• 沒有找到結果。

Genetic and Clinical Profiles of Spondylocostal Dysostosis Patients in Taiwan

N/A
N/A
Protected

Academic year: 2021

Share "Genetic and Clinical Profiles of Spondylocostal Dysostosis Patients in Taiwan"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

RESEARCH LETTER

Genetic and Clinical Profiles of Spondylocostal

Dysostosis Patients in Taiwan

Chung-Hsing Wang,

1

Wei-De Lin,

2,3

Da-Tian Bau,

4

I-Ching Chou,

1

and Fuu-Jen Tsai

1,2

*

1

Department of Pediatrics, China Medical University and Hospital, Taichung, Taiwan

2Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan 3

School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan

4Terry Fox Cancer Research Lab, China Medical University and Hospital, Taichung, Taiwan

Received 23 May 2010; Accepted 17 August 2011

TO THE EDITOR:

Spondylocostal dysostosis (SCD [OMIM 277300]) comprises a heterogeneous group of disorders characterized by multiple bral anomalies, including hemi-vertebrae and segments of verte-brae accompanied by anomalies of the ribs [Bulman et al., 2000]. Patients generally have no family history of the condition and show diverse clinical and radiological findings. However, the basis of these defects in some cases stems from disturbances in the Notch signaling pathway that plays a central role in somite formation [Weinmaster, 2000]. The Notch signaling pathway is an evolutio-narily conserved signal-transduction pathway that has important roles throughout embryonic development, as well as in the origins of diseases like cancer [Harper et al., 2003].

In humans, the first autosomal recessive genetic mutation closely related to SCD was identified in the DLL3 gene [Bulman et al., 2000]. Subsequently, three other Notch signaling pathway genes (MESP2, LFNG and HES7) have been associated with SCD [Whittock et al., 2004; Sparrow et al., 2006, 2008]. Mutations in DLL3, include nonsense, missense, frameshift, and splice-site muta-tions, specify functionally deficient products [Sparrow et al., 1998; Bulman et al., 2000; Bonafe et al., 2003; Turnpenny and Kusumi, 2003]. A genome-wide scanning strategy in one consanguineous family with two affected siblings demonstrated linkage to 15q21.3–15q26.1 and identified a homozygous 4-bp duplication disease-causing mutation in MESP2, which codes for a basic helix-loop-helix transcription factor [Whittock et al., 2004]. A

homo-zygous missense mutation (c.564C! A) in exon 3 of the Lunatic

Fringe (LFNG) gene was detected that results in substitution of leucine for phenylalanine, leading to its mislocalization in the cell, dysregulation of Notch signaling, and enzymatic inactivation [Sparrow et al., 2006]. The latest identified SCD sub-type is characterized by shortening of the spine, with multiple and con-tiguous vertebral segmentation defects involving all spinal regions, but mainly the thoracic spine and ribs anomalies with irregular points of fusion along their length on the right side and very crowded origins on the left. This disorder is called type 4, and involves HES7, which encodes a bHLH-Orange domain transcrip-tional repressor protein [Davis and Turner, 2001; Sparrow et al.,

2008]. The bHLH-Orange domain transcriptional repressor pro-tein not only targets the Notch signaling pathway, it also targets a negative feedback mechanism that attenuates the pathway. These results suggest that proper regulation of the Notch signaling path-way is required for the correct patterning of the axial skeleton [Sparrow et al., 2006, 2008].

In this study, we identified five SCD patients with short stature and congenital scoliosis from four unrelated families were screened for pathogenic mutation(s) in genes of the Notch signaling pathway.

Five Chinese Han patients from four families (three boys and two girls, ranging in age from newborn to 15 years) were diagnosed with SCD by two geneticists with expertise in SCD. Demographic and clinical data for the five patients are presented in Table I. Except for abnormal vertebral segmentation, none of these patients had other systemic anomalies, and all achieved normal developmental mile-stones. Informed consent to participate in the study was obtained for each subject.

Genomic DNA was isolated from peripheral blood using stand-ard DNA extraction techniques. The complete coding regions for

Grant sponsor: China Medical University and Hospital; Grant number: CMU99-NTU-10.

Chung-Hsing Wang and Wei-De Lin contributed equally to this work. *Correspondence to:

Fuu-Jen Tsai, Department of Pediatrics, China Medical University Hospital, 2 Yuh-Der Road, Taichung 404, Taiwan.

E-mail: d0704@mail.cmuh.org.tw

Published online 3 November 2011 in Wiley Online Library (wileyonlinelibrary.com).

DOI 10.1002/ajmg.a.34301

How to Cite this Article:

Wang C-H, Lin W-D, Bau D-T, Chou I-C, Tsai F-J. 2011. Genetic and clinical profiles of spondylocostal dysostosis patients in Taiwan. Am J Med Genet Part A 155:3132–3135.

(2)

DLL3, MESP2, LFNG, and HES7, including the intron/exon boun-daries, were screened using previously described methodologies [Bulman et al., 2000; Whittock et al., 2004; Sparrow et al., 2006, 2008].

Amplified PCR products were purified from agarose gel using QIAEX II (Qiagen, Hilden, Germany) and subjected to direct sequencing for mutation identification. Direct sequencing was performed using the BigDye 3.1 Terminator Cycle Sequencing

TABLE I. Demographic, Clinical, and Genetic Analysis Data of Five SCD Patients

Age at enrolled (years) Sex Body height in cm (percentile) Body weight in kg (percentile) Image of spinal CT and/or MRI Sequencing of DLL3, MESP, LFNG, HES7 genes

Patient 1a 15 F 131.0 (<3rd) 39.2 (5–10th) Decreased size ofvertebral

bodies and hypoplasia of disc spaces, and fusion of the posterior neural elements over T3–11 of the thoracic spine

DLL3, 653T! C (Leu218Pro), polymorphism

Asymmetric alignment of bilateral ribs

Scoliosis of the T-spine with convexity to

Block vertebra of L4–5

Patient 2a 14 F 131.1 (<3rd) 36.3 (5–10th) Decreased size of vertebral

bodies and hypoplasia of disc spaces, and fusion of the posterior neural elements over T3–11 of the thoracic spine

DLL3, 653T! C (Leu218Pro), polymorphism

Asymmetric alignment of bilateral ribs

Scoliosis of the T-spine with convexity to right side Block vertebra of L3–5

Patient 3 8.7 M 107.6 (<3rd) 18.1 (5–10th) Scoliosis of the T-spine with

convexity to right side

DLL3, 653T! C (Leu218Pro) polymorphism Hemivertebra over T2–5

Absence of 10th ribs

Patient 4 Newborn M 47.2 (<3rd) 3.1 (25th) Asymmetric fusion and bifid

of ribs

DLL3, IVS4 36 C ! T, polymorphismLFNG, IVS5þ 68 C ! T, polymorphism Butterfly vertebra and

hemivertebra over T6, T8–9, and T11 Scoliosis of T-spine with

convexity to right side

Patient 5 1.3 M 76.2 (<3rd) 8.0 (<3rd) Hemivertebra over T10 DLL3, 515T! G

(Phe172Cys), polymorphism Block vertebra of T11–12

T2–6 partial segmentation anomalies

Scoliosis of the T-spine with convexity to left side

F, female; M, male.

a

Patients 1 and 2 are sisters.

(3)

Kit (Applied Biosystems, Foster City, CA) with the ABI 3100 Genetic Analyzer (Applied Biosystems). Sequencing data were collected at least twice to optimize accuracy and representation.

Clinically, all five patients were below the 3rd centile for height relative to the reference growth chart obtained from the Depart-ment of Health in Taiwan. Obvious scoliosis and short stature were attributed to abnormal development and malalignment of their spines. Among the participants, Patients 1 and 2 are sisters and exhibit marked phenotypic similarity with decreased size of vertebral bodies, hypoplasia of disc spaces through the thoracic spine, T-spine scoliosis, and block lumbar vertebra. The other three

unrelated patients displayed varying degrees of block and hemi-vertebra in the thoracic spine, with asymmetric fusion, bifid ribs, and thoracic butterfly vertebra. Radiographs showed failure of normal vertebral segmentation and are presented in Figure 1, with the exception of Patient 4.

Direct sequencing identified four specific single nucleotide variants in five patients (Table I). Among them, three of

the sequence variants were located in DLL3—515T! G

(Phe172Cys), 653T! C (Leu218Pro), and IVS4  36 C ! T.

The fourth single nucleotide variant was located in LFNG:

IVS5þ 68 C!T. The first two sequence variants were situated

FIG. 1. A: The pedigree of the two representative patients (i.e., Patients 1 and 2). B: Patients 1 and 2 show short stature (with shortened trunk) and congenital scoliosis while their younger sister (left) shows normal stature. C: Multiple vertebral anomalies and asymmetric alignment of ribs in the chest cage and block lumbar spines, observed in reconstructed 3D CT images. D,E: Diverse abnormal image characteristics in vertebral segmentation and rib alignment from Patients 3 and 5.

(4)

within coding regions of the DLL3 gene, and, according to a previous report, were deemed as polymorphic markers that had no association with SCD type 1 phenotype [Sparrow et al., 2002]. The remaining two intronic polymorphisms were located deep in the intron areas of their respective genes, which make them unlikely to be disease-causing.

For this study, we initially recruited 10 patients who had presented with scoliosis and short stature; but only those with non-progressive scoliosis, no other systemic structure anomalies, no neurological deficits, and normal mentality on subsequent follow-up were included in this analysis. Ultimately, this left us with five phenotypically heterogeneous patients with abnormal vertebral segmentation. However, none of our patients completely fulfilled the criteria for the strictest definition of SCD, which requires contiguous involvement of at least 10 spinal segments and aberrant rib alignment, with some asymmetry in rib alignment and irregular points of rib fusions, but basic overall symmetry of thorax shape. It is possible that in addition to the four published sub-types of SCD that have been identified, other sub-types of SCD, may exist in the Taiwanese population. This possibility may explain why we failed to identify mutations in these SCD patients by candidate genes approach of four known SCD responsible genes. In a knockout mouse study, a targeted mutation of Dll1 (a component of the mouse Notch signaling pathway) was iden-tified and led to a severe decrease or absence of expression of genes in the Notch signaling pathway including Mesp2 [Kusumi et al., 2004]. On the other hand, mutations in Dll3 may have effects not only on Mesp2, but also its downstream genes, Lfng, Hes1, and Hes5 [Kusumi et al., 2004]. In addition, genes not so closely related to the Notch signaling pathway, like GDF6, FGF8, and WNT, also are involved in the etiology of somitogenesis and associated with some specific clinical phenotypes and diseases. These data support the notion that somitogenesis is not regulated solely by the four well-known genes DLL3, MESP2, LFNG, and HES7 [Aulehla et al., 2003; Tassabehji et al., 2008; Dubrulle et al., 2011].

Among these five cases, two sisters (Patients 1 and 2) were notable as they exhibited the greatest degree of similarity genetic genotype background, age, and disease appearance. Their parents are descendants of the same minor aboriginal tribe in Taiwan; and, even though they came from different mountain areas in the central territory of this island country, the possibility of distant consanguinity cannot be excluded. The mode of inheritance is likely autosomal recessive. Their radiographic find-ings included less severe shortening of the spine than the four established sub-types of SCD. Analysis of haplotypes and other candidate genes is warranted in the Taiwan population with characteristics of SCD.

ACKNOWLEDGMENTS

We thank Wen-Shin Chang, Yu-Lin Liao, and Judy Wang for their technical assistance. This study was supported by

research grants and China Medical University and Hospital (CMU99-NTU-10).

REFERENCES

Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, Herrmann BG. 2003. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 4:395–406.

Bonafe L, Giunta C, Gassner M, Steinmann B, Superti-Furga A. 2003. A cluster of autosomal recessive spondylocostal dysostosis caused by three newly identified DLL3 mutations segregating in a small village. Clin Genet 64:28–35.

Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C, Lander ES, Krumlauf R, Hattersley AT, Ellard S, Turnpenny PD. 2000. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 24:438–441.

Davis RL, Turner DL. 2001. Vertebrate hairy and enhancer of split related proteins: Transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20:8342–8357.

Dubrulle J, McGrew MJ, Pourquie O. 2011. FGF signaling controls somite boundary position and regulates segmentation clock control of spatio-temporal Hox gene activation. Cell 106:219–232.

Harper JA, Yuan JS, Tan JB, Visan I, Guidos CJ. 2003. Notch signaling in development and disease. Clin Genet 64:461–472.

Kusumi K, Mimoto MS, Covello KL, Beddington RS, Krumlauf R, Dunwoodie SL. 2004. Dll3 pudgy mutation differentially disrupts dynamic expression of somite genes. Genesis 39:115–121.

Sparrow DB, Jen WC, Kotecha S, Towers N, Kintner C, Mohun TJ. 1998. Thylacine 1 is expressed segmentally within the paraxial mesoderm of the Xenopus embryo and interacts with the Notch pathway. Development 125:2041–2051.

Sparrow DB, Clements M, Withington SL, Scott AN, Novotny J, Sillence D, Kusumi K, Beddington RSP, Dunwoodie SL. 2002. Diverse requirements for Notch signalling in mammals. Int J Dev Biol 46:365–374.

Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL. 2006. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78:28–37. Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL. 2008. Mutation

of hairy-and-enhancer-of-Split-7 in humans causes spondylocostal dys-ostosis. Hum Mol Genet 17:3761–3766.

Tassabehji M, Fang ZM, Hilton EN, McGaughran J, Zhao Z, de Bock CE, Howard E, Malass M, Donnai D, Diwan A. 2008. Mutations in GDF6 are associated with vertebral segmentation defects in Klippel–Feil syndrome. Hum Mut 29:1017–1027.

Turnpenny PD, Kusumi K. 2003. DLL3 and spondylocostal dysostosis. In: Epstein CJ, Erickson RP, Wynshaw-Boris A, editors. Inborn errors of development. New York: Oxford University Press. pp 470–481. Weinmaster G. 2000. Notch signal transduction: A real rip and more. Curr

Opin Genet Dev 10:363–369.

Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, Turnpenny PD. 2004. Mutated MESP2 causes spondylocostal dys-ostosis in humans. Am J Hum Genet 74:1249–1254.

數據

FIG. 1. A: The pedigree of the two representative patients (i.e., Patients 1 and 2). B: Patients 1 and 2 show short stature (with shortened trunk) and congenital scoliosis while their younger sister (left) shows normal stature

參考文獻

相關文件

The clinical and radiological features of 6 cases of NBCCS were characterized into major and minor criteria and compared with features reported in Indian patients and in patients

Purpose: The purpose of this study was to investigate computed tomography (CT) and clinical features relating to calcifications within the parotid gland of patients with

SUMMARY The purpose of this systematic review was to describe the prevalence of whiplash trauma in patients with temporomandibular disorders (TMDs) and to describe clinical signs

The clinical and radiographic records of 208 patients suffering from neurological symptoms in maxillofacial region. They had referred to neurology department and then

As seen in Table 1 every one of them occurred in male patients; with the exception of one case all large sized sialoliths were located in the submandibular duct (94.4%) and only

Methods: Forty-five DEB patients were assessed by an oral medicine specialist, who analysed the presence/absence of four clinical signs (erythema, erosion/ulcer, atrophy, blister)

pylori in pathogenesis of oral mucosal lesions or ulcerations is still unclear, it seems that patients with oral lesions as leukoplakia and oral lichen planus, and concurrent

The CN V3 branch was the most frequently involved branch of the trigeminal nerve in this series of patients with 149 (46.6%) patients having pain solely in