• 沒有找到結果。

Simulating Results

5 SEISMIC PERFORMANCE TESTS

5.2 N UMERICAL S IMULATION U SING SAP2000

5.2.2 Simulating Results

The acceleration responses of the base of the 5-story model structure in shaking table tests serves as the inputs to the analytical models of SAP2000. In every analysis cases defined in Table 5.15, the responses of the each story are obtained by performing the nonlinear time-history analysis on the analytical models.

Bare Frame The simulating results are compared with experimental ones

obtained from the shaking table tests as shown in Fig. 5.40 ~ 5.42 for case 1 ~ 3.

Results show that the bare frame model of SAP2000 can predict the acceleration responses accurately except for the acceleration response of bare-frame on 5F under El Centro PGA = 0.1g.

Damper-Implemented Frame The simulating results are compared with

experimental ones obtained from the shaking table tests as shown in Fig. 5.43

~ 51 for case 4 ~ 9 including the figures of hystereses of the damper for the largest PGA in each earthquake record.

Assessments of Seismic Performance The assessments of seismic

performance of the damper are plotted in Fig. 5.52 ~ 57 for case 4 ~ 9. The root-mean-square reductions are summarized in Table 5.16. Results show that the dampers can suppress the acceleration responses on a large scale.

Table 5.16 Root-mean-square reduction of acceleration responses

Case Root-Mean-Square

Reduction (%) Case Root-Mean-Square

Reduction (%)

Chapter 5 Seismic Performance Tests

121

−0.2 0

0.2

5F

Experimental

Simulated

−0.2 0

0.2

4F

Experimental

Simulated

−0.2 0 0.2

Acceleration (g)

3F

Experimental

Simulated

−0.2 0

0.2

2F

Experimental

Simulated

0 2 4 6 8 10 12 14 16 18 20

−0.2 0 0.2

Time (sec)

1F

Experimental

Simulated

Fig. 5.40 Comparison of acceleration responses of the bare-frame model (Case 1: El Centro, PGA=0.1g)

−0.4

Fig. 5.41 Comparison of acceleration responses of the bare-frame model (Case 2: Hachinohe, PGA=0.1g)

Chapter 5 Seismic Performance Tests

123

Fig. 5.42 Comparison of acceleration responses of the bare-frame model (Case 3: Kobe, PGA=0.1g)

−0.2 0

0.2

5F

Experimental

Simulated

−0.2 0

0.2

4F

Experimental

Simulated

−0.2 0 0.2

Acceleration (g)

3F

Experimental

Simulated

−0.2 0

0.2

2F

Experimental

Simulated

0 2 4 6 8 10 12 14 16 18 20

−0.2 0 0.2

Time (sec)

1F

Experimental

Simulated

Fig. 5.43 Comparison of acceleration responses of the damper-implemented frame model

(Case 4: El Centro, PGA=0.1g)

Chapter 5 Seismic Performance Tests

125

Fig. 5.44 Comparison of acceleration responses of the damper-implemented frame model

(Case 5: El Centro, PGA=0.4g)

−3 −2 −1 0 1 2 3 (Case 5: El Centro, PGA=0.4g)

1F

2F 3F

4F 5F

Chapter 5 Seismic Performance Tests

127

Fig. 5.46 Comparison of acceleration responses of the damper-implemented frame model

(Case 6: Hachinohe, PGA=0.1g)

−0.5 0 0.5

5F

Experimental

Simulated

−0.2 0

0.2

4F

Experimental Simulated

−0.2 0 0.2

Acceleration (g)

3F

Experimental

Simulated

−0.2 0

0.2

2F

Experimental

Simulated

0 2 4 6 8 10 12

−0.2 0 0.2

Time (sec)

1F

Experimental

Simulated

Fig. 5.47 Comparison of acceleration responses of the damper-implemented frame model

(Case 7: Hachinohe, PGA=0.25g)

Chapter 5 Seismic Performance Tests

129

Fig. 5.48 The hystereses of the damper (Case 7: Hachinohe, PGA=0.25g)

−0.2

Fig. 5.49 Comparison of acceleration responses of the damper-implemented frame model

(Case 8: Kobe, PGA=0.1g)

Chapter 5 Seismic Performance Tests

131

Fig. 5.50 Comparison of acceleration responses of the damper-implemented frame model

(Case 9: Kobe, PGA=0.25g)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

Fig. 5.51 The hystereses of the damper (Case 9: Kobe, PGA=0.25g)

Chapter 5 Seismic Performance Tests

133

−0.2 0

0.2

5F

w/o damperw/ damper

−0.2 0

0.2

4F

w/o damperw/ damper

−0.2 0 0.2

Acceleration (g)

3F

w/o damperw/ damper

−0.2 0

0.2

2F

w/o damperw/ damper

0 2 4 6 8 10 12 14 16 18 20

−0.2 0 0.2

Time (sec)

1F

w/o damperw/ damper

Fig. 5.52 Assessments of seismic performance of the damper (Case 4: El Centro, PGA=0.1g)

−1 0

1

5F

w/o damper

w/ damper

−1 0 1

4F

w/o damperw/ damper

−1 0 1

Acceleration (g)

3F

w/o damperw/ damper

−1 0 1

2F

w/o damperw/ damper

0 2 4 6 8 10 12 14 16 18 20

−1 0 1

Time (sec)

1F

w/o damperw/ damper

Fig. 5.53 Assessments of seismic performance of the damper (Case 5: El Centro, PGA=0.4g)

Chapter 5 Seismic Performance Tests

135

−0.2 0

0.2

5F

w/o damper w/ damper

−0.2 0

0.2

4F

w/o damper w/ damper

−0.2 0 0.2

Acceleration (g)

3F

w/o damperw/ damper

−0.2 0

0.2

2F

w/o damperw/ damper

0 2 4 6 8 10 12

−0.2 0 0.2

Time (sec)

1F

w/o damperw/ damper

Fig. 5.54 Assessments of seismic performance of the damper (Case 6: Hachinohe, PGA=0.1g)

−1 0 1

5F

w/o damperw/ damper

−1 0 1

4F

w/o damperw/ damper

−1 0 1

Acceleration (g)

3F

w/o damperw/ damper

−1 0 1

2F

w/o damper w/ damper

0 2 4 6 8 10 12

−1 0 1

Time (sec)

1F

w/o damper w/ damper

Fig. 5.55 Assessments of seismic performance of the damper (Case 7: Hachinohe, PGA=0.25g)

Chapter 5 Seismic Performance Tests

137

−0.4

−0.2 0

0.2

5F

w/o damper w/ damper

−0.2 0

0.2

4F

w/o damper w/ damper

−0.2 0 0.2

Acceleration (g)

3F

w/o damperw/ damper

−0.2 0

0.2

2F

w/o damperw/ damper

0 2 4 6 8 10 12

−0.2 0 0.2

Time (sec)

1F

w/o damperw/ damper

Fig. 5.56 Assessments of seismic performance of the damper (Case 8: Kobe, PGA=0.1g)

−1 0 1

5F

w/o damperw/ damper

−1 0 1

4F

w/o damperw/ damper

−1 0 1

Acceleration (g)

3F

w/o damper w/ damper

−1 0 1

2F

w/o damper w/ damper

0 5 10 15 20 25

−1 0 1

Time (sec)

1F

w/o damper w/ damper

Fig. 5.57 Assessments of seismic performance of the damper (Case 9: Kobe, PGA=0.25g)

Concluding Remarks 6

In this thesis, a novel methodology for estimating the moment and shear force from strain with the Ramberg-Osgood Hysteresis Model is proposed. To overcome numerical difficulties, an alternative form of the Ramberg-Osgood equations was derived to facility programming with the proposed table searching method. Component tests for both full-scale and scaled-down metallic yielding dampers have been conducted. Seismic performance tests of the damper have also been conducted via a series of shaking table tests. Based on the testing results, the conclusions can be drawn in the following:

1. One may predict the inelastic behavior of the metallic yielding damper with satisfactory accuracy by using the proposed measuring

methodology for moment and shear.

2. The damper is effective in seismic response control of building structures.

Both the displacement and acceleration response of the structure can be simultaneously suppressed to a large extent.

3. The damper performs consistently well regardless of the earthquake and disturbing intensity. The system performs more effective for stronger earthquakes, in general, due to involvement of more inelastic behavior of the yielded damper.

4. No lateral instability of the damper has been observed throughout the testing. Reliability of the system is confirmed.

5. The same damper units have been used in all the tests conducted repetitively without replacement and maintenance. Durability of the system is confirmed.

6. The responses of structures can be simulated by analytical SAP2000 model with satisfactory accuracy if the model is established

appropriately.

Suggestion:

1. The testing platform of component tests for the scale-down damper can be further modified to overcome the result of non-symmetric hysteresis.

2. The effect of axial force which is neglected in this study can be taken into consideration in the further study.

References

1. Brian J. Skinner and Stephen C. Porter, (1993), The Blue Planet – An

Introduction to Earth System Science, John Wiley & Sons, Inc., 1995.

2. Haluk Sucuoğlu and Altuğ Erberik, ‘Energy-Based Hysteresis and Damage

Models for Deteriorating Systems’, Earthquake Engng Struct. Dyn., 33:69-88.

3. T. T. Soong and B. F. Spencer Jr, ‘Supplemental Energy Dissipation:

State-of-the-Art and State-of-the-Practice’, J. Engng. Struct., 24 (2002),

243-259.

4. ‘Journal of Engineering Mechanics, Special Issue: Structural Control: Past,

Present, and Future’, J. Engng. Mech., ASCE, 1997.

5. Ian D. Aiken, Douglas K. Nims, Andrew S. Whittaker, and James M. Kelly, (1993), ‘Testing of Passive Energy Dissipation Systems’, Earthquake Spectra, Vol. 9, No. 3.

6. Soong, T.T. and Dargush, G.F. Passive Energy Dissipation Systems in Structural

Engineering, John Wiley and Sons Inc., New York, 1997.

7. Frahm, H., ‘Device for Damping Vibration of Bodies’, U.S. Patent No. 958-989, 1911.

8. Soong, T.T. Active Structural Control: Theory and Practice, John Wiley and Sons Inc., New York, 1990.

9. Fediw, A.A., Isyumov, N. and Vickery, B.J. (1993), ‘Performance of a

one-dimensional Tuned sloshing water damper’ Wind Engineering, London,

247-256.

10. Fujino,Y., Sun, L.M., Paceno, B. and Chaiseri, P. (1992), ‘Tuned Liquid

Damper(TLD) for Suppressing Horizontal Motion of Structures’ ASCE Journal

of Engineering Mechanics, 118(10), 2017-2030.

11. Yalla, S.K and Kareem, A. (2000a) “Optimum Absorber Parameters for Tuned

Liquid Column Dampers,” ASCE Journal of Structural Engineering, 125(8),

906-915.

12. Sakai, F. et al. (1989), “Tuned Liquid Column Damper - New Type Device for

Suppression of Building Vibrations,” Proc. Int. Conf. on High Rise Buildings,

Nanjing, China, March 25-27.

13. Sakai, F.,and Takaeda. S. (1991), “Tuned Liquid Column Damper (TLCD) for

cable stayed bridges,” Innovation in Cable-stayed Bridges, Fukonova, Japan.

14. Balendra, T., Wang, C.M. and Cheong, H.F. (1995) “Effectiveness of Tuned

Liquid Column Dampers for Vibration Control of Towers” , Engineering

Structures, 17(9), 668-675.

15. Gao, H., Kwok, K.C.S. and Samali, B. (1999),“Charcteristics of multiple Tuned Liquid Column Dampers in suppressing Structural Vibration,” Engineering Structures, 21, 316-331.

16. Sadek, F., Mohraz, B. and Lew, H.S. (1998) “Single- and Multiple-Tuned Liquid

Column Dampers for Seismic Applications,” Earthquake Engng. and Struc. Dyn.,

27, 439-463.

17. Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D. and Samali, B. (1997),

“Characteristics of Liquid column vibration absorbers (LCVA) -I and II” , Engineering Structures, 19(2).

18. Farzad Naeim and James M. Kelly, (1999), Design of Seismic Isolated Structure

From Theory to Practice, John Wiley & Sons, Inc., New York.

19. Buckle, I.G., and Mayes, R.L., “Seismic isolation: history, application and

performance-a world review,” Earthquake Spectra, Vol. 6, pp. 161-201 (1990).

20. Martelli, A., Parducci, A., and Forni, M.,“State-of-the-art on development and

application of seismic isolation and innovative seismic design techniques in Italy,”ATC-17-1 Technical Papers on Seismic Isolation, pp. 401-402 (1993).

21. Kelly, J.M., “Aseismic base isolation: review and bibliography,” Soil Dynamics and Earthquake Engineering, Vol. 5, pp. 202-216 (1986).

22. Zayas, V.A., Low, S.S., and Main, S.A.,“The FPS earthquake resisting system,

experimental report,” Report No. UCB/EERC-87/01, Earthquake Engineering

Research Center, University of California, Berkeley, California (1987).

References

143

23. Kawamura, S., Kitazawa, K., Hisano, M., and Nagashima, I. (1988). ‘Study of a

sliding-type base isolation system - system composition and element properties.’

Proc. 9th WCEE, Tokyo-Kyoto, Vol. V, 735-740.

24. Mokha, A.S., Constantinou, M.C., and Reinhorn, A.M., “Experimental study and

analytical prediction of earthquake response of a sliding isolation system with a spherical surface,”Report No. NCEER-90-0020, National Center for Earthquake

Engineering Research, State University of New York at Buffalo, N.Y. (1990).

25. Mokha, A.S., Constantinou, M.C., Reinhorn, A.M., and Zayas, V.A.,“Experimental study of friction pendulum isolation system,”Journal of Structural Engineering, ASCE, Vol. 117, No. 4, pp. 1201-1217 (1991).

26. Constantinou, M.C., Tsopelas, P., Kim, Y.S., and Okamoto, S.,“NCEER-Taisei

coporation research program on sliding seismic isolation system for bridges and analytical study of a friction pendulum system (FPS),”Report No

NCEER-93-0020, National Center for Earthquake Engineering Research, State University of New York at Buffalo, NY (1993).

27. Wang, Yen-Po, Chung, Lap-Loi and Liao, Wei-Hsin(1998), “Seismic Response

Analysis of Bridges Isolated with Friction Pendulum Bearings,” Earthquake

Engineering and Structural Dynamics, 27, 1069-1093.

28. Wang, Y.P., Chung. L.L, Teng, M.C, Lee, C.L. (1998), “Experimental Study of

Seismic Structural Isolation using Sliding Bearings,” 2WCSC, Kyoto, Japan,

pp.83-92.

29. Wang, Yen-Po, and Wei-Hsin Liao (2000),’Dynamic Analysis of Sliding

Structures with Unsynchronized Support Motions’, Earthquake Engineering and

Structural Dynamics, 29, pp. 297-313.

30. Wang, Yen-Po, Liao, Wei-Hsin and Lee Chien-Liang (2001),”A state-space

approach for dynamic analysis of sliding structures,” Engineering Structures 23,

pp. 790-801.

31. Wang, Y.P., Teng, M.C. and Chung, K.W.(2001) ,”Seismic Isolation of Rigid

Cylindrical Tanks Using Friction Pendulum Bearings,” Earthquake Engineering

and Structural Dynamics, Vol 30, Issue 7, July, pp. 1083-1099.

32. http://www.earthquakeprotection.com/

33. James M. Gere and Stephen P. Timoshenko, Mechanics of Materials, 4th Ed., 1997.

34. Prof. Dr. Ing and Uwe E. Dorka,

http://www.uni-kassel.de/fb14/stahlbau/eartheng/downloads/3_response_analysi s.pdf

35. Steven C. Chapra and Raymond P. Canale, Numerical Method for Engineers

with Programming and Software Applications, 3rd Ed., 1998.

36. Kim JR Rasmussen, (2001), ‘Full-range Stress-strain Curves for Stainless Steel

Alloys’, Department of Civil Engineering, The University of Sydney, Research

Report No 811.

37. Lee Chien-Liang, (2003), ‘A Study on Structural Vibration Control and

Experimental Methodology’, A dissertation submitted to department of civil

engineering, college of engineering, national Chiao Tung university for the degree of doctor of engineering.

38. Computer and Structures, Inc., (2002), ‘SAP2000 Analysis Reference Manual’.

39. Tsai, K. C., Chen, H. W., Hong, C. P. and Su, Y. F., (1993), “Design of Steel

Triangular Plate Energy Absorbers for Seismic-Resistant Construction”,

Earthquake Spectra, 9(3), 505-528.

40. Cofie, N. G. and Krawinkler, H. (1985), ‘Uniaxial Cyclic Stress-Strain Behavior

of Structural Steel’, J. Engng. Mech., ASCE, 111(9), 1105-1120.

41. L. M. Moreschi and M. P. Singh, ‘Design of Yielding Metallic and Friction

Dampers for Optimal Seismic Performance’, Earthquake Engng Struct. Dyn.

2003, 32: 1291-1311.

42. Whittaker, A.S., Bertero, V.V., Thompson, C.L. and Alonso, L.J. (1991),

‘Seismic Testing of Steel Plate Energy Dissipation Devices’, Earthquake Spectra, 7(4), 563-604.

43. Arturo Tena-Counga, (1997), ‘Mathematical modeling of the ADAS energy

dissipation device’, Engineering Structures, Vol.19, No. 10, pp. 811-821.

Appendix A:

Source Codes of MATLAB Programs

Main1.m

% Main1.m

% by Stainer

% February 22, 2004

%

% The Main Program for Development of Measuring Methodology for

% Moment and Shear via Strain Measurement.

%

%

% Required functions:

% 1. NonlinearBending03.m

% 2. FindTheStress02.m

% 3. Strain02.m (Ramgerg-Osgood Streee-Strain Relation)

% 4. CompareHysteresis.m clear; clc;

global E Sigma_0 Alpha n % Ramberg-Osgood Parameters global MaxIterationTimes % Iteration Parameters global Sigma Epsilon % Calculated Values global TableRO_Sigma TableRO_Epsilon % Table

Sigma = 0; Epsilon = 0; % Initial Values

% Parameters Input by Users ===================================================

% Ramberg-Osgood Parameters

Sigma_0 = 430; % MPa E = 210; % GPa Alpha = E/Sigma_0*0.002*1000;

n = 5.33;

% Unit Conversion for Ramberg-Osgood Parameters (DO NOT CHANGE) E_Output = E; % GPa, for output only

E = E * 10^3; % MPa % Iteration Parameters

Sigma(1) = 290; % Initial Values, Default: 290 Sigma(2) = 300; % Initial Values, Default: 300 MaxIterationTimes = 200; % Max Iteration Times, Default: 200 NumberOfStep = 3; % Number of step, Default: 3 % Parameters of the X-Shaped Metallic Yielding Damper

% Dimension of the cross-section of the damper where the strain gauge bounded b = 2.4 /100; % m, width of the cross-section, Default: 2.4/100 h = 1.5 /1000; % m, thickness of the damper, Default: 1.5/1000 H = 3.0 /100; % m, twice the distance of the strain gauge

% from the neck of the X-shaped plate by considering the condition of symmetry % Control parameters

% for Stress-Strain Hysteresis Figure (in NonlinearBending02.m) SH_TitleString = 'Ramberg-Osgood Hysteresis Model

(0930423-05~20mm-01-Strain3.asc)';

SH_FileName = '0930423-05~20mm-01-Strain3-SH.jpg';

SH_FileName2 = '0930423-05~20mm-01-Strain3-SH.eps';

% for Shear Force Figure (in plotV.m)

V_FileName = '0930423-05~20mm-01-Strain3-ShearForce.jpg';

V_FileName2 = '0930423-05~20mm-01-Strain3-ShearForce.eps';

V_TitleString = 'Shear Force (0930423-05~20mm-01-Strain3.asc)';

V_TitleString = strcat(V_TitleString,' [N=',num2str(N),']');

% for Hysteresis Loop Figure (in plotH.m)

H_FileName = '0930423-05~20mm-01-Strain3-Hysteresis.jpg';

H_FileName2 = '0930423-05~20mm-01-Strain3-Hysteresis.eps';

H_TitleString = 'Hysteresis Loop for the Damper [Theoretical]

(0930423-05~20mm-01-Strain3.asc)';

H_TitleString = strcat(H_TitleString,'[N=',num2str(N),']');

% for Text File of Detailed Calculating Process

TextFileName = '0930423-05~20mm-01-Strain3-Output.txt';

Appendix A: Source Codes of MATLAB Programs

147

% for text file of Calculated Hysteresis

HysFileName = '0930423-05~20mm-01-Strain3-PredictedHysteresis.txt';

% Input Filenames NumberOfData = 1;

% Input Filenames of Strain Gauge Data

FileName1(1) = {'0930423-05~20mm-03-Strain3f.asc'};

% Input Filenames of LVDT

FileName2(1) = {'0930423-05~20mm-03-AC1f.asc'};

% =============================================================================

% Required functions:

% 1. FindTheStress02.m

% 2. Strain02.m

% 3. GenerateTableRO.m

% 4. SerachTableRO.m

%

% Output parameters if(FID==1)

Fid = 1; % screen output else

Fid = fopen(TextFileName,'w'); % file output end

% Print the parameters on the screen

fprintf(Fid,'Nonlinear Bending Analysis\n');

fprintf(Fid,' by Stainer\n');

fprintf(Fid,' February 2004\n');

fprintf(Fid,'\n');

fprintf(Fid,'Date: %s\n',date);

fprintf(Fid,'============================================================\n');

fprintf(Fid,' INPUT PARAMETERS:\n');

fprintf(Fid,' 1. Ramgerg-Osgood Parameters:\n');

fprintf(Fid,' n = %5.2f \n',n);

fprintf(Fid,' Alpha = %5.2f \n',Alpha);

fprintf(Fid,' E = %5.2f (GPa)\n',E_Output);

fprintf(Fid,' Sigma_0 = %5.2f (MPa)\n',Sigma_0);

fprintf(Fid,' 2. Iteration Parameters:\n');

fprintf(Fid,' Initial Values of Stress = %5.2f and %5.2f (GPa)\n',Sigma(1),Sigma(2));

fprintf(Fid,' Max Iteration Times = %d\n',MaxIterationTimes);

fprintf(Fid,'============================================================');

fprintf(Fid,'\n');

fprintf(Fid,'\n====================== BEGIN ANALYSIS ======================\n');

fprintf(Fid,'\n');

% Nonlinear Bending Analysis for i=1 : NumberOfData % for1

fprintf(Fid,' The data being processing: "%s"\n',FileName1{i});

fprintf(Fid,' Number of data : %5d\n',LengthOfData);

fprintf(Fid,' Number of plates : %2d\n',N);

fprintf(Fid,' MinStrain : %6.5f\n',MinStrain);

% Calculate the Corresponding Stress & Generate the Ramberg-Osgood Hysteresis Model k = 1; % Index for StressData(k) and StrainData(k)

if((mod(NumberOfTurningPoint,2)==1)) % Odd NumberOfTurningPoint CalculationTimes = (NumberOfTurningPoint+1)/2;

Appendix A: Source Codes of MATLAB Programs

149

fprintf(Fid,'\n==================== ANALYSIS COMPLETE ===================\n');

fprintf(Fid,'\n');

% Output parameters if(FID==1)

Strain02.m

function Strain = Strain02(Sigma,FLAG2,Epsilon_A,Sigma_A) global E Sigma_0 Alpha n % Ramberg-Osgood Parameters

% "Strain02.m" is a function of "FindTheStress02.m".

% The Ramberg-Osgood Stress-Strain relationship is adopted in this program.

if (FLAG2==1) %FLAG2

Strain = (Sigma/E) + (Sigma_0*Alpha)/E*(Sigma/Sigma_0).^n;

elseif (FLAG2==2)

fprintf('\nArguments Error in Strain02.m !\n\n');

end

% Generate the table (Ramberg-Osgood Stress-Strain relation).

% Use the series of testX.m to check the table.

% % Example:

% GenerateTableRO(0.01,2,0.015,333)

%

global E Sigma_0 Alpha n % Ramberg-Osgood Parameters global TableRO_Sigma TableRO_Epsilon % Table

% File name

elseif(FLAG2==3)

e = num2str(-Epsilon_A);

% Generate the table if(FLAG2==2)

%fprintf(' Generate the Table of Ramberg-Osgood Stress-Strain Relation:\n');

%fprintf(' FLAG2 = %1d\n',FLAG2);

TableRO_Epsilon = TableRO_Epsilon';

TableRO_Sigma = TableRO_Sigma';

elseif(FLAG2==3)

Appendix A: Source Codes of MATLAB Programs

151

Sigma_A = -Sigma_A;

Epsilon_A = -Epsilon_A;

%fprintf(' Generate the Table of Ramberg-Osgood Stress-Strain Relation:\n');

%fprintf(' FLAG2 = %1d\n',FLAG2);

TableRO_Epsilon = -TableRO_Epsilon';

TableRO_Sigma = -TableRO_Sigma';

%fprintf(' Precision = %5.2e \n',abs(TableRO_Epsilon(1)-TableRO_Epsilon(2)));

end

SearchTableRO.m

function CorrespondingStress = SearchTableRO(GivenEpsilon,FLAG2,Epsilon_A,Sigma_A)

% SearchTableRO.m

% by Stainer

% February 22, 2004

%

%

% Search the table generated by GenerateTableRO.m.

% Use the series of testX.m to check the table.

%

% Example:

%

%

global TableRO_Sigma TableRO_Epsilon % Table

% Search the table if(FLAG2==2||FLAG2==3)

% Search the table for the GivenEpsilon

if( abs((TableRO_Epsilon(i)-GivenEpsilon))<(10^(-2)) )

% (The next point of local max/min value) ==> Turning Point

%

% NOTE: The data files you are going to processing must be located in \InputData\.

%

% Input File: 2 column strain data

% First column: Time

% Second column: micro-strain

% Output File: 3 column strain data (TurningPoint Column will be added!)

% Third column: Turning Point (1: truning point, 9: end point)

%

% Programming Concept:

% 1. Find the point that strain equals to zero. This will divide the total

% strain data into several segments.

FileName1(1) = {'0930423-05~20mm-03-Strain3f.asc'};

FileName1(2) = {'0920930-Kobe(0.25g)-Gage12.asc'};

% Generate the Turning Point Column for i=1 : NumberOfData

clear Fid Flag L LocalExtremeValue Result Temp Temp2 clear TurningPoint TurningPointIndex ZeroStrainIndex clear Time Strain n j p qqq

Appendix A: Source Codes of MATLAB Programs

153

% Compare the experimental hysteresis with the predicted one.

%

clear; clc;

% Parameters

% Direct Measurement Hysteresis (from the component test in NctuCE Project - 05) % Format: [Displacement Force Time]

FileNameString1 = '0930423-05~20mm-03-ExperimentalHysteresis.TXT';

% Predicted from Strain Hysteresis (from the nonlinear bending analysis in NctuCE Project - 08)

% Format: [Displacement Force]

FileNameString2 = '0930423-05~20mm-01-Strain3-PredictedHysteresis.TXT';

% Properties of Figure

TitleString = '0930423-05~20mm-01-Strain3';

TitleString = strcat('Comparison of Hysteresis (',TitleString,')');

% Output

JpgFileNameString = strcat(TitleString,'.jpg');

% Load the data cd InputData

Temp1 = load(FileNameString1);

Temp2 = load(FileNameString2);

cd ..

plot(D1(24:5714),F1(24:5714),'GREEN--', ...

D2(54:5714),F2(54:5714),'RED');

% Properties of the figure %title(TitleString);

xlabel('Displacement (mm)');

ylabel('Force (Kgf)');

legend('Direct Measurement','Predicted from Strain',4);

set(findobj(gca,'Type','line','Color','RED'),'Color','RED','LineWidth',1.2);

set(findobj(gca,'Type','line','Color','GREEN'),'Color','GREEN','LineWidth',1.2);

grid on;

set(gca,'YMinorTick','on');

%text(7,-60,'\alpha = 1.7 n=10');

%text(7,-75,'\sigma_0 = 450 MPa');

%text(7,-92,'E = 210 GPa');

% Output

print('-f1', '-djpeg90', '-r128', JpgFileNameString);

EpsFileNameString = strcat(TitleString,'.eps');

if(EpsFlag==1) print('-f1', '-r600', '-depsc', EpsFileNameString); end

FilterDisplacement.m

InputFileNameString = '0930423-05~20mm-03-AC1.asc';

OutputFileNameString = '0930423-05~20mm-03-AC1f.asc';

% Load the data cd InputData

Temp1 = load(InputFileNameString);

cd ..

% Post-processing

Displacement = Temp1(:,2); % Displacement Time = Temp1(:,1); % Time

% Filter

[num,den] = butter(20,0.6);

Displacement1 = filter(num,den,Displacement);

% Comparison

plot(Time,Displacement, Time,Displacement1);

legend('Original','Filter');

Appendix A: Source Codes of MATLAB Programs

155

fclose(Fid);

cd ..

% Complete

fprintf('==> %s is done.\n',OutputFileNameString);

plotH.m

Fig02 = figure('visible', 'on');

plot(D(14:5714),V(14:5714),'BLACK');

%title(H_TitleString);

xlabel('Displacement from LVDT (cm)');

ylabel('Force (Kgf)');

axis([-15 15 -120 100]) grid on;

%set(findobj(gca,'Type','line','Color',[0 0 1]),'Color','BLUE','LineWidth',1.2);

print('-f1', '-djpeg90', ResolutionString, H_FileName);

if(EpsFlag==1) print('-f1', '-r600', '-depsc', H_FileName2); end close(Fig02);

plotSH.m

Fig04 = figure('visible', 'on');

plot(StrainData,StressData,'BLACK');

% Figure Properties

%title(SH_TitleString,'FontSize',12);

xlabel('\epsilon','FontSize',12);

ylabel('\sigma (MPa) ','FontSize',12);

grid on;

set(get(gca,'YLabel'),'Rotation',0.0);

%set(findobj(gca,'Type','line','Color',[0 0 1]),'Color','BLUE','LineWidth',1.2);

print('-f1', '-djpeg90', ResolutionString, SH_FileName);

if(EpsFlag==1) print('-f1', '-r600', '-depsc', SH_FileName2); end close(Fig04);

plotStrain.m

Fig03 = figure('visible', 'on');

plot(Time,StrainData*10^6,'BLACK');

%title(S_TitleString);

xlabel('Time (sec)');

ylabel('Micro-Strain');

axis([0 700 -4000 4000]);

grid on;

%set(findobj(gca,'Type','line','Color',[0 0 1]),'Color','BLUE','LineWidth',1.2);

print('-f1', '-djpeg90', ResolutionString, S_FileName);

if(EpsFlag==1) print('-f1', '-r600', '-depsc', S_FileName2); end close(Fig03);

plotV.m

Fig04 = figure('visible', 'on');

plot(V,'BLACK');

title(V_TitleString);

xlabel('Number');

ylabel('Force (Kgf)');

grid on;

%set(findobj(gca,'Type','line','Color',[0 0 1]),'Color','black','LineWidth',1);

print('-f1', '-djpeg90', ResolutionString, V_FileName);

if(EpsFlag==1) print('-f1', '-r600', '-depsc', V_FileName2); end close(Fig04)

Curriculum Vitae

1985~1991 Chung-Cheng Elementary School 1991~1994 Tun-Hua Junior High School 1994~1997 Chien-Kuo Senior High School 1998~2002 Tamkang University

Major: Civil Engineering Minor: Computer Science 2002~2004 National Chiao Tung University

Major: Civil Engineering (Structural Engineering)

相關文件