , 1.1-kb fragment containing a pmrA allele cloned into pRK415 This study pRK415-PmrD Tcr , 550-bp fragment containing a pmrD allele cloned into pRK415 This study pRK415-PmrDK6A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDV8A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDQ9A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDD10A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDS23A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDG24A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDL26A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDM28A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDE31A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDT46A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDY53A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDT69A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDY71A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDW76A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDT77A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDN78A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrDD80A Tcr , 550-bp fragment containing a pmrD allele encoding PmrDK6A cloned into pRK415 This study pRK415-PmrF Tcr , 1.3-kb fragment containing a pmrF allele cloned into pRK415 This study Table 6.2. (continued)

122

Plasmid Description Reference or source pRK415-RcsB Tcr , 1.2-kb fragment containing an rcsB allele cloned into pRK415 This study pRK415-RmpA Tcr , 1.1-kb fragment containing an rmpA allele cloned into pRK415 This study pRK415-RmpAN Tcr , 1.1-kb fragment containing the rmpA locus encoding residues 1-84 of RmpA cloned into

pRK415 This study

pRK415-RmpA2 Tcr , 1.2-kb fragment containing an rmpA2 allele cloned into pRK415 This study pTRG-PmrD Tcr, 243-bp fragment encoding full-length PmrD cloned into pTRG This study pTRG-RcsA Tcr, 621-bp fragment encoding full-length RcsA cloned into pTRG This study pTRG-RmpAN Tcr, 252-bp fragment encoding residues 1-84 of RmpA cloned into pTRG This study pTRG-RmpA2 Tcr, 636-bp fragment encoding full-length RmpA2 cloned into pTRG This study Table 6.2. (continued)

123

Table 6.3. Oligonucleotide primers used in this study

Primer Sequencea Enzyme

cleaved Complementary position

CH009 5'-AGCGTGACGAGACCTGCCCA-3' None -802 relative to the K2 cps orf1 start codon CH010 5'-GGCTGCGGGCGTAAGAGAAC-3' None +217 relative to the lacZ start codon CY007 5'-TCTAGAGGCAGGTTGGCTCTTCAGTC-3' XbaI +489 relative to the fur start codon CY008 5'-GGATCCATGAAGACAGCCAGCCGGA-3' BamHI -389 relative to the fur start codon CY0010 5'-GGATCCGATTCCGCATGACTGACAAC-3' BamHI -8 relative to the fur start codon CY0011 5'-AAGCTTGGCAGGTTGGCTCTTCAGTC-3' HindIII +489 relative to the fur start codon GSPrmpA01 5’-TTAGGATAAAACCGCCCCCCCCCCGAAAC-3’ None +254 relative to the rmpA start codon GSPrmpA02 5’-CATTTTGTACCCTCCCCATTTCCCTGA-3’ None +180 relative to the rmpA start codon KP1760-1 5’-GGAATTCCATATGAAAATCTTAGTCATTGAA-3’ NdeI +1 relative to the pmrA start codon KP1760-2 5’-CCGCTCGAGCTATTCCGTGTCGATGTTGTT-3’ XhoI +672 relative to the pmrA start codon KP3573-1 5’-GGAATTCCATATGGAGTGGTGGGTAAAAAAA-3’ NdeI +1 relative to the pmrD start codon KP3573-2 5’-CCGCTCGAGTTTGTCGGCGTTTGTCCAACG-3’ XhoI +243 relative to the pmrD start codon pET30f2 5’-TTGAATTCTAGGTTGAGGCCGTTGAGCA-3’ EcoRI +673 to +692 region on pET30a pET30r2 5’-CAAGAATTCAAACCCCTCAAGACCCGT-3’ EcoRI +31 to +47 region on pET30a phoP01 5’-CGCTCGCCGTTCGGATCCTG-3’ BamHI -171 relative to the phoP start codon phoP02 5’-GCAACGGTACCTTCATCAGCGC-3’ KpnI +729 relative to the phoP start codon phoP05 5’-GTAATGACAGCGGGAAGATATG-3’ None +753 relative to the phoP start codon phoP06 5’-CAGCCGTTTATATTTTGCGT-3’ None -25 relative to the phoP start codon pirop01 5'-GGATCCGATTTCAGTACGGCATGGAC-3' BamHI -379 relative to the iroB start codon pirop02 5'-AGATCTACGGGAAACGCCTGTGCCA-3' BglII +77 relative to the iroB start codon

124

Primer Sequencea Enzyme

cleaved Complementary position

piucp01 5'-GGATCCAGAGGGTGATTTGCCAGCAT-3' BamHI -611 relative to the iucA start codon piucp02 5'-AGATCTGGAAGCACTGAGCAGCCACA-3' BglII +109 relative to the iucA start codon pmrA06 5’-GAGCCATGGTCTATTCCGTG-3’ NcoI +682 relative to the pmrA start codon pmrA10 5’-ACTCGAGCCATGGTCTATTCCGTG-3’ XhoI +1 relative to the pmrA start codon pmrA11 5’-AATGCGGCCGCAATGAAAATCTTAGTC-3’ NotI +672 relative to the pmrA start codon pmrAp03 5’-CAATTGGATCCAGGGCTGTAC-3’ BamHI -424 relative to the pmrA start codon pmrBe03 5’-TGGATCCTCGCAAGATCACCCGCC-3’ BamHI +283 relative to the pmrB start codon pmrBe04 5’-CAAGCTTATGGGTGCTGACGTTCTGAC-3’ HindIII +1095 relative to the pmrB start codon pmrDe02 5’-CGAGCTCGTGTTATTTGTCGGCGTTTGTC-3’ SacI +250 relative to the pmrD start codon pmrDe15 5’-AAAGCGGCCGCGATGGAGTGGTGGGTAAAAAAAGTA-3’ NotI +1 relative to the pmrD start codon pmrDe16 5’-TTTCTCGAGTGTGTTATTTGCCGGCGTTT-3’ XhoI +243 relative to the pmrD start codon pmrDp01 5’-TGGATCCTTCATGACGCTCTCTC-3’ BamHI -278 relative to the pmrD start codon pmrDp02 5’-CGCACAGATCTGAAGCACGAC-3’ BglII +75 relative to the pmrD start codon pmrDp05 5’-TTACCCACCACTCCATATGTTTTTTA-3’ NdeI +10 relative to the pmrD start codon pmrDK6Af 5’-ACAGATGGAGTGGTGGGTAGCAAAAGTACAGGACAACGCT-3’ None -4 to +36 relative to the pmrD start codon pmrDK6Ar 5’-AGCGTTGTCCTGTACTTTTGCTACCCACCACTCCATCTGT-3’ None -4 to +36 relative to the pmrD start codon pmrDQ9Af 5’-GGAGTGGTGGGTAAAAAAAGTAGCGGACAACGCTTCGGC-3’ None +2 to +41 relative to the pmrD start codon pmrDQ9Ar 5’-GCCGAAGCGTTGTCCGCTACTTTTTTTACCCACCACTCC-3’ None +2 to +41 relative to the pmrD start codon pmrDD10Af 5'-GGGTAAAAAAAGTACAGGCCAACGCTTCGGCCAGCC-3' None +11 to +47 relative to the pmrD start codon pmrDD10Ar 5'- GGCTGGCCGAAGCGTTGGCCTGTACTTTTTTTACCC-3' None +11 to +47 relative to the pmrD start codon pmrDS23Af1 5’-CGTCGTGCTTCAGGCCGGTGCGCT-3’ None +54 to +78 relative to the pmrD start codon Table 6.3. (continued)

125

Primer Sequencea Enzyme

cleaved Complementary position

pmrDS23Ar1 5’-AGCGCACCGGCCTGAAGCACGACG-3’ None +54 to +78 relative to the pmrD start codon pmrDG24Af 5’-GTGCTTCAGAGCGCTGCGCTGGAGATG-3’ None +58 to + 85 relative to the pmrD start codon pmrDG24Ar 5’-CATCTCCAGCGCAGCGCTCTGAAGCAC-3’ None +58 to + 85 relative to the pmrD start codon pmrDL26Af1 5’-CAGAGCGGTGCGGCGGAGATGATCG-3’ None +64 to +89 relative to the pmrD start codon pmrDL26Ar1 5’-CGATCATCTCCGCCGCACCGCTCTG-3’ None +64 to +89 relative to the pmrD start codon pmrDM28Af1 5’-CGGTGCGCTGGAGGCGATCGCAGAGATTGAA-3’ None +69 to +100 relative to the pmrD start codon pmrDM28Ar1 5’-TTCAATCTCTGCGATCGCCTCCAGCGCACCG-3’ None +69 to +100 relative to the pmrD start codon pmrDE31Af 5’-CTGGAGATGATCGCAGCGATTGAAGCCTGTCGC-3’ None +76 to +109 relative to the pmrD start codon pmrDE31Ar 5’-GCGACAGGCTTCAATCGCTGCGATCATCTCCAG-3’ None +76 to +109 relative to the pmrD start codon pmrDT46Af 5’-GAAGGGGATAAACTCGCTCCGCTGGCCG-3’ None +121 to +149 relative to the pmrD start codon pmrDT46Ar 5’-CGGCCAGCGGAGCGAGTTTATCCCCTTC-3’ None +121 to +149 relative to the pmrD start codon pmrDY53Af 5’-CGCTGGCCGATGCGCGCGCTTGTCTGAATAATAATCC-3’ None +140 to +177 relative to the pmrD start codon pmrDY53Ar 5’-GGATTATTATTCAGACAAGCGCGCGCATCGGCCAGCG-3’ None +140 to +177 relative to the pmrD start codon pmrDT69Af1 5’-GAAGATCCGCAACGCCGCTCATTATAG-3’ None +189 to +216 relative to the pmrD start codon pmrDT69Ar1 5’-CTATAATGAGCGGCGTTGCGGATCTTC-3’ None +189 to +216 relative to the pmrD start codon pmrDY71Af 5’-GAAGATCCGCAACGCCACTCATGCTAGCAGCGAGCG-3’ None +189 to +225 relative to the pmrD start codon pmrDY71Ar 5’-CGCTCGCTGCTAGCATGAGTGGCGTTGCGGATCTTC-3’ None +189 to +225 relative to the pmrD start codon pmrDT77Af 5’-GCAGCGAGCGTTGGGCAAACGCCGACAAA-3’ None +215 to +244 relative to the pmrD start codon pmrDT77Ar 5’-TTTGTCGGCGTTTGCCCAACGCTCGCTGC-3’ None +215 to +244 relative to the pmrD start codon pmrDN78Af1 5’-GCAGCGAGCGTTGGACAGCCGCCGGCAAATAA-3’ None +215 to +247 relative to the pmrD start codon pmrDN78Ar1 5’-TTATTTGCCGGCGGCTGTCCAACGCTCGCTGC-3’ None +215 to +247 relative to the pmrD start codon Table 6.3. (continued)

126

Primer Sequencea Enzyme

cleaved Complementary position

pmrDD80Af 5’-GCGTTGGACAAACGCCGCCAAATAACACAGATCTG-3’ None +222 to +257 relative to the pmrD start codon pmrDD80Ar 5’-CAGATCTGTGTTATTTGGCGGCGTTTGTCCAACGC-3’ None +222 to +257 relative to the pmrD start codon pmrHp01 5’-TCTGGATCCTGGTCATTAATTGCCCGGC-3’ BamHI -425 relative to the pmrH start codon

pmrHp02 5’-CTTAGATCTCGCTCATCATCATCCTGTTC-3’ BglII +34 relative to the pmrH start codon ppmrF01 5’-GATGGAAAAGCTGAAGGCGATGG-3’ None -161 relative to the pmrF start codon ppmrF02 5’-CAGCGATATCATACCCGGCGTC-3’ EcoRV +1116 relative to the pmrF start codon rcsAe04 5'-GTTTGTTTCACTCGAGGCGCATATTTACC-3' XhoI +631 relative to the rcsA start codon rcsAe07 5’-CTAGCGGCCGCGATGTCAACGATGATTATGGATT -3’ NotI +1 relative to the rcsA start codon rcsAe08 5’-CTAGGATCCCCATGTCAACGATGATTATGGATT-3’ BamHI +1 relative to the rcsA start codon rcsBc01 5’-CCCGGATCCAACTGCGGGTCAACTTT-3’ BamHI -398 relative to the rcsB start codon rcsBc02 5’-CCCGGATCCTTGTCTGTCCAAGCCGGTCA-3’ BamHI +781 relative to the rcsB start codon rcsBe01 5’-GGCCGCCTTATACCATATGAACACTA-3’ NdeI +1 relative to the rcsB start codon rcsBe02 5’-CCCTCGAGCTCTTTGTCCGTCGCGCTC-3’ XhoI +648 relative to the rcsB start codon rcsBe04 5’-CTCGCGGCCGCGATGAACACTATGAACGTAATTAT-3’ NotI -1 relative to the rcsB start codon rmpA06 5’-TTACCTAAATACTTGGCATGAGC-3’ None +592 relative to the rmpA start codon rmpA07 5’-CAAGGATCCAAAGCATAGTGTT-3’ BamHI -17 relative to the rmpA start codon rmpAc01 5’-CCCGGATCCAGAAACAGACAGTATTACTAAGCGAA-3’ BamHI -384 relative to the rmpA start codon rmpAe04 5’-CCCTTTTTTACCTCGAGAATACTTGGCATGA-3’ XhoI +585 relative to the rmpA start codon rmpAe05 5’-CTTGCGGCCGCGGTGTTGACTGATGATTATTTTTTTTA-3’ NotI +1 relative to the rmpA start codon rmpAe07 5’-CTTGGATCCCCGTGTTGACTGATGATTATTTTTTTTA-3’ BamHI -2 relative to the rmpA start codon rmpAg05 5’-TTGTGTTGACTGATGATTATTTT-3’ None +1 relative to the rmpA start codon Table 6.3. (continued)

127

Primer Sequencea Enzyme

cleaved Complementary position

rmpAg06 5’-TTTACATTTCCTTGCAT-3’ None +299 relative to the rmpA start codon rmpAp04 5'-CCCAGATCTCAGTCAACACGGTGCTTTAC-3' BglII +10 relative to the rmpA start codon rmpAp05 5’-CCCGGATCCAACTCGCCCCTCCCCACAC-3’ BamHI -308 relative to the rmpA start codon rmpAp11 5’-CCAGGATCCTACCGTGATTGATTGAATTTTTA-3’ BamHI -184 relative to the rmpA start codon rmpAp12 5’-GTCGGATCCATCGCCAAATAACTC-3’ BamHI -479 relative to the rmpA start codon rmpAp13 5’-TCAATTAATTGCAAACACGC-3’ None -226 relative to the rmpA start codon rmpAt01 5’-ACAGAGGTAGTCCAGTTAACA-3’ None +61 relative to the rmpA start codon rmpA2g01 5’-TTATGGAAAAATATATTTACTT-3’ None +1 relative to the rmpA2 start codon rmpA2g02 5’-TTTAAATTTCCTTGCATGTT-3’ None +347 relative to the rmpA2 start codon rmpA2p06 5’-CCCGGATCCCACTTAGTCCTGTGTC-3’ BamHI -391 relative to the rmpA2 start codon rmpA2p07 5’-GATGGATCCCTAGGTATTTGATGTGCAC-3' BamHI +639 relative to the rmpA2 start codon rmpA2p08 5’-GATCTCGAGGGTATTTGATGTGCAC-3’ XhoI +639 relative to the rmpA2 start codon rmpA2p14 5’-CCCGCGGCCGCGATGGAAAAATATATTTACTT-3’ NotI -1 relative to the rmpA2 start codon rmpA2p17 5’-CCCGGATCCCCATGGAAAAATATATTTACTT-3’ BamHI +1 relative to the rmpA2 start codon rstAp01 5’-GCAGGATCCCGGTGAAATAC-3’ BamHI -378 relative to the rstA start codon rstAp02 5’-CCAGATCTTGCTTGCCGAG-3’ BglII +79 relative to the rstA start codon rstAp03 5’-CCCGGATCCCTTAACAGTGA-3’ BamHI -127 relative to the rstA start codon rstAp04 5’-GAGTAATGGCGGGTAAAATAAGTG-3’ None -61 relative to the rstA start codon RTrmpA01 5’-TGATGGATCAAAGTTACTGT-3’ None -70 relative to the rmpA start codon RTrmpA02 5’-TCCCTGAATAAAAAATCCTGCTGTC-3’ None +160 relative to the rmpA start codon Yu05 5’-CCTTCACATCCCCTCCCCTT-3’ None +614 relative to the rmpA start codon Table 6.3. (continued)

128

Primer Sequencea Enzyme

cleaved Complementary position

Yu06 5’-GTCGGATCCATCGCCAAATAA-3’ None -479 relative to the rmpA start codon 23SF 5’-AGCGACTAAGCGTACACGGTGG-3’ None +4 relative to the rrnB start codon 23SR 5’-GATGTTTCAGTTCCCCCGGTTC-3’ None +200 relative to the rrnB start codon

a The nucleotide sequence recognized by each restriction enzyme listed are underlined; the boldface sequences indicate the altered nucleotides for the generation of point mutation in the PmrD coding sequence.

Table 6.3. (continued)

129

References

1. Allali, N., H. Afif, M. Couturier, and L. Van Melderen. 2002. The highly conserved TldD and TldE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation. J Bacteriol 184:3224-31.

2. Alpuche Aranda, C. M., J. A. Swanson, W. P. Loomis, and S. I. Miller. 1992.

Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci U S A 89:10079-83.

3. Anderson, G. G., T. L. Yahr, R. R. Lovewell, and G. A. O'Toole. The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system. Infect Immun 78:1239-49.

4. Ansaldi, M., C. Jourlin-Castelli, M. Lepelletier, L. Theraulaz, and V. Mejean. 2001.

Rapid dephosphorylation of the TorR response regulator by the TorS unorthodox sensor in Escherichia coli. J Bacteriol 183:2691-5.

5. Arakawa, Y., R. Wacharotayankun, T. Nagatsuka, H. Ito, N. Kato, and M. Ohta.

1995. Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol 177:1788-96.

6. Asensio, A., A. Oliver, P. Gonzalez-Diego, F. Baquero, J. C. Perez-Diaz, P. Ros, J.

Cobo, M. Palacios, D. Lasheras, and R. Canton. 2000. Outbreak of a multiresistant Klebsiella pneumoniae strain in an intensive care unit: antibiotic use as risk factor for colonization and infection. Clin Infect Dis 30:55-60.

7. Ayers, R. A., and K. Moffat. 2008. Changes in quaternary structure in the signaling mechanisms of PAS domains. Biochemistry 47:12078-86.

8. Bader, M. W., W. W. Navarre, W. Shiau, H. Nikaido, J. G. Frye, M. McClelland, F. C.

Fang, and S. I. Miller. 2003. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50:219-30.

9. Bagley, S. T., R. J. Seidler, H. W. Talbot, Jr., and J. E. Morrow. 1978. Isolation of Klebsielleae from within living wood. Appl Environ Microbiol 36:178-85.

10. Baichoo, N., and J. D. Helmann. 2002. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826-32.

11. Batchelor, E., and M. Goulian. 2003. Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A 100:691-6.

12. Beier, D., and R. Gross. 2006. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9:143-52.

13. Belden, W. J., and S. I. Miller. 1994. Further characterization of the PhoP regulon:

identification of new PhoP-activated virulence loci. Infect Immun 62:5095-101.

14. Benincasa, M., M. Mattiuzzo, Y. Herasimenka, P. Cescutti, R. Rizzo, and R.

Gennaro. 2009. Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. J Pept Sci 15:595-600.

15. Bennett, C. J., M. N. Young, and H. Darrington. 1995. Differences in urinary tract infections in male and female spinal cord injury patients on intermittent catheterization.

Paraplegia 33:69-72.

16. Borremans, B., J. L. Hobman, A. Provoost, N. L. Brown, and D. van Der Lelie. 2001.

Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651-8.

17. Bou, G., M. Cartelle, M. Tomas, D. Canle, F. Molina, R. Moure, J. M. Eiros, and A.

Guerrero. 2002. Identification and broad dissemination of the CTX-M-14 beta-lactamase in different Escherichia coli strains in the northwest area of Spain. J Clin Microbiol 40:4030-6.

18. Boulette, M. L., and S. M. Payne. 2007. Anaerobic regulation of Shigella flexneri virulence: ArcA regulates Fur and iron acquisition genes. J Bacteriol 189:6957-67.

19. Braun, V., and C. Herrmann. 2007. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J Bacteriol 189:6913-8.

20. Breazeale, S. D., A. A. Ribeiro, A. L. McClerren, and C. R. Raetz. 2005. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose. J Biol Chem 280:14154-67.

21. Brechtel, C. E., L. Hu, and S. C. King. 1996. Substrate specificity of the Escherichia

21. Brechtel, C. E., L. Hu, and S. C. King. 1996. Substrate specificity of the Escherichia

相關文件