• 沒有找到結果。

Retention Time (Second)

7.2 Suggestions for Future Works

Although the WOX RRAM shows the acceptable performance for memory application, the switching mechanism of WOX RRAM is still unclear. Therefore, study and finding the switching mechanism is more important thing in order to further improve the RRAM technology. The switching mechanism should be divided three parts. According to the WOX

RRAM could be controlled by both bipolar operation and unipolar operation, thus it may not only one face of the switching mechanism for WOX RRAM. What is the switching mechanism for bipolar operation, and what is the switching mechanism for unipolar operation should be considered. In last part, keep studying the top electrode effect for WOX RRAM is useful to further clear of the conduction and switching behaviors of the WOX RRAM. The end of the target of WOX RRAM is finding the very good performance that could be utilized as universal memory. At the present, the performance of the WOX RRAM is required to further improved.

References

[1] T. Shinjo and H. Yamamoto, “Large Magnetoresistance of Field-Induced Giant Ferrimagnetic Multilayers”, J. Phys. Soc. Jpn., vol. 59, p. 3061, 1990.

[2] Y. Irie, H. Sakakima, M. Satomi, and Y. Kawawake, “Spin-Valve Memory Elements Using [{Co-Pt/Cu/Ni-Fe-Co}/Cu] Multilayers”, Jpn. J. Appl. Phys. vol. 34, p. L415, 1995.

[3] Tang, D.D.; Wang, P.K.; Speriosu, V.S.;Le, S.; and Kung, K.K.; ”Spin-valve RAM cell”, IEEE trans. Magn. vol. 31, p. 3206, 1995.

[4] M. Julliere, “Tunneling between ferromagnetic films”, Phys. Lett., vol. 54A, p. 225, 1975.

[5] T. Miyazaki, and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction”, J.

Magn. Magn. Mater. vol. 139, p. L231, 1995.

[6] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, “Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions”, Phys. Rev. Lett., vol. 74, p. 3273, 1995.

[7] Maekawa, S.; and Gafvert, U.; “Electron tunneling between feromagnetic films” IEEE trans. Magn. vol. 18, p. 707, 1982.

[8] P. M. Tedrow and R. Meservey, “Spin-Dependent Tunneling into Ferromagnetic Nickel”, Phys. Rev. Lett., vol. 26, p. 192,1970.

[9] R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R.

Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, “Measuring the Spin Polarization of a Metal with a Superconducting Point Contact”, Science, vol. 282, p.

85, 1998.

[10] S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O'Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Yu Lu, M. Rooks, P. L.

Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited)”, J. Appl. Phys. vol.

85, p. 5828, 1999.

[11] S.Q. Xiao, Y.H. Liu, Y.Y. Dai, L. Zhang, S.X. Zhou and G.D. Liu, “Giant magnetoimpedance effect in sandwiched films”, J. Appl. Phys. vol. 85, p. 4127, 1999.

[12] C.H. Lai, C.J. Chen and T.S. Chin, “Giant magneto resistance enhancement in spin valves with nano-oxide layers” J. Appl. Phys., vol. 89, p. 6928, 2001.

[13] M. F. Gillies, A. E. T. Kuiper, R. Coehoorn and J. J. T. M. Donkers, “Compositional, structural, and electrical characterization of plasma oxidized thin aluminum layers for spin-tunnel junctions,” J. Appl. Phys. vol. 88, p. 429, 2000.

[14] H. Kaiju, S. Fujita, T. Morozumi, and K. Shiiki, “Magnetocapacitance effect of spin tunneling junctions,” J. Appl. Phys., vol. 91, p. 7430, 2002.

[15] J.G. Zhu, “Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability”, Proc. IEEE, vol. 96, p. 1786, 2008.

[16] R. Scheuerlein, W. Gallagher, S. Parkin, A. Lee, S. Ray, R. Robertazzi, and W. Reohr,

“A 10 ns read and write non-volatile memory array using a magnetic tunnel junction and FET switch in each cell”, in Solid-State Circuits Conf. Tech. Dig., p. 128, 2000.

[17] S. Tehrani, J. M. Slaughter, M. Deherrera, B. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Anesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions”, Proc. IEEE, vol. 91, no. 5, p. 703, 2003.

[18] W. J. Gallagher, S. S. P. Parkin, R. E. Scheuerlein, and J. Kaufman, “Magnetic random access memory (MRAM) with diode-isolated circuit architecture”, U.S. Patent 5 640 343, Jun. 17, 1997.

[19] X. Kou, J. Schmalhorst, A. Thomas, and G. Reiss, “Temperature dependence of the resistance of magnetic tunnel junctions with MgO barrier”, Appl. Phys. Lett., vol. 88, p.

212115, 2006.

[20] Z. Diao, D. Apalkov, M. Pakala, Y. Ding, A. Panchula, and Y. Huai, “Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers”, Appl. Phys. Lett., vol. 87, p. 232502, 2005.

[21] T. Moriyama, C. Ni, W. G. Wang, X. Zhang, and John Q. Xiao, “Tunneling magnetoresistance in (001)-oriented FeCo/MgO/FeCo magnetic tunneling junctions grown by sputtering deposition” Appl. Phys. Lett., vol. 88, p. 222503, 2006.

[22] D. J. Monsma and S. S. P. Parkin, “Spin polarization of tunneling current from

ferromagnet Al2O3 interfaces using copper-doped aluminum superconducting films”, Appl.

Phys. Lett., vol. 77, p. 720, 2000.

[23] J.-G. Zhu and Y. Zheng, “micromagnetics of magnetoresistive random access memory, in Spin Dynamics in Confined Magnetic Structures I”, B. Hilebrands and K. Ounadjela, Eds.

Berlin, Germany: Springer, p. 289, 2001.

[24] E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys”, Phil. Trans. Roy. Soc., vol. 240, p. 599, 1948.

[25] M. Tsoi, A. G. M. Jansen, J. Bass, W.C. Chiang, M. Seck, V. Tsoi, and P. Wyder,

“Excitation of a magnetic multilayer by an electric current”, Phys. Rev. Lett., vol. 80, p. 4281, 1998.

[26] J. Z. Sun, “Current-drive magnetic switching in manganite trilayer junctions”, J. Magn.

Magn. Mater., vol. 202, p. 157, 1999.

[27] E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, “Current induced switching of domains in magnetic multilayer devises”, Science, vol. 285, p. 867, 1999.

[28] J. A. Katine, J. F. Albert, R. A. Buhrman, E. B. Meyers, and D. C. Ralph,

“Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars”, Phys.

Rev. Lett., vol. 84, p. 3149, 2000.

[29] L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current”, Phys. Rev. B, vol. 54, p. 9353, 1996.

[30] J. C. Slonczewski, “Current-driven excitation of magnetic multilayers”, J. Magn. Magn.

Mater., vol. 159, p. L1, 1996.

[31] R. H. Koch, J. A. Katine, and J. Z. Sun, “Time-resolved reversal of spin-transfer switching in a nanomagnet”, Phys. Rev. Lett., vol. 92, p. 088302, 2004.

[32] Y. Higo, K. Yamane, K. Ohba, H. Narisawa, K. Bessho, M. Hosomi, and H. Kano,

“Thermal activation effect on spin transfer switching in magnetic tunnel junctions”, Appl.

Phys. Lett., vol. 87, p. 082502, 2005.

[33] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano, “A novel nonvolatile memory with spin torque transfer magnetization switching: Spin-ram”, in IEEE Int. Electron Devices Meeting (2005 IEDM) Tech. Dig., p. 459, 2005.

[34] A. Driskill-Smith and Y. Huai, “STT-RAM: A new spin on universal memory”, Future FAB Int., no. 23, p. 28, 2007.

[35] A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura. “Current switching of resistive states in magnetoresistive manganites”, Nature, vol. 388, p. 50, 1997.

[36] M. N. Kozicki, M. Yun, L. Hilt and A. Singh, “Nanoscale effects in devices based on chalcogenide solid”, Electrochem. Soc. vol. 99, p. 298, 1999.

[37] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett. vol. 77, p. 139, 2000.

[38] R. Waser, M. Aono, “Nanoionics-based resistive switching memories”, Nature Materials.

vol. 6, p. 833, 2007.

[39] R. Waser, “Electrochemical and Thermochemical Memories”, IEDM.,Tech.Dig., p. 289, 2008.

[40] K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized conductance atomic switch”, Nature, vol. 433, p. 47, 2005.

[41] X. Guo, C. Schindler, S. Menzel, and R. Waser, “Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems”, Appl. Phys. Lett.

vol. 91, p. 133513, 2007.

[42] T. Baiatu, R. Waser, K.H. Härdtl, “dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism”, J. Am. Cer. Soc., vol 73, p. 1663, 1990.

[43] H. Pagnia, and N. Sotnik, “Bistable switching in electroformed metal-insulator-metal devices”, Phys. Stat. Sol (a)., vol 108, p. 11, 1988.

[44] F. A. Chudnovskii, L. L. Odynets, A. L. Pergament, and G. B. Stefanovich,

“Electroforming and Switching in Oxides of Transition Metals: The Role of Metal–Insulator Transition in the Switching Mechanism”, J. Solid State Chem. vol. 122, p. 95, 1996.

[45] Baek, I. G.; Kim, D.C.; Lee, M.J.; Kim, H.-J.; Yim, E.K.; Lee, M.S.; Lee, J.E.; Ahn, S.E.;

Seo, S.; Lee, J.H.; Park, J.C.; Cha, Y.K.; Park, S.O.; Kim, H.S.; Yoo, I.K.; U-In Chung; Moon, J.T.; Ryu, B.I.;. “Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application”, IEDM., Tech.Dig., p. 750, 2005.

[46] M.J. Lee, S. Seo, D.C. Kim, S.E. Ahn, D.H. Seo, I.K. Yoo, I.G. Baek, D.S. Kim, I.S.

Byun, S.H. Kim, I.R. Hwang, J.S. Kim, S.H. Jeon, and B.H. Park, “A Low-Temperature-Grown Oxide Diode as a New Switch Element for High-Density, Nonvolatile Memories”, Adv. Mat., vol. 19, p. 73, 2007.

[47] N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Creuzet, A.Friederich, and J. Chazelas, “Giant Magnetoresistance of (001) Fe/(001)Cr Magnetic Superlattices”, Phys. Rev. Lett., vol. 61, p. 2472, 1988.

[48] B. Dieny, V. Speriosu, B. Gurney, S.Parkin, D. Wilhoit, K. Roche, S. Metin, D. Peterson and S. Nadimi, “Spin-Valve Effect in Soft Ferromagnetic Sandwiches,” J. Magn. Mag. Mater., vol. 93, p. 101, 1991.

[49] M. Mao, C. Cerjan and J. Kools, “Physical properties of spin valve films grown on naturelly oxidized metal nano oxide surfaces,” J. Appl. Phys., vol. 91, p.8560, 2002.

[50] K. Ono, T. Kawahara, R. Takemura, K. Miura, H. Yamamoto, M. Yamanouchi, J.

Hayakawa, K. Ito, H. Takahashi, S. Ikeda, H. Hasegawa, H. Matsuoka, and H. Ohno, “A disturbance-free read scheme and a compact stochastic-spin-dynamics-based MTJ circuit model for Gb-scale SPRAM,” IEDM.,Tech.Dig., p. 219, 2009.

[51] W. C. Chien, C. K. Lo, L. C. Hsieh, Y. D. Yao, X. F. Han, Z. M. Zeng, T. Y. Peng, and P.

Lin, “Enhancement and inverse behaviors of magneto impedance in a magneto tunneling junction by driving frequency ” Appl. Phys.Lett., vol. 89, p. 202515, 2006.

[52] W. C. Chien, T. Y. Peng, L. C. Hsieh, C. K. Lo, and Y. D. Yao, “Characterization of Nano-Oxide Layer in Pseudo Spin Valve by complex Magneto Impedance Spectroscopy”, IEEE Trans. Magn., vol. 42, p. 2624, 2006.

[53] C.J. Lin, S.H. Kang, Y.J. Wang, K. Lee, X. Zhu, W.C. Chen, X. Li, W.N. Hsu, Y.C. Kao, M.T. Liu, W.C. Chen, Y.C. Lin, M. Nowak, and N. Yu, L. Tran, “45nm Low Power CMOS Logic Compatible Embedded STT MRAM Utilizing a Reverse-Connection 1T/1MTJ Cell,”

IEDM.,Tech.Dig., p. 279, 2009.

[54] K. Okada, and T. Sekino, “Impedance Measurement Handbook”, Agilent Technologies Co, p. 2, 2003.

[55] Arijit Raychowdhury, Dinesh Somasekhar, Tanay Karnik, and Vivek De, “Design Space and Scalability Exploration of 1T-1STT MTJ Memory Arrays in the Presence of Variability and Disturbances,” IEDM.,Tech.Dig., p. 707, 2009.

[56] T. Y. Peng, L. C. Hsieh, W.C. Chien, C. K. Lo, Y. W. Huang, S. Y. Chen, Y. D. Yao,

“Impedance Behavior of Spin Valve Transistor,” J. Appl. Phys. vol. 99, p. 08H710, 2006.

[57] J. M. George, L. G. Pereira, A. Barthelemy, F. Petroff, L. Steren, J. L. Duvail, A. Fert, R.

Loloee, P. Holody, and P. A. Schroeder, “Inverse spin-valve-type magnetoresistance in spin engineered multilayered structures”, Phys. Rev. Lett. vol. 72, p. 408, 1994.

[58] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions”, Phys. Rev. Lett. vol. 74, p.

3273, 1995.

[59] J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, F. Montaigne, and P. Seneor,

“Role of Metal-Oxide Interface in Determining the Spin Polarization of Magnetic Tunnel Junctions”, Science, vol. 286, p. 507, 1999.

[60] Z.M. Zeng, X.F. Han, W.S. Zhan, Y. Wang, Z. Zhang, and S. Zhang, “Oscillatory tunnel magnetoresistance in double barrier magnetic tunnel junctions”, Phys. Rev. B. vol. 72, p.

054419, 2005.

[61] B.G. Park, and T.D. Lee, “Reduced temperature and bias-voltage dependence of the magnetoresistance in magnetic tunnel junctions with Hf-inserted Al2O3 barrier,”Appl Phys.

Lett., vol. 81, p. 2214, 2002.

[62] T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, “Electronic transport in Ta2O5 resistive switch”, Appl. Phys. Lett., vol. 91, p. 092110, 2007.

[63] C.H. Ho, E.K. Lai, M.D. Lee, C.L. Pan, Y.D. Yao, K.Y. Hsieh, Rich Liu, and Chih-Yuan Lu, “A Highly Reliable Self-Aligned Graded Oxide WOx Resistance Memory: Conduction Mechanisms and Reliability,” Symp. VLSI Tech., p. 228, 2007.

[64] W.C. Chien, E.K. Lai, K.P. Chang, C.H. Yeh, M.H. Hsueh, Y.D. Yao, T. Luoh, S.H.

Hsieh, T.H. Yang, K.C. Chen, Y.C. Chen, K.Y. Hsieh, Rich Liu, and Chih-Yuan Lu, “Unipolar Switching Characteristics for Self-Aligned WOx Resistance RAM R-RAM”, Symp.

VLSI-TSA., T97, p. 144, 2008.

[65] Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue, S. Yamazaki, T.

Nakano,S. Ohnishi, N. Awaya, I. H. Inoue, H. Shima, H. Akinaga, H. Takagi, H. Akoh, and Y.

Tokura, “High Speed Unipolar Switching Resistance RAM (RRAM) Technology”, IEDM Tech. Dig., p.793, 2006.

[66] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H.

S. Kim,I. K. Yoo, U-In Chung and J. T. Moon, “Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses”, IEDM Tech. Dig., p.587, 2004.

[67] C. B. Lee, B. S. Kang, M. J. Lee, S. E. Ahn, G. Stefanovich, W. X. Xianyu, K. H. Kim, J.

H. Hur, H. X. Yin, Y. Park, I. K. Yoo, J.-B. Park, and B. H. Park, “Electromigration effect of Ni electrodes on the resistive switching characteristics of NiO thin films”, Appl. Phys. Lett., vol. 91, p. 082104, 2007.

[68] X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, T. A. Tang, “Reproducible unipolar resistance switching in stoichiometric ZrO2 films”, Appl. Phys. Lett., vol. 90,

p.183507, 2007.

[69] K.P. Chang, W.C. Chien, Y.C. Chen, E.K. Lai, S.H. Hsieh, Y.D. Yao, J. Go K.Y. Hsieh, Rich Liu, and Chih-Yuan Lu, “Low-Voltage and Fast-Speed Forming Process of Tungsten Oxide Resistive Memory”, SSDM., p. 1168, J-9-4, 2008.

[70] S.T. Hsu, T. Li, and N. Awaya, “Resistance random access memory switching mechanism”, J. Appl. Phys., vol. 101, p. 024517, 2007.

[71] R. Waser, “Electrochemical and Thermochemical Memories”, IEDM.,Tech.Dig., p. 289, 2008.

[72] K.M. Kim, B.J. Choi, and C.S. Hwang, “Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films”, Appl. Phys. Lett.,vol. 90, p. 242906, 2007.

[73] D. Lee, D.J. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, and H. Hwang, “Resistance switching of copper doped MoOx films for nonvolatile memory applications”, Appl. Phys.

Lett., vol. 90, p. 122104 , 2007.

[74] H. Shima, F. Takano, H. Akinaga, Y. Tamai, I.H. Inoue, and H. Takagi, “Resistance switching in the metal deficient-type oxides: NiO and CoO”, Appl. Phys. Lett., vol. 91, p.

012901, 2007.

[75] M.N. Kozicki, C. Gopalan, M. Balakrishnan, M. Mitkova, “A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte”, IEEE Trans.

Nanotechnology, vol. 5, p. 535, 2006.

[76] W.C. Chien, Y.C. Chen, E.K. Lai, Y.Y. Lin, K.P. Chang, Y.D. Yao, P. Lin, J. Gong, S.C.

Tsai, C.H. Lee, S.H. Hsieh, C.F. Chen, Y.H. Shih, K.Y. Hsieh, Rich Liu, and Chih-Yuan Lu,

“High-Speed Multilevel Resistive RAM Using RTO WOX”, SSDM., p. 1206, G-7-3, 2009.

[77] W.C. Chien, K.P. Chang, Y.C. Chen, E.K. Lai, Hannes Mähne, Y.D. Yao, P. Lin, J.

Gong, S.H. Hsieh, K.Y. Hsieh, Rich Liu, and Chih-Yuan Lu, “Multi-Level Switching Characteristics for WOX Resistive RAM (RRAM)”, SSDM., p. 1170, J-9-5, 2008.

[78] M.J. Lee, Y. Park, B.S. Kang, S.E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, C.S. Lee, J.B. Park, I.G. Baek and I.K. Yoo, “2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications”, IEDM.,Tech.Dig., p. 771, 2007.

[79] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego and M.

Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM”, IEDM Tech. Dig., p. 775, 2007.

[80] A.A. Grinberg, S. Luryi, M.R. Pinto, and N.L. Schryer, “Space-Charge-Limited Current in a Film”, IEEE Trans. Electron Devices, vol. 36, p. 1162, 1989.

[81] Yi-Chou Chen, Yuyu Lin, Shih-Hung Chen, Charles T. Rettner, Simone Raoux, Huai-Yu Cheng, Geoffrey W. Burr, Daniel Krebs, Hsiang-Lan Lung, and Chung H. Lam,

“The Bridge Structure for Advanced Phase Change Memory Investigations”, E/PCOS, F-01, 2008.

[82] Wei, Z.; Kanzawa, Y.; Arita, K.; Katoh, Y.; Kawai, K.; Muraoka, S.; Mitani, S.; Fujii, S.;

Katayama, K.; Iijima, M.; Mikawa, T.; Ninomiya, T.; Miyanaga, R.; Kawashima, Y.; Tsuji, K.;

Himeno, A.; Okada, T.; Azuma, R.; Shimakawa, K.; Sugaya, H.; Takagi, T.; Yasuhara, R.;

Horiba, K.; Kumigashira, H.; Oshima, M.; “Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism”, IEDM., Tech.Dig., p. 293, 2008.

[83] S.M. Sze, “Physics of Semiconductor Devices”, John Willey & Sons/Central Book Company, 2nd edition, P. 403, 1985.

[84] O. Sharia, K. Tse, J. Robertson, and Alexander A. Demkov, “Extended Frenkel pairs and band alignment at metal-oxide interfaces”, Phys. Rev. B., vol. 79, p. 125305, 2009.

[85] J. Yoon, H. Choi, D. Lee, J.B. Park, J. Lee, D.J. Seong, Y. Ju, M. Chang, S. Jung, and H.

Hwang, “Excellent Switching Uniformity of Cu-Doped MoOx/GdOx Bilayer for Nonvolatile Memory Applications”, IEEE Electron Device Lett., vol. 30, p. 457, 2009.

[86] D. Ielmini, C. Cagli, and F. Nardi, “Resistance transition in metal oxides induced by

electronic threshold switching”, Appl. Phys. Lett., vol. 94, p. 063511, 2009.

[87] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama,

“Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance”, Appl. Phys. Lett., vol. 93, p. 033506, 2008.

[88] J. Wu, K. Mobley, and R. L. McCreery, “Electronic characteristics of fluorene/TiO2 molecular heterojunctions”, J. Chem. Phys., vol. 126, p. 024704, 2007.

[89] C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, “High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application”, Appl. Phys. Lett., vol. 91, p.

223510, 2007.

[90] W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, “Nonpolar nonvolatile resistive switching in Cu doped ZrO2,” IEEE Electron Device Lett., vol. 29, p. 434, 2008.

[91] S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D.W.

Kim, C. U. Jung, S. Seo, M.-J. Lee, and T. W. Noh, “Random circuit breaker network model for unipolar resistance switching”, Adv. Mater., vol. 20, p. 1154, 2008.

[92] C. Schindler, S. C. P. Thermadam, R.Waser, and M. N. Kozicki, “Bipolar and unipolar resistive switching in Cu-doped SiO2,” IEEE Trans. Electron Devices, vol. 54, p. 2762, 2007.

[93] H. Shima, F. Takano, H. Muramatsu, H. Akinaga, I. H. Inoue, and H. Takagi, “Control of resistance switching voltages in rectifying Pt/TiOx/Pt trilayer”, Appl. Phys. Lett., vol. 92, p.

0435101, 2008.

[94] B. J. Choi, D. Jeong, S. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K.

Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition”, J. Appl. Phys., vol. 98, p. 0337151, 2005.

[95] D. S. Jeong, H. Schroeder, and R. Waser, “Impedance spectroscopy of TiO2 thin films showing resistive switching”, Appl. Phys. Lett., vol. 89, p. 0829091, 2006.

[96] Z. Wang, P. Griffin, J. McVittie, S. Wong, P. McIntyre, and Y. Nishi, “Resistive

switching mechanism in ZnxCd1-xS nonvolatile memory devices”, IEEE Electron Device Lett., vol. 28, p. 14, 2007.

[97] D. Kamalanathan, S. Baliga, S. Thermadam, and M. Kozicki, “ON state stability of programmable metalization cell (PMC) memory”, in Proc. Nonvolatile Memory Technol.

Symp., p. 91, 2007..

[98] U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, “Study of multilevel programming in programmable metallization cell (PMC) memory”, IEEE Trans.

Electron Devices, vol. 56, p. 1040, 2009.

[99] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices”, IEEE Trans.

Electron Devices, vol. 56, p. 186, 2009.

[100] H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A.

Chen, and Y. Y. Lin, “Forming process investigation of CuxO memory films”, IEEE Electron Device Lett., vol. 29, p. 47, 2008.

[101] J.B. Yun, S. Kim, S. Seo, M.J. Lee, D.C. Kim, S.E. Ahn, Y. Park, J. Kim, and H. Shin,

“Random and localized resistive switching observation in Pt/NiO/Pt”, Phys. Stat. Sol., vol. 1, p. 280, 2007.

[102] K. Fujiwara, T. Nemoto, M. J. Rozenberg, Y. Nakamura, and H. Takagi, “Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices”, Jpn. J. Appl. Phys., vol. 47, p. 6266, 2008.

[103] Y. Sato, K. Tsunoda, K. Kinoshita, H. Noshiro, M. Aoki, and Y. Sugiyama, “Sub-100 μA reset current of nickel oxide resistive memory through control of filamentary conductance

by current limit of MOSFET”, IEEE Trans. Electron Devices, vol. 55, p. 1185, 2008.

VITA

相關文件