• 沒有找到結果。

Using SiOx nano-films to enhance GZO Thin films properties as front electrodes of a-Si solar cells

N/A
N/A
Protected

Academic year: 2021

Share "Using SiOx nano-films to enhance GZO Thin films properties as front electrodes of a-Si solar cells"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied

Surface

Science

j o ur na l ho m e p age :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Using

SiO

x

nano-films

to

enhance

GZO

Thin

films

properties

as

front

electrodes

of

a-Si

solar

cells

Kow-Ming

Chang

a

,

Po-Ching

Ho

b,∗

,

Shu-Hung

Yu

b

,

Jui-Mei

Hsu

c

,

Kuo-Hui

Yang

c

,

Chin-Jyi

Wu

c

,

Chia-Chiang

Chang

c

aElectronicsEngineeringDept.,NationalChiaoTungUniversity;CollegeofElectricalandInformationEngineering,I-ShouUniversity,RepublicofChina bDepartmentofElectronicsEngineering&InstituteofElectronics,NationalChiaoTungUniversity,1001TaHsuehRoad,Hsinchu,Taiwan30010,Republic

ofChina

cIndustrialTechnologyResearchInstitute,MechanicalandSystemsResearchLaboratories,195,Sec.4,ChungHsingRd.,Chutung,Hsinchu,Taiwan31040,

RepublicofChina

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26January2013

Receivedinrevisedform20March2013 Accepted25March2013

Available online 1 April 2013

Keywords:

Atmosphericpressureplasma Light-trappingeffect Transparentconductiveoxide

a

b

s

t

r

a

c

t

Oneoftheessentialapplicationsoftransparentconductiveoxidesisasfrontelectrodesforsuperstrate siliconthin-filmsolarcells.TexturedTCOthinfilmscanimproveabsorptionofsunlightforana-Si:H absorberduringasingleopticalpath.In thisstudy,high-hazeandlow-resistivitybilayerGZO/SiOx thinfilmspreparedusinganatmosphericpressureplasmajet(APPJ)depositiontechniqueanddc mag-netronsputtering.Thesiliconsubdioxidenano-filmplaysanimportantroleincontrollingthehazevalue ofsubsequentdepositedGZOthinfilms.ThebilayerGZO/SiOx(90sccm)samplehasthehighesthaze value(22.30%),thelowestresistivity(8.98×10−4cm),andreachesamaximumcellefficiencyof6.85% (enhancedbyapproximately19%comparedtoasampleofnon-texturedGZO).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Transparentconductiveoxide(TCO)hasattractedsubstantial attentionbecauseofhightransparencyinthevisibleregionand low resistivity. Oneof the mostimportant applications of TCO is asa textured front electrode forsuperstrate pin-type silicon thin-filmsolarcells[1–3].TexturedTCOthin filmscanenhance sunlightabsorptionforthehydrogenatedamorphous silicon (a-Si:H)absorber duringoneopticalpathand furtherimprovethe cellefficiencybecauseofthelight-trappingeffect.Thereare sev-eraltypesofTCOmaterials,includingtin-dopedindiumoxide(ITO), fluorine-dopedtinoxide(FTO),andzincoxidedopedwithgroupIII elements(AZO,GZO).Foramorphoussiliconthin-filmsolarcells, bothAZOandGZOaresuitablefrontelectrodematerialsbecauseof theireasilymodifiedsurfacemorphologies.ComparedwithITOand FTO,theyalsohavehigherhydrogenandsilane(SiH4)plasma

resis-tanceandlowercost.GZOhasahighertransmittancethanAZOin thenear-infraredregion[4]andbettermoistureresistancebecause galliumexhibitslowreactivitytooxygen[5].

The morphologies of the TCO front contact strongly affect theirhazevalue.Severaldepositiontechniqueshavebeenused topreparetexturedZnOfilms[6–8].In thisstudy,roughsilicon

∗ Correspondingauthor.Tel.:+886921841971.

E-mailaddress:raymondsam.ee98g@nctu.edu.tw(P.-C.Ho).

subdioxide(SiOx)bufferlayers weredepositedusing the

atmo-sphericpressureplasmajet(APPJ)tomodifythemorphologiesand toinfluencetheoptoelectronicpropertiesofthesputteredGZOthin films.Afterpost-annealinginvacuum,bilayerGZO/SiOxthinfilms

obtainedbetteroptoelectronicpropertiesandimprovedthe effi-ciencyofana-Sisolarcellcomparedtoanon-texturedGZOsingle layer.

2. Experiment

Rough SiOx thin films were deposited at 75◦C on

100mm×100mm×3.2mm glass substrates (Taiwan Glass IndustryCo.)usingtheAPPJdepositiontechnique.Fig.1ashows a schematic diagram of the APPJ deposition system. The APPJ depositionsystemismainlycomposedofahigh-voltageACpower supply,a plasmajet,aprecursorbottle,ahot plate,and anx–y directionalscansystem.Theplasmapowerandfrequency were 450Wand20kHz,respectively.Thedistancebetweentheplasma jetnozzletothesubstratewas15mm.Thescanningrouteisshown inFig.1b.They-directionscanspeedwasfixedat250mm/s,and thepitchwasfixedat2mm.Hexamethyl-disiloxane[(HMDSO), AlfaAesar]wasusedastheprecursortodeposittheSiOxbuffer

layers.ToobtainvarioussurfaceroughnessesofSiOxthinfilms,the

argoncarriergasflowratewassettovaryat30sccm,60sccm,or 90sccm,andtheflowrateofthecompresseddryair(CDA)maingas wassetat40SLM.ThethicknessoftheSiOxnano-filmswas10nm,

0169-4332/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

Fig.1.Schematicdiagramof(a)theAPPJdepositionsystemand(b)thescanning route.

25nm,and30nmfor30sccm,60sccm,and90sccm,respectively. GZOthinfilmsweredepositedat100◦ConSiOxbufferlayersusing

direct-current(DC)magnetronsputtering.AceramicGZOtarget wasdoped with3.2wt.%Ga2O3.DC magnetronsputtering was

performedataworkingpressureof2mTorrinArworkinggasand ataDCpowerdensityof3W/cm2.ThethicknessoftheGZOthin

filmswas1␮m.Allas-depositedbilayerGZO/SiOxthinfilmswere

annealedinhighvacuum(<1×10−6Torr)at500◦Cfor5minto improveadhesionbetweenGZOandSiOxthinfilmsandremove

chemisorbedoxygenionsonthesurfaceofGZOthinfilms.Finally, thebilayerGZO/SiOxthin filmswereappliedtotheamorphous

siliconthin-filmsolarcellsasafront electrodewiththe follow-ing structure: 3.2-mm-thick glass substrate/SiOx buffer layers

(10–30nm)/GZO(1000nm)/p-typea-Si:H(10nm)/intrinsica-Si:H absorber (300nm)/n-type ␮c-Si:H (15nm)/GZO (100nm)/Ag (200nm).

To investigatethe surface morphologies of SiOx and bilayer

GZO/SiOxfilms,ascanningelectronmicroscope(Hitachi,S-4700I)

wasused.TheX-raydiffraction(XRD;BRUKER,D2PHASER) mea-surementswereusedtocharacterizethecrystalorientationand qualityofthefilms.Thebindingenergyandchemicalshiftofthe samplesweremeasuredusingX-rayphotoelectronspectroscopy (XPS).TheelectricalpropertiesofbilayerGZO/SiOxthinfilmsand

sputteredGZOthinfilmswereinvestigatedusingHalleffect mea-surements (ACCENT, HL5500PC). The optical transmittance and hazemeasurements wereperformed using a UV–vis–NIR spec-trometer(Jasco,V570).Theperformanceofthea-Sisolarcellswas measuredat100mW/cm2usinganAM1.5solarsimulator.

3. Resultsanddiscussion

Fig.2shows SEMsurfacemorphologiesof SiOxbufferlayers

andbilayerGZO/SiOxfilms.Thegrainsizeand roughnessofthe

SiOxbufferlayerswerefoundtoincreasewiththeargoncarrier

gasflowrate.Becauseofalargedifferencebetweenthemaingas andtheargoncarriergasflowrate,avortexwasformedinsidethe plasma-dischargingarea.Thevortexcausedradicalstostayinthe airforalongtime,andthisresultedintheformationofparticleson thesubstrates[9].Astheargoncarriergasflowrateincreased,the

(3)

Fig.3.XRDpatternsofGZOthinfilmsdepositedonvariousmorphologiesofSiOx

bufferlayers.TheargoncarriergasflowrateoftheSiOxnano-filmswassetfrom30

to90sccm.

roughsurfaceoftheSiOxbufferlayerscausedlowsurfacekinetics

ofthesputteredatomsandadecreaseinthenucleidensity[10]. Consequently,thebilayerGZO/SiOxthinfilmshadroughsurface

microstructureandalargegrainsize.The90sccmsamplehasthe largestrootmeansquare(RMS)roughnessof60.76nm.

Fig.3presentstheXRDpatternsofdissimilarbilayerGZO/SiOx

thinfilms.TheargoncarriergasflowrateoftheSiOxbufferlayers

wassetfrom30to90sccm.XRDpatternsofallsamplesexhibited mainlyZnO(002)and(101)diffractionpeaks.Astrongc-axis pref-erentialorientationindicatedthatthegraingrowthoftheGZOthin filmisnormaltotheplaneoftheglasssubstrate.Theintensityof the(002)diffractionpeaksharplyincreasedwiththeargoncarrier gasflowrate,meaningthatthecrystallinityofthebilayerGZO/SiOx

thinfilmsimproved.

Fig.4showsthediffractionangle,thefullwidthathalf max-imum (FWHM), and the calculated grain size along the(002) orientation. The (002) peak position of all samples is shown tohaveshiftedtoa higherBragganglecomparedtothatofthe standardpatternofZnO(JCPDS:36-1451),implyingthatgallium incorporatesintoZnO thinfilms[11].Thisresultwasconsistent withthecarrierconcentrationdeterminedbytheHall measure-ment,asshowninTable1.ThecrystallitesizeoftheGZOthinfilms

Fig.4.ThediffractionangleoftheGZO(002)peak,FWHMoftheGZO(002)peak andcalculatedcrystallitesizealongthe(002)orientationforthebilayerGZOfilms asafunctionoftheargoncarriergasflowrate.

Table1

Halleffectmeasurementsofnon-texturedGZOfilmandbilayerGZO/SiOxfilms.

Sample Resistivity (cm) Mobility (cm2/Vs) Carrierconcentration (cm−3) Non-textured 1.10×10−3 23.1 2.448×1020 GZO/SiOx(30sccm) 1.35×10−3 27.3 1.694×1020 GZO/SiOx(60sccm) 9.72×10−4 28.7 2.238×1020 GZO/SiOx(90sccm) 8.98×10−4 29.1 2.387×1020

increasedwiththesurfaceroughnessoftheSiOxthinfilms.The crystallitesizealongthe(002)orientationwasestimatedusing thefollowingDebye-Scherrerformula[12]:

D=0.94/(ˇcosq)

whereisthewavelengthofCuKline,ˇistheFWHM,andis theBraggdiffractionangle.AlowerFWHMindicateshigher crys-tallinity.Therefore,the90sccmsamplehadthelargestcrystallite sizebecauseofthelowestFWHM.

Thewide-scanXPSspectraofthebilayerGZO/SiOx filmsare

shownin Fig.5a.ThephotoelectronicpeaksofZn, O,C, andGa wereobserved.Thecarbonpeak(C1s)waspositionedat285.43eV

(4)

Fig.6.Narrow-scanXPSspectraofO1softhebilayerGZO/SiOxthinfilmsdeposited

onSiOxbufferlayerswithanargoncarriergasflowrateof(a)30sccm(b)60sccm

(c)90sccm.

[13].Thecarboncontaminationmaycomefromsamplefabrication andsubsequentmeasurement.NometallicZnpeakwascentered at1021.1eV[14,15],whichconfirmsthatZnatomsappearonlyin theoxidizedstate.Fig.5bshowstheGa2pXPSspectraofbilayer GZO/SiOx filmsdeposited ontheSiOx bufferlayers withvaried

Fig.7. ElectricalpropertiesofthebilayerGZO/SiOxfilmsasafunctionoftheargon

carriergasflowrate.

argoncarriergasflow rates.The30sccm,60sccm,and 90sccm sampleshavebindingenergiesofGa2p3/2locatedat1119.66eV, 1119.33eV,and1118.46eV,respectively.Theresultconfirmsthat GaatomswereincorporatedintoZnOfilmsduringdeposition.

Fig.6showsthenarrow-scanXPSspectraofO1softhebilayer GZO/SiOxfilms.BeforerunningtheXPSmeasurements,thebilayer

GZO/SiOxthinfilmswerepre-sputteredwithArplasmatoremove

surfaceoxidesandcontamination.Theoxygenspectrumis asym-metricandcanbefittedbytwoGaussiandistributions,locatedat 530.62±0.11eV(OI)and531.31±0.05eV(OII).Thelowbinding

energycomponent(OI)isrelatedtothelatticeoxygenoftheZnO

(wurtzite)structure,andthehighbindingenergy(OII)component

isattributedtooxygenvacancieswiththeZnOmatrix.Thespectra showedthattheareapercentofOIIincreasedwiththeargoncarrier

gasflowrate,implyingthatGZOthinfilmsdepositedonrougher SiOxbufferlayerscanleadtoanincreaseofoxygenvacancies(Vo)

insidefilms.Nevertheless,Vohavebeenreportedtoactasadeep

donor[16–18],andithasnotinfluenceontheelectricalproperties oftheGZOthinfilms.

ElectricalpropertiesofthebilayerGZO/SiOxfilmsasafunction

oftheargoncarriergasflowrateareshowninFig.7.Bothmobility andcarrierconcentrationincreased,whichmightbeattributedto theimprovementofthecrystallinityofbilayerGZO/SiOxthinfilms.

Thedefectsinsidethinfilms,suchasgrainboundaries,vacancies, andinterstitials,resultinthescatteringofthecarriersandreduce thecarrierconcentration.Atahighelectrondensity(>1020cm−3),

thedominantscatteringeffectofmobilitymeasuredbytheHall equipmentwasregardedasionizedimpurityscattering[19,20].An enhancementinthecrystallinityofthebilayerGZO/SiOxthinfilms

couldreduceionizedimpurityscattering,furtherincreasingboth thecarriermobilityandthecarrierconcentration.Theresistivity ofthebilayerGZO/SiOx filmsdeclined,resultinginthe

achieve-mentofthelowestresistivity(8.98×10−4cm)atthe90sccm argon carriergas flow rate. TheHall measurement dataof the bilayerGZO/SiOxandnon-texturedGZOthinfilmsaresummarized

inTable1.Thecarrierconcentrationsofallbilayersampleswere lowerthanthatofthenon-texturedGZOthinfilm.Thismaybedue tounstableoxygenintheSiOxbufferlayersdiffusingintotheGZO

filmsduring500◦Cpost-annealingandactingasscatteringcenters toreducethecarrierconcentration.

Fig.8showstheopticaltransmittanceandhazeofthebilayer GZO/SiOxfilmsasafunctionoftheargoncarriergasflowrate.All

(5)

Fig.8. (a)Transmittance(b)hazeofthebilayerGZO/SiOxfilms.

Table2

Comparisonofperformancefora-Sisolarcellswithnon-texturedGZOandtextured GZO/SiOxfrontcontacts.

Sample Voc(V) Jsc(mA/cm2) FF(%) (%)

Non-textured 0.710 13.25 58.9 5.55

GZO/SiOx(90sccm) 0.849 13.96 57.7 6.85

inthevisibleregion.Theinsetimagepresentsthemagnifiedcurve oftheabsorptionbandedge.Theblueshiftsoftheabsorptionedge occurredastheargoncarriergasflowrateincreasedfrom30to 90sccm.ThisphenomenonisknownastheBurstein–Mosseffect, whichoccursasthecarrierconcentrationexceedstheconduction bandedgedensityofstates(DOS)[21–23].Therefore,theoptical bandgapofthebilayerGZO/SiOxfilmsincreased(datanotshown

here) dueto anincrease in thecarrierconcentration.Withthe increaseinargoncarriergasflowrate,thebilayerGZO/SiOxfilm

showedanincreaseinhazevalueinthevisibleregion.

Thecurrent-voltageparametersforthea-Sisolarcellswith non-texturedGZOandtexturedGZO/SiOx(90sccm)frontcontactsare

showninTable2.TheconductivityofthebilayerGZO/SiOxthinfilm

wassuperiortothatofnon-texturedGZOthinfilm,andthisresulted inalargerVoc[24]becauseofadecreaseinrecombinationatthe

frontcontact/p-typea-Si:Hlayerinterface.TheJscofthesolarcell

usingthebilayerGZO/SiOxfrontelectrodewashigherthanthatof

solarcellusinganon-texturedGZOfrontelectrode,implyingthat thebilayerGZO/SiOxthinfilmhassuperiorphotoncollection

effi-ciencytonon-texturedGZOthinfilm.Anexplanationforthisisthat thebilayerGZO/SiOxthinfilmhasahigherhazevalue(22.3%)and

abetterlight-trappingeffectcomparedtoanon-texturedGZOthin film.Theefficiencyofthea-SisolarcellusingthebilayerGZO/SiOx

frontcontactwas6.85%andimprovedbyapproximately19% com-paredwiththatofthea-Sisolarcellusinganon-texturedGZOfront contact.

4. Conclusion

Inthisstudy,bilayerGZO/SiOxandnon-texturedGZOthinfilms

weredepositedonglasssubstratesbyusingtheAPPJtechnique andDCmagnetronsputtering.Thereafter,a-Si:HlayersandGZO/Ag backcontactweredepositedtocompletea-Sisolarcells.Roughness oftheSiOxbufferlayersdepositedusingAPPJcanbecontrolledby

modifyingtheargoncarriergasflowrate.BasedontheXRDresults, thecrystallinityofallbilayerGZO/SiOxthinfilmsimprovedasthe

surfaceroughnessoftheSiOxbufferlayersincreased.Becauseof

theenhancementincrystallinity,bothcarriermobilityandcarrier concentrationincreasedandresultedinadecreaseofresistivity. TheXPSdataconfirmedthatGaatomsincorporatedintotheZnO filmsandtheVonumberincreasedwiththeargoncarriergasflow

rate.However,Vohasbeenreportedtoactasadeepdonor,andit

isdifficulttocontributethecarrierconcentrationofGZOfilms.The transmittanceofallthebilayerGZO/SiOxfilmsismorethan80%in

thevisibleregion.RoughmorphologiesofSiOxthinfilmsresulted

inanincrementofhazevalueofthebilayerGZO/SiOxthinfilms.

ThesampleofthebilayerGZO/SiOx(90sccm)hasthehighesthaze

value(22.30%)andthelowestresistivity(8.98×10−4cm),and reachesamaximumcellefficiencyof6.85%(approximately19% improvementcomparedtothenon-texturedGZOsample).

References

[1]L.Prusakova,S.Flickyngerova,M.Fischer,I.Novotny,M.Tijssen,M.Netrvalova, M.Zeman,V.Tvarozek,P.Sutta,Vacuum86(2008)765.

[2]J.Krc,M.Zeman,O.Kluth,F.Smole,M.Topic,Thinsolidfilms426(2003)296.

[3]O.Kluth,B.Rech,L.Houben,S.Wieder,G.Schope,C.Beneking,H.Wagner,A. Loffl,H.W.Schock,Thinsolidfilms351(1999)247.

[4]S.H.Park,J.B.Park,P.K.Song,CurrentAppliedPhysics10(2010)S488.

[5]V.Assuncao,E.Fortunato,A.Marques,H.Aguas,I.Ferreira,M.E.V.Costa,R. Martins,ThinSolidFilms427(2003)401.

[6]K.Sato,Y.,Gotoh,Y.,Hayashi,K.,Adachi,H.,Naishimura,ReportsRes.LabAsahi GlassCo.,Ltd,vol.40,1990,p.233.

[7]S.Fay,S.Dubail,U.Kroll,J.Meier,Y.Ziegler,A.Shah,Proc.16thEUPVSEC, Glasgow,2000,p.p361.

[8]D.W.Kang,S.H.Kuk,K.S.Ji,S.W.Ahn,M.K.Han,JapaneseJournalofApplied Physics49(2010)031101.

[9]S.H.Yang,C.H.Liu,C.H.Su,H.Chen,ThinSolidFilms517(2009)5284.

[10]B.D.Ahn,Y.G.Ko,S.H.Oh,J.H.Song,H.J.Kim,ThinSolidFilms517(2009)6414.

[11]K.M.Chang,S.H.Huang,C.J.Wu,W.L.Lin,W.C.Chen,C.W.Chi,J.W.Lin,C.C. Chang,ThinSolidFilms519(2011)5114.

[12]A.R.Babar,P.R.Deshamukh,R.J.Deokate,D.Haranath,C.H.Bhosale,K.Y.Rajpure, JournalofPhysicsD:AppliedPhysics41(2008)135404.

[13]W.T.Yen,Y.C.Lin,P.C.Yao,J.H.Ke,Y.L.Chen,ThinSolidFilms518(2010)3882.

[14]F.Wu,L.Fang,Y.J.Pan,K.Zhou,Q.L.Huang,C.Y.Kong,PhysicaE43(2010)228.

[15]S.S.Lin,J.L.Huang,P.Sajgalik,SurfaceandCoatingsTechnology190(2005)40.

[16]A.Janotti,ChrisG.VandeWalle,AppliedPhysicsLetters87(2005)122102.

[17]X.J.Wang,L.S.Vlasenko,S.J.Pearton3,W.M.Chen,I.A.Buyanova,Journalof PhysicsD:AppliedPhysics42(2009)175411.

[18]M.D.McCluskey,S.J.Jokela1,JournalofAppliedPhysics106(2009)071101.

[19]T.Yamada,H.Makino,N.Yamamoto,T.Yamamoto,JournalofAppliedPhysics 107(2010)123534.

[20]J.J.Robbins,J.Harvey,J.Leaf,C.Fry,C.A.Wolden,ThinSolidFilms473(2005) 35.

[21]X.Y.Gao,Q.G.Lin,H.L.Feng,Y.F.Liu,J.X.Lu,ThinSolidFilms517(2009)4684.

[22]E.Burstein,PhysicsReview93(1954)632.

[23]S.M.Park,T.Ikegami,K.Ebihara,ThinSolidFilms513(2006)90.

[24]Y.C.Lin,T.Y.Chen,L.C.Wang,S.Y.Lien,JournalofTheElectrochemicalSociety 159(2012)H599.

數據

Fig. 1. Schematic diagram of (a) the APPJ deposition system and (b) the scanning route.
Fig. 3. XRD patterns of GZO thin films deposited on various morphologies of SiO x
Fig. 7. Electrical properties of the bilayer GZO/SiO x films as a function of the argon carrier gas flow rate.
Fig. 8. (a) Transmittance (b) haze of the bilayer GZO/SiO x films.

參考文獻

相關文件

利用 determinant 我 們可以判斷一個 square matrix 是否為 invertible, 也可幫助我們找到一個 invertible matrix 的 inverse, 甚至將聯立方成組的解寫下.

Writing texts to convey simple information, ideas, personal experiences and opinions on familiar topics with some elaboration. Writing texts to convey information, ideas,

Then, we tested the influence of θ for the rate of convergence of Algorithm 4.1, by using this algorithm with α = 15 and four different θ to solve a test ex- ample generated as

Numerical results are reported for some convex second-order cone programs (SOCPs) by solving the unconstrained minimization reformulation of the KKT optimality conditions,

Particularly, combining the numerical results of the two papers, we may obtain such a conclusion that the merit function method based on ϕ p has a better a global convergence and

Then, it is easy to see that there are 9 problems for which the iterative numbers of the algorithm using ψ α,θ,p in the case of θ = 1 and p = 3 are less than the one of the

By exploiting the Cartesian P -properties for a nonlinear transformation, we show that the class of regularized merit functions provides a global error bound for the solution of

In BHJ solar cells using P3HT:PCBM, adjustment of surface energy and work function of ITO may lead to a tuneable morphology for the active layer and hole injection barrier