• 沒有找到結果。

Genetic algorithms for a two-agent single-machine problem with release time

N/A
N/A
Protected

Academic year: 2021

Share "Genetic algorithms for a two-agent single-machine problem with release time"

Copied!
10
0
0

加載中.... (立即查看全文)

全文

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied

Soft

Computing

jo u r n al h om epa g e :w w w . e l s e v i e r . c o m / lo c a t e / a s o c

Genetic

algorithms

for

a

two-agent

single-machine

problem

with

release

time

Wen-Chiung

Lee

a,∗

, Yu-Hsiang

Chung

b

,

Mei-Chia

Hu

a aDepartmentofStatistics,FengChiaUniversity,Taichung,Taiwan

bDepartmentofIndustrial&EngineeringManagement,NationalChiaoTungUniversity,Hsinchu,Taiwan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6February2012

Receivedinrevisedform11May2012 Accepted11June2012

Availableonline6July2012 Keywords: Scheduling Totaltardiness Two-agent Single-machine Releasetime Maximumtardiness

a

b

s

t

r

a

c

t

Schedulingwithtwocompetingagentshasdrawnalotofattentionlately.However,itisassumedthatall thejobsareavailableinthebeginninginmostoftheresearch.Inthispaper,westudyasingle-machine probleminwhichjobshavedifferentreleasetimes.Theobjectiveistominimizethetotaltardinessofjobs fromthefirstagentgiventhatthemaximumtardinessofjobsfromthesecondagentdoesnotexceedan upperbound.Threegeneticalgorithmsareproposedtoobtainthenear-optimalsolutions.Computational resultsshowthatthebranch-and-boundalgorithmcouldsolvemostoftheproblemswith16jobswithina reasonableamountoftime.Inaddition,itshowsthattheperformanceofthecombinedgeneticalgorithm isverygoodwithmeanerrorpercentagesoflessthan0.2%forallthecases.

©2012ElsevierB.V.Allrightsreserved.

1. Introduction

Recently,thereis agrowinginterestin multi-agent

schedul-ing where jobs might come from severalcustomers who have

theirownobjectivefunctions.Forexample,BakerandSmith[1]

gave an example of a prototype shop where the

manufactur-ingdepartmentmightbeconcernedaboutfinishing jobsbefore

theirdue dates, andtheresearchanddevelopmentdepartment

mightbemoreconcernedaboutquickresponsetime.Kubzinand

Strusevich[2]presented anotherexampleinwhich the

mainte-nanceactivitiescompetewithreal jobsfor machineoccupancy

inmaintenanceplanning.MeinersandTorng[3]gavea

telecom-municationexamplewherevarioustypesofpacketsandservice

competefortheradioresourceusage.SoomerandFranx[4]gave

atransportationexamplewheretheagentsowntheir

transporta-tionresources,andcompetefortheusageoftheinfrastructures.

Leung et al. [5] pointed out that several important classes of

schedulingproblems,suchasreschedulingproblemsor

schedul-ingwithavailabilityconstraints,canbeformulatedastwo-agent

schedulingproblems.BakerandSmith[1]and Agnetisetal.[6]

pioneeredtheschedulingproblemswithtwo competingagents.

Sincethen,two-agentschedulinghasdrawnresearchers’attention

[7–16].

Recently,Leungetal.[5]generalizedthesinglemachine prob-lemsofAgnetisetal.[6]tothecaseofmultipleidenticalparallel

∗ Correspondingauthor.

E-mailaddress:wclee@fcu.edu.tw(W.-C.Lee).

machineswherejobpreemptionisallowed.Theyalsoconsidered

certainsingle-machineproblemswherethejobsmayhave

differ-entreleasedates,andjobpreemptionsmayormaynotbeallowed.

Leeetal.[17] consideredatwo-agentscheduling problemona

two-machinepermutation flowshop.Theirobjective isto

mini-mizethe total tardiness ofjobs fromthefirst agentgiven that

thenumberof tardyjobsofthesecond agentiszero.Liu etal.

[18] broughtthe aging and learning effects intothe two-agent

scheduling.Their objective isto minimizethetotal completion

timeofjobsfromthefirstagentgiventhatthemaximumcostof

jobsfromthesecondagentcannotexceedagivenupperbound.

Wanetal.[19]consideredseveraltwo-agentschedulingproblems

withcontrollablejobprocessingtimesinwhichtwoagentshaveto shareeitherasinglemachineortwoidenticalmachinesin paral-lelwhileprocessingtheirjobs.MorandMosheiov[20]considered

atwo-agentschedulingproblemonasingle-machineproblemto

minimizethemaximumearlinesscostortotal (weighted)

earli-nesscostofjobsfromoneagent,subjecttoanupperboundon

themaximumearlinesscostofjobsfromtheotheragent.They

introduceda polynomial-timesolutionfor the maximum

earli-nessproblemandprovedNP-hardnessfortheweightedearliness

case.Lee etal.[21] considereda two-agentproblemwherethe

objectiveistominimizethetotal completiontime ofjobsfrom

thefirstagentgiventhatnotardyjobisallowedforthesecond

agent.Liuetal.[22]developedtheoptimalsolutionsforcertain two-agentproblemswithincreasinglineardeteriorationona sin-glemachine.Theirgoalistominimizetheobjectivefunctionofthe

firstagentgiventhattheobjectivefunctionofthesecondagent

cannotexceedagivenbound.Nongetal.[23]consideredatwo

1568-4946/$–seefrontmatter©2012ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.asoc.2012.06.015

(2)

agentproblemonasinglemachinewheretheobjectiveisto

min-imizetheweightedsumofthemaximumcompletiontimeofjobs

fromoneagentandthetotalweightedcompletiontimeof jobs

fromtheotheragent.Theyprovideda2-approximationalgorithm

andshowedthecaseisNP-hardwhenthenumberofjobsofthe

firstagent isfixed.Yinet al.[24] studiedthree single-machine

problemswithdeterioratingjobs.Theobjectivesarethemaximum

earlinesscost, total earlinesscost, and total weightedearliness

cost,whilekeepingthemaximumearlinesscostofjobsfromthe

otheragentbelowafixedlevel.MorandMosheiov[25]

consid-eredasingle-machineproblemwithbatchschedulingtominimize

thetotalcompletiontimeofjobsfromoneagent,giventhatthe

maximumcompletiontimeofjobsfromtheotheragentdoesnot

exceedan upper bound.Wu et al. [26] studiedsingle-machine

schedulingwithlearning effects. Theirobjective is tominimize

thetotaltardinessofjobsfromthefirstagent,giventhatnotardy jobisallowedforthesecondagent.Chengetal.[27]considered

single-machineschedulingwithtruncatedlearningeffects.Their

objectiveis tominimizethetotal weightedcompletiontime of

jobsfromthefirstagent,giventhat notardy jobisallowedfor

thesecondagent.LiandHsu[28]investigatedasingle-machine

problemwithlearningeffectwheretheobjectiveistominimize

thetotalweightedcompletiontimeofbothagentswiththe

restric-tionthatthemakespanofeitheragentcannotexceedanupper

bound.

Mostoftheresearchinschedulingwithtwocompetingagents

assumesthat jobs are ready to beprocessed in the beginning.

However, customer orders might not arrive simultaneously in

manyrealisticsituations.Thus,itismorepracticaltoconsiderjobs releasetimes.Leungetal.[5]weretheonlyauthorswho

consid-eredtwo-agentschedulingwithjobreleasetimes.Inthispaper,

westudy atwo-agent schedulingproblemona singlemachine

withrelease time where theobjective is tominimizethe total

tardiness of jobsfromthe firstagent given that themaximum

tardinessofjobsfromthesecondagentcannotexceedanupper

bound. To the best of our knowledge, this problem has never

beenstudied.The restof this paper is organizedasfollows. In

thenextsection,theformulationofourproblemisdescribed.In

Section3,a branch-and-bound algorithm withseveral

elimina-tion rules and a lower boundis developed. In Section 4, three

geneticalgorithmsareproposedtosolvethisproblem.InSection5,

computationalexperimentsareconductedtoevaluatethe

perfor-manceofthegeneticalgorithms.Aconclusionisgiveninthefinal section.

2. Problemdescription

Theproblemformulationisdescribedasfollows.Therearen

jobs,eachbelongstoeitheragentAG1orAG2.Foreachjobj,there isaprocessingtimepj,aduedatedj,areleasetimerj,andanagent codeIj,whereIj=1ifj∈AG1orIj=2ifj∈AG2.Underaschedule S,letCj(S)bethecompletiontimeofjobjandletTj(S)=max{0, Cj(S)−dj}bethetardinessofjob j.Inthis paper,weconsidera

singlemachineproblemtominimizethetotaltardiness of jobs

fromagentAG1 giventhatthemaximumtardinessofjobsfrom

agentAG2doesnotexceedanupperboundM.Usingthethree-field notationextendedbyAgnetisetal.[6],thisproblemisdenotedby 1|r1

j;r2j|



Tj;Tmax.

3. Abranch-and-boundalgorithm

WhenallthejobsarefromagentAG1 and thereleasetimes

arezero,theproblemreducestotheclassicalsingle-machinetotal tardinesstimeproblemwhichisNP-hard[29].Therefore,a branch-and-boundalgorithmisproposedtoderivetheoptimalsolution.

3.1. Dominanceproperties

First,weprovidearesulttospeedupthesearchprocess.We

thendevelopseveraladjacentdominancepropertiestoreducethe

searchingscope.

Theorem1. Ifthereisajobisuchthatri+pi≤rjforalltheremaining jobsj,thenjobiisscheduledfirstintheoptimalsequence.

Proof. Theproofisomittedsinceitisstraightforward.

SupposethatSandS aretwoschedulesofjobswiththeonly

differencebetweenthemapairwiseinterchangeoftwoadjacent

jobsiandj.Thatis,S=(,i,j,)andS=(,j,i,),whereand eachdenoteapartialsequence.Inaddition,lettbethecompletion timeofthelastjobin.ThecompletiontimesofjobsiandjinS are

Ci(S)=max{t,ri}+pi (1)

and

Cj(S)=max{Ci(S),rj}+pj (2)

Similarly,thecompletiontimesofjobsjandiinSare

Cj(S)=max{t,rj}+pj (3)

and

Ci(S)=max{Cj(S),ri}+pi (4)

Dependingonwhetherjobsare fromagentsAG1 orAG2,we

dividethesituationintothefollowingthreecases.

Case1. BothjobsiandjarefromagentAG1.

To show that S dominates S, it suffices to show that

Cj(S)−Ci(S)≤0,andTi(S)+Tj(S)<Tj(S)+Ti(S)inthiscase.

Property1.1. Ift≥max{ri,rj}anddi≤t+pi<dj,thenSdominates S.

Proof. Sincet≥max{ri,rj},wehave Ci(S)=t+pi

Cj(S)=t+pi+pj Cj(S)=t+pj and

Ci(S)=t+pj+pi

Therefore,wehaveCj(S)≤Ci(S).Sincet+pi≥di,wehave

Ti(S)=t+pi−di (5)

and

Ti(S)=t+pj+pi−di (6)

SupposethatTi(S)isnotzero.Notethatthisisthemore restric-tivecasesinceitcomprisesthecasethatTi(S)iszero.FromEqs.(5)

and(6),wehave

Tj(S)+Ti(S)−Ti(S)−Tj(S)=dj−t−pi>0 sincet+pi<dj.Thus,SdominatesS.

Property1.2. Ift≥max{ri,rj}anddi<t+pi+pj≤dj,thenS domi-natesS.

Property1.3. Ift≥max{ri,rj},t+pi≤di≤t+pj+pi,anddj>di,then SdominatesS.

(3)

Property1.4. If ri≤t≤rj≤t+pi,dj≥t+pi+pj,anddi<rj+pj+pi, thenSdominatesS.

Property1.5. Ifri≤t≤rj≤t+pi,t+pi≤di≤rj+pj+pi,anddj>di, thenSdominatesS.

Property1.6. Ifri≤t≤rj≤t+pianddi≤t+pi≤dj,thenSdominates S.

Property1.7. Ift≤ri≤rj≤ri+pi,ri+pi+pj≤dj,andrj+pj+pi>di, thenSdominatesS.

Property1.8. Ift≤ri≤rj≤ri+pi≤di≤rj+pj+piandri+di<rj+dj, thenSdominatesS.

Property1.9. Ift≤ri≤rj≤ri+pi<djandri+pi≥di,thenS domi-natesS.

Property1.10. Ifmax{t,ri}+pi≤rjandrj+pj+pi>di,thenS dom-inatesS.

Case2. JobiisfromagentAG1,butjobjisfromagentAG2. ToshowthatSdominatesS,itsufficestoshowthatTj(S)≤M, Ti(S)<Ti(S)andCj(S)−Ci(S)≤0.

Property2.1. Ift≥max{ri,rj}andt+pi+pj−dj≤M,thenS domi-natesS.

Property2.2. Ifri≤t≤rj≤t+piandt+pi+pj−dj≤M,thenS dom-inatesS.

Property2.3. Ift≤ri≤rj≤ri+piandri+pi+pj−dj≤M,thenS dom-inatesS.

Property2.4. Ift≥ri,t+pi≤rj,andrj+pj−dj≤M,thenSdominates S.

Property2.5. Ift≤ri,ri+pi≤rj,andrj+pj−dj≤M,thenSdominates S.

Case3. BothjobsiandjarefromagentAG2.

ToshowthatSdominatesS,itsufficestoshowthatTi(S)≤M, Tj(S)≤MandCj(S)−Ci(S)<0.

Property3.1. Ift≥max{ri,rj},t+pi−di≤M,t+pi+pj−dj≤M,and di<dj,thenSdominatesS. Property 3.2. If ri≤t<rj≤t+pi, t+pi−di≤M, and t+pi+pj−dj≤M,thenSdominatesS. Property 3.3. If t≤ri<rj≤ri+pi, ri+pi−di≤M, and ri+pi+pj−dj≤M,thenSdominatesS. Property3.4. Ift≥ri,t+pi≤rj,t+pi−di≤M,andrj+pj−dj≤M, thenSdominatesS. Property3.5. Ift≤ri,ri+pi≤rj,ri+pi−di≤M,andrj+pj−dj≤M, thenSdominatesS.

Tofurtherfacilitatethesearchprocess,weprovideaproposition todeterminethefeasibilityofapartialschedule.Assumethat(, c)isasequenceofjobswhereisthescheduledpartandcis theunscheduledpart.

Proposition1. Ifthereisajobj∈cAG

2suchthatt+pj>dj+M, then(,c)isnotafeasiblesequence.

3.2. Alowerbound

Inthissubsectionwedevelop alowerboundforthe

branch-and-boundalgorithm.LetPSbeapartialsequenceinwhichsjobs

arescheduled.Supposethat,amongtheunscheduledsetUSwith

n− sjobs,therearen1jobsfromagentAG1andn2jobsfromagent

AG2, where n1+n2=n−s. For these unscheduledjobs, we have

p(s+1)≤p(s+2)≤···≤p(n)whentheyarearrangedinnon-decreasing orderoftheirprocessingtimes andr(s+1)≤r(s+2)≤···≤r(n) when

theyare arranged in thenon-decreasing order of their release

times.Notethatp(i)andr(i)maynotbefromthesamejob. Fur-thermore,theduedatesofthen1(n2)unscheduledjobsfromagent AG1(AG2)aredenotedasd1(1)≤d1(2)≤···≤d1(n1)(d2(1)≤d2(2)≤···≤ d2

(n2))whentheyareinnon-decreasingorderoftheirduedates.The

ideaoftheproposedlowerboundisthatwefirstderivealower

boundonthecompletiontimesoftheunscheduledjobsbasedon

theSPTrule,andthenweassignthemtoagentsAG1andAG2

with-outviolatingtheconstraintthatthemaximumtardiness ofjobs

fromagentAG2 doesnotexceedtheupperboundM.Inthefirst

step,thecompletiontimeofthe(s+1)thjobis C[s+1]=max{C[s],r[s+1]}+p[s+1]≥C[s]+p(s+1)

Byinduction,thecompletiontimeofthe(s+i)thjobis C[s+i]≥C[s]+

i



l=1

p(s+l) (7)

On the other hand, this lower bound might not be tight if

therelease times are large. Thus, C[s+1]=max{C[s], r[s+1]}+p[s+1] ≥r(s+1)+p(s+1). Byinduction,wehave C[s+i]=max 1≤k≤i



r[s+k]+ i−k+1



l=1 p[s+k+l]



≥max 1≤k≤i



r(s+k)+ i−k+1



l=1 p(s+l)



(8)

FromEqs.(7)and(8),alowerboundonthecompletiontimeof the(s+i)thjobis

C[s+i]≥max{t+ i



l=1 p(s+l),max 1≤k≤i{r(s+k)+ i−k+1



l=1 p(s+l)}}

fori=1,2,...,n− s.Inthesecondstep,theremainingtaskisto assigntheestimatedcompletiontimestothejobsfromagentAG1 orAG2.Theprincipleistoassignthecompletiontimestothejobs fromagentAG2aslateaspossiblewithoutviolatingtheassumption thatthemaximumtardinessofthejobsofagentAG2cannotexceed theupperbound.Inaddition,letC1

(1)≤C 1 (2)≤···≤C 1 (n1)andC 2 (1)≤ C2 (2)≤···≤C 2

(n2)denotetheestimatedcompletiontimesofthejobs

fromagentsAG1andAG2,respectively,whentheyarearrangedin

non-decreasingorder.Theassignmentprocedureisinabackward

mannerstartingfromthejobwiththeremaininglargestduedate

untilallthejobsareassigned.Thedetailsaregivenasfollows:

Algorithmofthelowerbound:

Step 1: Set ic=n−s, i1=n1, i2=n2, and C(s+i)=max{t+ i



l=1 p(s+l),max 1≤k≤i{r(s+k)+ i−k+1



l=1 p(s+l)}}fori=1,2,...,n−s. Step2:IfC(s+ic)≤d2 (i2)+M,thensetC 2 (i2)=C(s+ic)and i2=i2−1. Otherwise,setC1 (i1)=C(s+ic)andi1=i1−1.

Step3:Setic=ic−1.Ific≥1,thengotoStep2.

Therefore,a lowerboundonthetotaltardiness ofjobsfrom

agentAG1forPSis

LB=



j∈AG1 Tj(PS)+ n1



j=1 max{0,C1 (j)−d1(j)}

(4)

3.3. Descriptionofthebranch-and-boundalgorithms

Adepth-firstsearchisusedinthebranchingprocedurestarting fromthefirstposition.Wechooseabranchandsystematicallywork downthetreeuntilweeithereliminateitorreachitsfinalnode, inwhichcasethissequenceeitherreplacetheinitialsolutionoris

eliminated.Theoutlineofthebranch-and-boundalgorithmisas

follows.

Step 1. {Initialization}Implement the geneticalgorithms

(dis-cussed inthe nextsection)toobtaina sequence asthe initial

incumbentsolution.

Step2.{Branching}ApplyTheorem1,Properties1.1to3.5,and

Proposition1toeliminatethedominatedpartialsequence.

Step3.{Bounding}Forthenon-dominated nodes,computethe

lower bound of the total tardiness of jobsfrom agent AG1 of

the unfathomed partial sequences or that of the completed

sequences.Ifthelowerboundontheobjectivefunctionforthe

partialsequenceisgreaterthantheinitialsolution,eliminatethat

nodeand all the nodesbeyond it in the branch.If the

objec-tivefunctionof thecompletedsequenceis lessthantheinitial

solution, replace it as the new solution. Otherwise, eliminate

it.

4. Geneticalgorithms

Evolutionaryalgorithmshavebecomepopularinobtaininggood

approximatesolutionsformanyNP-hardproblems[30–35].Inthis paper,weutilizethegeneticalgorithm(GA).Itisanintelligent

ran-domsearchstrategywhichhasbeenusedsuccessfullytofindnear

optimalsolutionstomanycomplexproblems[36–38].TheGA

usu-allystartswithapopulationoffeasiblesolutionsanditeratively replacesthecurrentpopulationbyanewpopulationuntilcertain stoppingconditionisreached.Itrequiresasuitableencodingfor

theproblemandafitnessfunctionthatrepresentsameasureof

thequalityofeachencodedsolution(chromosome).The

reproduc-tionmechanismselectstheparentsandrecombinesthemusinga

crossoveroperatortogenerateoffspringwhicharesubmittedtoa mutationoperatorinordertoalterthemlocallytoavoidpremature

convergence.ThecomponentsoftheGAappliedtoourproblemare

asfollows. 4.1. Encoding

Inthisstudy,weadopttherandomnumberencodingmethod

[39].Foraproblemofnjobs,wegenerateachromosomewithn

uniformrandomrealnumbersbetween0and1torepresentthe

genes,whereeachgenecorrespondstoajob.Theorderofthese

randomnumbersrepresentsthejobsequence.For instance,the

chromosomeofa5-jobproblem(0.33,0.78,0.13,0.94,0.26)would standforthesequence(3,5,1,2,4).

4.2. Populationsize

Thepopulationsizeisanimportantfactorintheperformanceof GA.Foralargepopulationsize,itiseasiertoobtainabettersolution, butitconsumesmoretime.Afterapreliminarytrial,thepopulation sizeNissetat500inourcomputationalexperiment.

4.3. Fitnessfunction

Inordertomimicthenaturalprocessofthesurvivalofthefittest,

thefitnessfunctionassignstoeachmemberofthepopulationa

valuereflectingtheirrelativesuperiority.Inthispaper,weadopt theideabyHomaifaretal.[40]ofaddingapenaltyfunctiontothe

Parent1 0.45 0.32 0.15 0.78 0.53 0.36

Offspring 0.45 0.32 0.27 0.49 0.18 0.72

Parent2 0.18 0.87 0.27 0.49 0.18 0.72 Fig.1.Onecut-pointcrossover.

infeasiblesolution.Thus,theobjectivefunctionofchromosomek is

objk=



j∈AG1

Tj+˛maxj∈ AG2max{Tj−M,0}, where ˛ is set at

5000inthisstudy.Inaddition,weusethereciprocaloftheobjective valueasthefitnessvalueforeachchromosome,andtheprobability thatachromosomeisselectedastheparentisproportionaltoits fitnessvalue.Thatis,theprobabilityofselectingchromosomeiis fi=hi/



Nj=1hj,wherehi=1/obji,i=1,...,N,isthereciprocalofthe objectivevalueofchromosomeiinapopulationofsizeN.Thisisto ensurethattheprobabilityofselectionforasequencewithlower valueoftheobjectivefunctionishigher.

4.4. Crossover

Crossoverisanoperationtogeneratenewoffspringfromtwo

parents.ItisthemainoperatorinGA.Inthisstudy,weusetheone cut-pointcrossoverasshowninFig.1andtheratePcwaschosen at95%aftersomepretests.

4.5. Mutation

Mutationisanothermainoperatortopreventpremature

con-vergenceandfallintolocaloptimum.Suchanoperationcanbe

viewedasatransitionfromacurrentsolutiontoitsneighborhood solutioninalocalsearchalgorithm.Inthisstudy,weusethe one-pointmutationasshowninFig.2andthemutationratePmisset

at80%basedonourpreliminaryexperiment.

4.6. Selection

Itis aproceduretoselectoffspringfromparentstothenext generation.Inourstudy,thepopulationsizeisfixedat500from

generation togeneration. In our study, we choose thebest 50

chromosomes(10%)fromtheparentpopulationandthebest450

chromosomes(90%)fromtheoffspringtoformthenextgeneration. 4.7. Termination

Aftersomepretests,weterminatetheproposedGAafter20n

generations,wherenisthenumberofjobs. 4.8. Initialsequences

Agoodinitialsequencemightbeusefultofacilitatethe conver-genceoftheprocessortoobtainabetterapproximatesolution.In thispaper,threemethodsareimplemented.InthefirstGA(GA1),

Offspring 0.45 0.32

0.1

5

0.78 0.53 0.36

Offspring 0.45 0.32

0.38

0.78 0.53 0.36

Fig.2.One-pointmutation.

(5)

Find a job j from Uwith a minimal release time.

Can job j be scheduled in position? th k Set 1, , k j j k r p k C = + = + \ {j}, U S S S = ∪ =Ω

Remove job j from U.

Is k larger than n?

SetV={rjCk jAG}1

Is Vempty?

Find a job jfrom Vwith a minimal due date.

Can job j be scheduled in position? th k Set 1,r} , 1, max{C \ {j}, j j k k p k k C S U S S − + = + = Ω = ∪ = SetW={rjCk jAG2} Is Wempty?

Find a job j from Wwith a minimal due date.

Can job j be scheduled in

position? th

k

Output the job sequence

Yes No Yes No Yes No No Yes Yes No Yes No

Fig.3.BlockdiagramforHA.

thefirstgenerationconsistsof500randomsequences.Inthe sec-ondGA(GA2),thefirstgenerationconsistsof499randomsequences

andonedesignatedsequencefromtheheuristicalgorithm(HA)as

describedbelow.InthethirdGA(GA3),thefirstgenerationconsists

of51randomsequencesand441designatedsequences.The

des-ignatedsequencessortjobsaccordingtothenon-decreasingorder

ofw1rj+w2pj+(1−w1−w2)dj,wherew1=0,1/60,...,20/60and w2=0,1/60,...,20/60.Thealgorithmisgivenbelowandshownin

Fig.3.

Heuristicalgorithm(HA)

(6)

Table1

Theperformanceofthebranch-and-boundalgorithmwithn=12,P=50%,=1,and M=30n.

 R Numberofnodes CPUtime

Mean Max Mean Max

0.25 0.25 52.32 474 0.001 0.016 0.50 71.59 1314 0.001 0.016 0.75 46.37 328 0.001 0.016 0.50 0.25 117.22 1889 0.001 0.016 0.50 121.95 776 0.001 0.016 0.75 156.68 1870 0.002 0.016 0.75 0.25 107.12 583 0.001 0.016 0.50 27.37 698 0.001 0.016

Step2.FindajobjfromUwithaminimalreleasetime.

Step3.Ifjobjcanbescheduledinthekthpositionwithoutcausing

theviolationoftheconstraint,putjobjinthekthposition,set

Ck=rj+pj,k=k+1,S=S∪{j},U=˝\S.Otherwise,delete{j}from

UandgotoStep2.

Step 4. If k>n, go to Step 8. Otherwise, form the set

V={rj≤Ckandj∈AG1},andifVisempty,gotoStep6.

Step5.FindajobjfromVwithaminimalduedate.Ifjobjcanbe

scheduledinthekthpositionwithoutcausingtheviolationofthe

constraint,setjobjinthekthposition,setCk=max{Ck−1,rj}+pj,

k=k+1,S=S∪{j},U=˝\S,andgotoStep4.

Step6.FormthesetW={rj≤Ckandj∈AG2}.IfWisempty,goto

Step2.

Step7.FindajobjfromWwithaminimalduedate.Ifjobjcan

bescheduledinthekthpositionwithoutcausingtheviolationof

theconstraint,setjobjinthekthposition,Ck=max{Ck−1,rj}+pj,

k=k+1,S=S∪{j},U=˝\S,andgotoStep4.Otherwise,gotoStep

2.

Step8.Outputthejobsequence.

4.9. Computationalexperiments

Acomputationalexperimentisconductedinthissectionto

eval-uatetheperformanceofthebranch-and-boundandtheGAs.Allthe

algorithmsarecodedinFortran90andrunonapersonalcomputer

withAMDAthlon(tm)64Processor3500+,2.21GHzand1GBRAM

underWindowsXP.Theprocessingtimesaregeneratedfroma

uni-formdistributionovertheintegers1–100.Thejobreleasetimesare

generatedfromuniformdistributionsbetween0and50.5nwhere

nisthenumberofjobsandisacontrolvariable,assuggestedin

[41].Theduedateofjobjisgeneratedfromauniformdistribution overtheintegersbetweenrj+T(1−−R/2)andrj+T(1−+R/2), whererjistheduedateofjobj,Tisthetotaljobprocessingtimes, isthetardinessfactor,andRistheduedaterange.Toensurethe feasibilityoftheinstance,jobsfromagentAG2areplacedbasedon theEDDrule,anditisregeneratedifthemaximumtardinessofjobs

fromagentAG2exceedstheupperboundM.

Thecomputationalexperimentsaredividedintofourparts.The firstpartistotesttheimpactoftheduedatefactorsandRtothe

performanceofthebranch-and-boundalgorithm.Thenumberof

jobsis12,andP,theproportionofjobsfromagentAG1,is50%.The

releasetimefactoris1andtheupperboundofmaximum

tardi-nessis30n,wherenisthenumberofjobs.Eightcombinationsof (,R)valuesareused,i.e.(0.25,0.25),(0.25,0.50),(0.25,0.75),(0.5, 0.25),(0.5,0.50),(0.5,0.75),(0.75,0.25),and(0.75,0.50).Themean

andmaximumnumbersofnodesandthemeanandmaximumCPU

times(inseconds)arereportedfor thebranch-and-bound

algo-rithm. 100instances arerandomlygenerated foreach case and

theresultsarepresentedinTable1andFig.4.Itisseenthatthe

tardinessfactor  ismore significantthantherange factorRto

theperformanceofthebranch-and-boundalgorithm.Problemsare

Fig.4.Themeannumbersofnodesofthebranch-and-boundalgorithmwithn=12, P=50%,=1,andM=30n.

moredifficulttosolvewhen=0.5.Moreover,thecase(,R)=(0.5,

0.75)hasthemostmeannumberofnodesamongthe8cases.

Thesecondpartoftheexperimentistotesttheimpactsofthejob releasetime(),theproportionofjobsfromagentAG1(P),andthe

upperboundofthemaximumtardiness(M)totheperformanceof

thebranch-and-boundalgorithm.Thenumberofjobsis12,andthe valueof(,R)is(0.5,0.5).Threevaluesof(0.2,1.0,3.0),ofP(0.25, 0.50,0.75)andofM(10n,30n,50n,wherenisthenumberofjobs) aretested.Asaresult,27casesareconsideredand100instances

arerandomlygeneratedforeachcase.Theresultsarepresented

inTable2andFigs.5–7.Itisseenthatthejobreleasetime()is themostsignificantfactoramongthesethreefactors.Inaddition, problemsaremoredifficulttosolvewhenthevalueofissmaller. TheproportionofjobsfromagentAG1(P)isthesecondmost

sig-nificantfactor,andproblemstendtobeharderwhenthevalueof

Pissmaller.Ontheotherhand,theupperboundofthemaximum

tardiness(M)seemstohavelittleinfluenceontheperformanceof

thebranch-and-boundalgorithm.

Thethirdpartoftheexperimentistostudytheperformance

ofthebranch-and-boundalgorithmandtheaccuracyofthethree

proposedgeneticalgorithmswhenthenumberofjobsis16.Wefix

=0.5and=0.2sinceproblemsarethemostdifficulttosolveas shownintheresultsofthefirstandthesecondpartsofthe exper-iments.Inaddition,threedifferentvaluesofR(0.25,0.5,0.75),ofP (0.25,0.5,0.75),andofM(10n,30n,50n)arechosen.Themeanand

themaximumnumbersofnodesandthemeanandthemaximum

Fig.5.Themeannumbersofnodesofthebranch-and-boundalgorithmwithn=12, =1,=0.5,andR=0.5.

(7)

Table2

Theperformanceofthebranch-and-boundalgorithmwithn=12,=0.5,andR=0.5.

 P M Numberofnodes CPUtime

Mean Max Mean Max

0.20 0.25 10n 7181.83 60,051 0.060 0.469 30n 19,012.42 166,562 0.155 1.172 50n 14,122.12 159,389 0.118 1.000 0.50 10n 3253.14 21,118 0.025 0.156 30n 1210.51 27,201 0.010 0.172 50n 971.36 9635 0.008 0.063 0.75 10n 932.56 9003 0.008 0.063 30n 852.61 7611 0.005 0.063 50n 889.96 12,724 0.005 0.078 1.00 0.25 10n 339.41 4462 0.002 0.031 30n 154.73 2084 0.001 0.016 50n 230.49 3733 0.001 0.016 0.50 10n 114.85 1012 0.001 0.016 30n 121.95 776 0.001 0.016 50n 152.39 1790 0.001 0.016 0.75 10n 79.14 531 0.001 0.016 30n 89.12 736 0.001 0.016 50n 74.93 350 0.001 0.016 3.00 0.25 10n 15.71 51 0.000 0.000 30n 17.01 181 0.000 0.016 50n 14.33 28 0.001 0.016 0.50 10n 15.19 43 0.000 0.016 30n 14.42 45 0.001 0.016 50n 14.43 46 0.000 0.016 0.75 10n 14.67 37 0.001 0.016 30n 15.26 54 0.000 0.016 50n 13.94 41 0.000 0.016

CPU times(in seconds) arereported for thebranch-and-bound

algorithm,whileonlythemeanandthemaximumerror

percent-agesoftheGAsaregiven.Forinstance,theerrorpercentageofthe

solutionproducedbyGA1iscalculatedas

(V−V∗)

V∗ ×100%

whereVistheobjectivefunctionofthesequencegeneratedbyGA1

andV*istheobjectivefunctionoftheoptimalsequencefromthe

branch-and-boundalgorithm.Foreachcase,100randominstances

aregeneratedandtheresultsaregiveninTable3.Notethatthe

branch-and-boundalgorithmisterminatedifthenumberofnodes

exploredisover108,whichwasapproximately0.5hintermsof theexecutiontime.Theinstancewithnumberofnodesover108is

Fig.6.Themeannumbersofnodesofthebranch-and-boundalgorithmwithn=12, P=50%,=0.5,andR=0.5.

denotedasanasteriskinTable3.Itisobservedthatthe

branch-and-boundalgorithmcansolvemostoftheproblemswith16jobsina

reasonableamountoftime.Amongthe2700problems,thereare

only4unsolvableproblems.Acloserlookrevealsthat,amongthe threefactorsconsidered,theproportionofjobsfromagentAG1(P)

isthemostsignificantone,andproblemstendtobeharderwhen

Pissmaller.Theduedaterange(R)isthesecondsignificant,and

problemsaremoredifficultwhenRissmaller.Astothe

perfor-manceofGAs,itisnoticedthattheperformanceofallthethreeGAs isquitegood.Inaddition,itisseenthatGAwithmoredesignated initialsequencestendstohavebetteroverallsolutions.However, thereisaninstanceinwhichGA1yieldsanobjectivevalueof3but thetotaltardinessis0fortheoptimalsequence.Thus,wewould

Fig.7.Themeannumbersofnodesofthebranch-and-boundalgorithmwithn=12, M=30n,=0.5,andR=0.5.

(8)

W.-C. Lee et al. / Applied Soft Computing 12 (2012) 3580–3589 3587

Theperformanceoftheproposedalgorithmswithn=16,=0.2,and=0.5.

R P M Branch-and-boundalgorithm Errorpercentages

Numberofnodes CPUtime GA1 GA2 GA3 GA*

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

0.25 0.25 10n 7,733,551.02 88,667,901** 104.54 1256.59 0.10 4.41 0.06 2.54 0.06 2.54 0.06 2.54 30n 7,419,256.32 86,013,946 103.43 1255.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50n 7,355,622.14 83,886,484* 109.69 1246.44 0.05 5.30 0.00 0.00 0.00 0.00 0.00 0.00 0.50 10n 689,226.16 9,501,342 7.79 113.78 0.38 20.18 0.29 16.94 0.15 7.44 0.01 1.18 30n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50n 10,060.48 594,503 0.15 8.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 10n 137,298.25 1,636,596 1.63 18.66 0.84 83.66 0.84 83.66 0.13 12.99 0.00 0.00 30n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.25 10n 2,760,314.24 37,327,750 35.86 449.00 0.27 15.29 0.08 5.61 0.19 7.44 0.00 0.00 30n 1,492,637.44 33,707,790 19.67 361.89 0.02 1.56 0.02 1.56 0.02 1.56 0.02 1.56 50n 737,745.28 11,652,452 10.35 153.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 10n 281,446.60 4,129,379 3.44 51.52 0.53 36.40 0.55 36.40 0.21 16.07 0.16 16.07 30n 3015.02 301,502 0.04 3.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50n 3230.40 197,842 0.04 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 10n 37,923.48 513,825 0.46 6.39 0.00 0.00 0.00 0.00 0.08 8.08 0.00 0.00 30n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.25 10n 906,273.05 32,881,824* 11.56 388.05 0.22 13.88 10.23 1000.00 0.18 8.47 0.05 4.55 30n 233,616.08 7,809,830 2.90 104.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50n 187,185.72 11,482,136 2.34 137.83 0.00 0.00 0.00 0.00 0.50 50.00 0.00 0.00 0.50 10n 52,821.20 696,483 0.68 9.20 0.37 35.22 2.61 200.00 0.01 0.68 0.01 0.68 30n 1254.95 94,666 0.02 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50n 43.32 3826 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 10n 11,824.61 282,636 0.15 3.31 0.61 56.25 0.05 5.19 0.14 8.33 0.05 5.19 30n 70.48 5561 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50n 0.00 0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(9)

Table4

Theperformanceofthegeneticalgorithmswithn=50,=0.2,and=0.5.

R P M GA1 GA2 GA3

RDP CPUtime RDP CPUtime RDP CPUtime

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

0.25 0.25 10n 1.05 10.60 11.53 11.92 1.55 14.73 11.65 12.00 0.67 10.44 11.52 11.91 30n 0.07 5.87 5.53 12.06 0.00 0.00 5.42 12.11 0.15 8.74 5.56 12.25 50n 0.22 11.74 6.79 11.98 0.13 11.74 6.66 12.17 0.09 5.18 6.81 12.13 0.50 10n 2.66 38.94 11.39 11.80 2.73 51.34 11.50 12.02 1.65 51.34 11.33 11.81 30n 0.00 0.00 0.16 0.25 0.00 0.00 0.00 0.02 0.00 0.00 0.15 0.25 50n 0.00 0.00 0.15 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.27 0.75 10n 1.99 56.07 10.88 11.83 1.57 57.10 10.90 11.81 1.21 28.87 10.72 11.69 30n 0.00 0.00 0.05 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.16 50n 0.00 0.00 0.04 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.11 0.50 0.25 10n 3.35 79.15 10.95 12.06 3.48 110.54 11.05 12.22 0.50 12.44 10.89 12.06 30n 0.00 0.00 0.88 12.05 0.00 0.00 0.63 12.06 0.00 0.00 0.76 12.05 50n 0.00 0.00 1.18 11.98 0.00 0.00 0.85 11.98 0.00 0.00 1.08 11.84 0.50 10n 2.17 108.71 6.29 11.69 2.46 96.83 6.27 11.89 0.90 46.24 6.00 11.61 30n 0.00 0.00 0.18 0.34 0.00 0.00 0.00 0.03 0.00 0.00 0.12 0.27 50n 0.00 0.00 0.15 0.25 0.00 0.00 0.00 0.02 0.00 0.00 0.11 0.22 0.75 10n 0.52 27.97 2.58 11.53 0.00 0.00 2.29 11.61 1.01 54.09 2.12 11.41 30n 0.00 0.00 0.06 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.13 50n 0.00 0.00 0.05 0.09 0.00 0.00 0.00 0.02 0.00 0.00 0.06 0.11 0.75 0.25 10n 1.61 127.27 4.53 12.16 0.78 47.91 4.53 12.53 0.26 22.71 4.24 12.16 30n 0.00 0.00 0.53 12.00 0.00 0.00 0.34 11.91 0.00 0.00 0.27 11.89 50n 0.04 4.00 0.49 12.13 0.00 0.00 0.14 12.00 0.04 4.00 0.26 12.05 0.50 10n 0.08 7.52 1.31 11.44 0.03 2.62 1.21 11.63 0.00 0.00 0.80 11.41 30n 0.00 0.00 0.23 0.48 0.00 0.00 0.01 0.27 0.00 0.00 0.07 0.22 50n 0.00 0.00 0.16 0.31 0.00 0.00 0.00 0.03 0.00 0.00 0.06 0.14 0.75 10n 0.00 0.00 0.49 1.38 0.00 0.00 0.26 4.13 0.00 0.00 0.06 0.36 30n 0.00 0.00 0.09 0.25 0.00 0.00 0.01 0.11 0.00 0.00 0.04 0.08 50n 0.00 0.00 0.06 0.11 0.00 0.00 0.00 0.02 0.00 0.00 0.04 0.06

recommend to use the best sequence from three GAs,

GA*=min{GA1,GA2,GA3},astheapproximatesolution,sincethey

areallfinishedwithinasecondanditsmeanerrorpercentagesare

lessthan0.2%forallthetestedcases.

Thelastpartofthecomputationalexperimentsistotestthe

performanceofGAswhenthenumberofjobsislarge.The

num-berofjobsissetat50and100.Asetof100instancesistested,

andtheresultsarepresentedinTables4and5.Themeanandthe

Table5

Theperformanceofthegeneticalgorithmswithn=100,=0.2,and=0.5.

R P M GA1 GA2 GA3

RDP CPUtime RDP CPUtime RDP CPUtime

Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

0.25 0.25 10n 2.72 14.55 73.68 76.53 4.13 44.99 73.76 75.97 1.24 9.41 73.69 76.33 30n 0.19 15.79 24.28 75.70 0.25 12.31 22.96 75.31 0.22 15.79 23.69 75.92 50n 3.89 216.67 20.89 76.47 0.00 0.00 18.08 74.33 0.00 0.00 20.46 75.95 0.50 10n 3.44 40.27 72.93 75.45 2.80 40.27 72.50 75.55 1.77 31.56 72.11 75.17 30n 0.00 0.00 1.26 1.73 0.00 0.00 0.00 0.05 0.00 0.00 1.18 1.84 50n 0.00 0.00 1.13 1.55 0.00 0.00 0.00 0.02 0.00 0.00 1.05 1.59 0.75 10n 2.59 36.81 70.56 75.08 1.61 48.99 69.80 74.70 1.95 36.81 69.63 74.55 30n 0.00 0.00 0.56 1.23 0.00 0.00 0.00 0.02 0.00 0.00 0.53 0.95 50n 0.00 0.00 0.45 0.69 0.00 0.00 0.00 0.02 0.00 0.00 0.48 0.77 0.50 0.25 10n 13.64 813.85 71.68 76.97 13.00 726.15 71.54 76.33 5.14 97.06 71.29 76.48 30n 0.00 0.00 3.08 4.66 0.00 0.00 1.59 4.39 0.00 0.00 1.88 3.48 50n 0.00 0.00 2.76 5.02 0.00 0.00 0.08 0.23 0.00 0.00 1.75 3.44 0.50 10n 2.52 90.38 26.04 74.42 3.72 90.38 23.81 73.97 7.68 432.82 22.28 73.95 30n 0.00 0.00 1.53 2.22 0.00 0.00 0.00 0.00 0.00 0.00 0.87 1.52 50n 0.00 0.00 1.19 1.63 0.00 0.00 0.00 0.02 0.00 0.00 0.74 1.19 0.75 10n 0.02 1.54 5.26 70.39 0.00 0.00 2.51 69.06 0.00 0.00 1.34 70.03 30n 0.00 0.00 0.80 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.92 50n 0.00 0.00 0.48 0.78 0.00 0.00 0.00 0.02 0.00 0.00 0.36 0.77 0.75 0.25 10n 2.13 124.38 21.55 77.30 1.90 107.72 21.00 75.75 0.19 7.38 17.48 76.13 30n 0.00 0.00 3.07 5.25 0.00 0.00 2.31 5.98 0.00 0.00 0.82 2.00 50n 0.00 0.00 2.68 7.19 0.00 0.00 0.06 0.23 0.00 0.00 0.74 3.72 0.50 10n 0.00 0.00 4.77 17.44 0.00 0.00 2.45 7.20 0.00 0.00 0.58 2.78 30n 0.00 0.00 1.95 2.89 0.00 0.00 0.05 2.86 0.00 0.00 0.43 1.48 50n 0.00 0.00 1.28 2.02 0.00 0.00 0.01 0.05 0.00 0.00 0.36 0.78 0.75 10n 0.00 0.00 3.41 5.69 0.00 0.00 0.98 4.66 0.00 0.00 0.22 0.97 30n 0.00 0.00 1.13 2.06 0.00 0.00 0.51 27.25 0.00 0.00 0.18 0.50 50n 0.00 0.00 0.60 1.25 0.00 0.00 0.01 0.08 0.00 0.00 0.18 0.39

(10)

maximumrelativedeviationpercentages,andthemeanandthe

maximumCPUtime(insecond)arerecorded.Therelative

devia-tionpercentage(RDP)ofthesolutionproducedbyGAiiscalculated

as

(Vi−min{V1,V2,V3})

min{V1,V2,V3} ×

100%

fori=1,2,3whereViistheobjectivevalueofthesequencefrom

GAi.ItisobservedthattheexecutiontimesoftheGAsareaboutthe

same.ItisseenthatGA3hasthebestoverallperformanceandthe

trendbecomesmoresignificantwhenthenumberofjobsincreases.

TheexecutiontimesoftheGAsareaboutthesame.Ittakesabout

12sforaninstanceof50jobsand75sforaninstanceof100jobs.

5. Conclusion

Inthispaper,westudiedatwo-agentschedulingproblemon

asinglemachinewithreleasetime.Theobjectiveistominimize

thetotaltardinessofjobsfromthefirstagentgiventhatthe

max-imumtardiness ofjobsfromthesecondagentcannot exceeda

givenupperbound.Computationalresultsshowthatthe

branch-and-boundalgorithmcouldsolvemostoftheproblemswith16

jobswithinareasonableamountoftime.Inaddition,itshowsthat

theperformanceofthecombinedgeneticalgorithmisverygood

withmean errorpercentagesof lessthan0.2%for allthecases.

Consideringobjectivefunctions,otherthanthetwoexaminedin

thispaperorextendingthesingle-machinecasetoothermachine

environmentswouldbeaninterestingtopicforfutureresearch.

Acknowledgements

Theauthorsaregratefultotheeditorandthereferees,whose

constructivecommentshaveledtoasubstantialimprovementin

thepresentationofthepaper.ThisworkwassupportedbytheNSC

ofTaiwan,ROC,underNSC100-2221-E-035-029-MY3.

References

[1]K.R.Baker,J.C.Smith,Amultiple-criterionmodelformachinescheduling, Jour-nalofScheduling6(2003)7–16.

[2] M.A.Kubzin,V.A.Strusevich,Planningmachinemaintenanceintwo-machine shopscheduling,OperationsResearch54(2006)789–800.

[3]C.R.Meiners,E.Torng,Mixedcriteriapacketscheduling,Proceedingsofthe ThirdInternationalConferenceonAlgorithmicAspectsinInformationand Management,LectureNotesinComputerScience4508(2009)120–133. [4]M.J.Soomer,G.J.Franx,Schedulingaircraftlandingsusingairlines’preferences,

EuropeanJournalofOperationsResearch190(2008)277–291.

[5]J.Y.T.Leung,M.Pinedo,G.H.Wan,Competitivetwoagentsschedulingandits applications,OperationsResearch58(2010)458–469.

[6]A.Agnetis,P.B.Mirchandani,D.Pacciarelli,A.Pacifici,Schedulingproblemswith twocompetingagents,OperationsResearch52(2004)229–242.

[7]J.J.Yuan,W.P.Shang,Q.Feng,Anoteontheschedulingwithtwofamiliesof jobs,JournalofScheduling8(2005)537–542.

[8]C.T.Ng,T.C.E.Cheng,J.J.Yuan,Anoteonthecomplexityoftheproblemof two-agentschedulingonasinglemachine,JournalofCombinatorialOptimization 12(2006)387–394.

[9]T.C.E.Cheng,C.T.Ng,J.J.Yuan,Multi-agentschedulingonasinglemachineto minimizetotalweightednumberoftardyjobs,TheoreticalComputerScience 362(2006)273–281.

[10]A.Agnetis,D.Pacciarelli,A.Pacifici,Multi-agentsinglemachinescheduling, AnnalsofOperationsResearch150(2007)3–15.

[11]T.C.E.Cheng,C.T.Ng,J.J.Yuan,Multi-agentschedulingonasinglemachine withmax-formcriteria,EuropeanJournalofOperationalResearch188(2008) 603–609.

[12]P.Liu,L.Tang,Two-agentschedulingwithlineardeterioratingjobsonasingle machine,LectureNotesinComputerScience5092(2008)642–650. [13]A.Agnetis,G.Pascale,D.Pacciarelli,ALagrangianapproachtosingle-machine

schedulingproblemswithtwocompetingagents,JournalofScheduling12 (2009)401–415.

[14]K.B.Lee,B.C.Choi,J.Y.T.Leung,M.L.Pinedo,Approximationalgorithmsfor multi-agentschedulingtominimizetotalweightedcompletiontime, Infor-mationProcessingLetters109(2009)913–917.

[15]P.Liu,L.Tang,X.Zhou,Two-agentgroupschedulingwithdeterioratingjobson asinglemachine,InternationalJournalofAdvancedManufacturingTechnology 47(2010)657–664.

[16]W.C.Lee,W.J.Wang,Y.R.Shiau,C.C.Wu,Asingle-machineschedulingproblem withtwo-agentanddeterioratingjobs,AppliedMathematicalModelling34 (2010)3098–3107.

[17] W.C.Lee,S.K.Chen,C.C.Wu,Branch-and-boundandsimulatedannealing algo-rithmsforatwo-agentschedulingproblem,ExpertSystemswithApplications 37(2010)6594–6601.

[18]P.Liu,X.Zhou,L.Tang,Two-agentsingle-machineschedulingwith position-dependentprocessingtimes,InternationalJournalofAdvancedManufacturing Technology48(2010)325–331.

[19] G.Wan,S.R.Vakati,J.Y.T.Leung,M.Pinedo,Schedulingtwoagentswith control-lableprocessingtimes,EuropeanJournalofOperationalResearch205(2010) 528–539.

[20]B.Mor,G.Mosheiov,Schedulingproblemswithtwocompetingagentsto mini-mizeminmaxandminsumearlinessmeasures,EuropeanJournalofOperational Research206(2010)540–546.

[21]W.C.Lee,S.K.Chen,C.W.Chen,C.C.Wu,Atwo-machineflowshopproblemwith twoagents,ComputersandOperationsResearch38(2011)98–104. [22]P.Liu,N.Yi,X.Zhou,Two-agentsingle-machineschedulingproblemsunder

increasinglineardeterioration,AppliedMathematicalModelling35(2011) 2290–2296.

[23]Q.Q.Nong,T.C.E.Cheng,C.T.Ng,Twoagentschedulingtominimizethetotal cost,EuropeanJournalofOperationalResearch215(2011)39–44.

[24]Y.Q.Yin,S.R.Cheng,C.C.Wu,Schedulingproblemswithtwoagentsanda lin-earnon-increasingdeteriorationtominimizeearlinesspenalties,Information Sciences(2011),http://dx.doi.org/10.1016/j.ins.2011.11.035.

[25] B.Mor,G.Mosheiov,Singlemachinebatchschedulingwithtwocompeting agentstominimizetotalflowtime,EuropeanJournalofOperationalResearch 215(2011)524–531.

[26]C.C.Wu,S.K.Huang,W.C.Lee,Two-agentschedulingwithlearning considera-tion,Computers&IndustrialEngineering61(2011)1324–1335.

[27]T.C.E.Cheng,S.R.Cheng,W.H.Wu,P.H.Hsu,C.C.Wu,Atwo-agent single-machineschedulingproblemwithtruncatedsum-of-processing-times-based learning considerations, Computers & Industrial Engineering 60 (2011) 534–541.

[28]D.C.Li,P.H.Hsu,Solvingatwo-agent single-machineschedulingproblem considering learningeffect, Computers &Operations Research 39(2012) 1644–1651.

[29] J.Du,J.Y.T.Leung,MinimizingtotaltardinessononemachineisNP-hard, Math-ematicsofOperationsResearch15(1990)483–495.

[30]K.Li,Y.Shi,S.L.Yang,B.Y.Cheng,Parallelmachineschedulingproblemto min-imizethemakespanwithresourcedependentprocessingtimes,AppliedSoft Computing11(2011)5551–5557.

[31] B.Yua,Z.Yang,X.Sun,B.Yao,Q.Zeng,E.Jeppesen,Parallelgenetic algo-rithminbusrouteheadwayoptimization,AppliedSoftComputing11(2011) 5081–5091.

[32] R.Yusof,M.Khalid,G.T.Hui,S.M.Yusof,M.F.Othman,Solvingjobshop schedul-ingproblemusingahybridparallelmicrogeneticalgorithm,AppliedSoft Computing11(2011)5782–5792.

[33]T.J.Hsieh, H.F.Hsiao,W.C. Yeh,Forecastingstock marketsusingwavelet transforms and recurrent neural networks: an integrated system based on artificial bee colony algorithm, Applied Soft Computing 11 (2011) 2510–2525.

[34]C.Y.Low,C.J.Hsu,C.T.Su,Amodifiedparticleswarmoptimizationalgorithm forasingle-machineschedulingproblemwithperiodicmaintenance,Expert SystemswithApplications37(2010)6429–6434.

[35]J.Behnamian,S.M.T.F.Ghomi,F.Jolai,O.Amirtaheri,Minimizingmakespan on a three-machine flowshop batch scheduling problem with trans-portation using genetic algorithm, Applied Soft Computing 11 (2012) 768–777.

[36]P.C.Chang,S.H.Chen,Integratingdominancepropertieswithgenetic algo-rithmsforparallelmachineschedulingproblemswithsetuptimes,Applied SoftComputing11(2011)1263–1274.

[37]D.Lei,Simplifiedmulti-objectivegeneticalgorithmsforstochasticjobshop scheduling,AppliedSoftComputing11(2011)4991–4996.

[38]O.Engin,G.Ceran,M.K.Yilmaz,Anefficientgeneticalgorithmforhybridflow shopschedulingwithmultiprocessortaskproblems,AppliedSoftComputing 11(2011)3056–3065.

[39]J.C.Bean,Geneticalgorithmsandrandomkeysforsequencingandoptimization, ORSAJournalofComputing6(1994)154–160.

[40]A.Homaifar,C.Qi,S.Lai,Constrainedoptimizationviageneticalgorithms, Sim-ulation36(1994)242–254.

[41]C.B.Chu,Abranch-and-boundalgorithmtominimizetotalflowtimewith unequalreleasedates,NavalResearchLogistics39(1992)859–875.

數據

Fig. 3. Block diagram for HA.
Fig. 5. The mean numbers of nodes of the branch-and-bound algorithm with n = 12,  = 1,  = 0.5, and R = 0.5.
Fig. 6. The mean numbers of nodes of the branch-and-bound algorithm with n = 12, P = 50%,  = 0.5, and R = 0.5.

參考文獻

相關文件

• An algorithm for such a problem whose running time is a polynomial of the input length and the value (not length) of the largest integer parameter is a..

jobs

At migration or load time, the Roam agent can compare the device requirements from the application components with the target device capabilities and decide the best

Reading Task 6: Genre Structure and Language Features. • Now let’s look at how language features (e.g. sentence patterns) are connected to the structure

You are a property agent working for the Quality Property Company. A potential client has contacted you from Australia because he will soon be moving to Hong Kong with

(a) A special school for children with hearing impairment may appoint 1 additional non-graduate resource teacher in its primary section to provide remedial teaching support to

Numerical results are reported for some convex second-order cone programs (SOCPs) by solving the unconstrained minimization reformulation of the KKT optimality conditions,

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;