• 沒有找到結果。

Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering

N/A
N/A
Protected

Academic year: 2021

Share "Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering"

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied

Surface

Science

jo u rn a l h om epa g e :w w w . e l s e v i e r . c o m / l o ca t e / a p s u s c

Effects

of

post-annealing

on

the

structural

and

nanomechanical

properties

of

Ga-doped

ZnO

thin

films

deposited

on

glass

substrate

by

rf-magnetron

sputtering

Szu-Ko

Wang

a

,

Ting-Chun

Lin

a

,

Sheng-Rui

Jian

a,∗

,

Jenh-Yih

Juang

b

,

Jason

S.-C.

Jang

c

,

Jiun-Yi

Tseng

d

aDepartmentofMaterialsScienceandEngineering,I-ShouUniversity,Kaohsiung840,Taiwan bDepartmentofElectrophysics,NationalChiaoTungUniversity,Hsinchu300,Taiwan

cDepartmentofMechanicalEngineering,InstituteofMaterialsScience&Engineering,NationalCentralUniversity,Chung-Li320,Taiwan dInstituteofPhysics,AcademiaSinica,Taipei11529,Taiwan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received12June2011

Receivedinrevisedform17August2011 Accepted20September2011

Available online 24 September 2011 Keywords: ZnO:Gathinfilms XRD AFM Nanoindentation Hardness

a

b

s

t

r

a

c

t

Inthisstudy,theeffectsofpost-annealingonthestructure,surfacemorphologyandnanomechanical propertiesofZnOthinfilmsdopedwithanominalconcentrationof3at.%Ga(ZnO:Ga)areinvestigated usingX-raydiffraction(XRD),atomicforcemicroscopy(AFM)andscanningelectronmicroscopy(SEM) andnanoindentationtechniques.TheZnO:Gathinfilmsweredepositedontheglasssubstratesatroom temperaturebyradiofrequencymagnetronsputtering.Resultsrevealedthattheas-depositedZnO:Ga thinfilmswerepolycrystallinealbeitthelowdepositiontemperature.Post-annealingcarriedoutat300, 400and500◦C,respectively,hasresultedinprogressiveincreaseinboththeaveragegrainsizeandthe surfaceroughnessoftheZnO:Gathinfilm,inadditiontotheimprovedthinfilmscrystallinity.Moreover, thehardnessandYoung’smodulusofZnO:GathinfilmsaremeasuredbyaBerkovichnanoindenter operatedwiththecontinuouscontactstiffnessmeasurements(CSM)option.ThehardnessandYoung’s modulusofZnO:Gathinfilmsincreasedastheannealingtemperatureincreasedfrom300to500◦C,with thebestresultsbeingobtainedat500◦C.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Transparent conductiveoxides (TCOs) have become increas-ingly prominent in the fabrication of various devices such as heterojunction solar cells [1,2], gas sensors [3] and flat panel devices[4].Theefficiencyandperformanceofthesedevicesare largelydependentontheopticalandelectricalpropertiesofthe relevantTCOmaterials.Indiumtinoxide(ITO)isthemostwidely usedTCOduetoitshightransparencyinthevisiblerange(∼90% at550nm),lowresistivity(∼2×10−4cm)andlargework func-tion(∼4.8eV)[5].However,recentlyITOhasbecomeprohibitively expensive,inadditiontoitslackofthermalstability.Asaresult, alternativessuchastheimpurity-dopedZnOhavebeenactively investigated.GroupIIIelementsAl[6],Ga[7]andIn[8]havebeen demonstratedtoexhibitthecharacteristicsofn-typedopantsfor ZnO.Amongthem,Gaisconsideredasoneofthemost promis-ingdopants becausetheGa–O covalentbond length(1.92 ˚A) is veryclosetothatoftheZn–O(1.97 ˚A),which,inturn,isexpected to result in the possibility of obtaining wide range of doping concentrationwithminimumextentoflatticedeformation,even for highGa dopingconcentration[9]. Furthermore,it hasbeen

∗ Correspondingauthor.Tel.:+88676577711x3130;fax:+88676578444. E-mailaddress:srjian@gmail.com(S.-R.Jian).

shown that Ga is relatively oxidation resistive [10]. Previously, Ga-dopedZnOfilmshavebeenobtainedusingavarietyof depo-sition methods,namelysol–gel[11], chemical vapordeposition [12], molecularbeamepitaxy[13], pulsedlaser deposition[14] andradio-frequencymagnetronsputtering(rf-sputtering)[15,16]. Amongthem,therf-sputteringhasbeenwidelyusedforfabricating oxidethinfilmsbecauseofitsadvantagesofhighdepositionrates, lowcost,easycontrolandhighefficiencyforgrowingfilmswith goodquality.

In additiontomonitoringtheelectric and opticalproperties throughcarefulcontroloftheprocessingparameters, successful fabricationofdevicesbasedonGa-dopedZnOthinfilmsrequires betterunderstandingofthemechanicalcharacteristicsofthefilms, sincethecontactloadingduringprocessingorpackagingcan signif-icantlydegradetheperformanceofthesedevices.Therefore,there isagrowingdemandofinvestigatingthemechanical characteris-ticsofmaterials,inparticularinthenanoscaleregime.Nowadays, nanoindentationisprobablythemostprominenttechniqueused innanomechanicstoinvestigateandcharacterizethemechanical propertiesof thematerialsin thesub-micronscale.It hasbeen widelyusedtostudytheelastic–plasticandfracturepropertieson thesurfacesofbulksamples[17–19],thinfilms[20–23],aswell asforsmallstructures[24,25].Morerecently,itbecamepossible toperformcontrolledcompressionandsheartestsonsub-micron nanostructures,suchasnanopillars[26,27].

0169-4332/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.apsusc.2011.09.088

(2)

1262 S.-K.Wangetal./AppliedSurfaceScience258 (2011) 1261–1266

Thisstudyisthereforefocusedonnanomechanical characteriza-tionsofGa-dopedZnOthinfilmsdepositedatroom-temperatureon theglasssubstratesusingrf-sputteringsystematvariousannealing temperaturesbymeansofnanoindentationtechnique.The struc-tureandsurfacemorphologyofthinfilmswerecharacterizedusing X-raydiffraction(XRD),atomicforcemicroscopy(AFM)and scan-ningelectronmicroscopy(SEM).Changesinmechanicalproperties fortheZnO:Gathinfilmsarediscussedinconjunctionwiththe vari-ationsincrystallinestructure,grainsizeandsurfacemorphology resultedfromannealing.

2. Experimentaldetails

TheZnO:Gathinfilmsinvestigatedinthepresentstudywere depositedonCorning1737Fglasssubstratesatroomtemperature usingrf-sputteringfromaZnOtargetwithanominalGa-dopingof 3at.%.Inthiswork,thethinfilmsare∼500nmthick.Thedetailed growthprocedurescanbefoundelsewhere[28].Theas-deposited filmsweresubsequentlypost-annealedatthetemperatures rang-ingfrom300◦Cto500◦Cfor1hinatmosphere.Theheatingrate wassetat20◦C/sandittookabout30minforthefurnacetocool downtoroomtemperatureafterannealing.

Thecrystalstructure of ZnO:Gathin filmswere analyzedby X-raydiffraction(PanalyticalX’PertXRD,CuK␣,=1.5406 ˚A).A scanningprobemicroscopy(SEM,HitachiS-2700)isusedtoanalyze thethinfilmscross-sectionalstructureand,thesurfacefeatures arecarriedoutusingatomicforcemicroscopy(AFM) (Topometrix-Accures-II).Thesurfaceroughnesscanberepresentedbycenter lineaverage(Ra)androot-mean-squareaverage(RRMS)[29]inthe

followingforms: Ra= 1 n n



i=1 |zi| (1) RRMS=









1 n n



i=1 z2 i (2)

Thecenterlineisthelinethatdividestheprofileinsuchaway suchthatthenetdeviationiszero.BothRaandRRMSmeasurethe

averageverticaldeviationofsurfaceprofilefromthecenterline.It shouldbenotedthattheseparameterscanonlybeusedtocompare samplesurfacesgeneratedbythesamemethod[30].

Nanoindentationwasconductedatroomtemperatureusingthe MTSNanoXP®system(MTSCorporation,NanoInstruments

Inno-vationCenter,OakRidge,TN,USA)withforceanddisplacement resolutionsof50nNand0.1nm,respectively.ABerkovichdiamond indenterwaspressedintothefilmsupto80nmwithastrainrate varyingfrom0.01s−1to1s−1andadditionalharmonicmovements weresimultaneouslyperformedwiththeamplitudeandfrequency beingsetat 2nmand 45Hz, respectively,following the contin-uousstiffnessmeasurements(CSM)technique[31].Theindenter wasthenheldatthepeakloadfor10sbeforeitwascompletely withdrawnfromthespecimentoavoidtheinfluenceofcreepon unloadingcharacteristics,whichwereusedtocompute mechan-icalpropertiesofthespecimen.Eachofthetestswasperformed whenthethermaldriftdroppedtolessthan0.01nm/s.Atleast20 indents,eachtwoseparatedby10␮mtoavoidmutualinteraction, wereconductedoneachsample.Itisgenerallyacceptedthatthe indentationdepthshouldneverexceed30%ofthefilmsthicknessto avoidthesubstrateeffectonhardnessandmodulusmeasurements [24].Oursamplesandtestsmethodologywereconsideredto ade-quatebasedonthisconcept.Wealsofollowedtheanalyticmethod proposedbyOliverandPharr[32]todeterminethehardnessand Young’smodulusof as-depositedandtheannealedZnO:Gathin filmsfromtheload–displacementresults.Inthiswork,hardness

Fig.1.XRDpatternsof(a)as-depositedZnO:Gathinfilm,andannealedZnO:Gathin filmsatthedifferentannealingtemperaturesof(b)300◦C,(c)400Cand(d)500C.

andYoung’smodulusareobtainedasacontinuousfunctionof pen-etrationdepth.

3. Resultsanddiscussion

ThecrystalstructuresandthelevelofcrystallinityforallZnO:Ga thin films were identified by XRD, as displayed in Fig. 1. The obtainedXRDpatternscorrespondtotheindexedsixdiffraction peaksofwurtzitestructuredcrystallineZnO(JCPDS36-1451).Itis evidentthatincreasingtheannealingtemperaturenotonlyleadsto significantincreaseintheintensityofmajordiffractionpeaks,such as(002),(101),and(103)peaks,butalsoinducestheevolvement ofnewdiffractionpeaks,suchas(110)and(112),thatare other-wiseabsentintheas-depositedZnO:Gathinfilms.Thisisindicative thatannealingdoeshavenoticeableinfluencesonthe microstruc-tureofthefilms,whichtendstodrivethefilmstobecomemore equiaxial.AssumingahomogenousstrainacrosstheZnO:Gathin films,theaveragegrainsizecanbeestimatedfromthefull-width athalf-maximum(FWHM)of(002)peakusingthefollowing Sher-rer’srelation[33]:

D= 0.9

Bcos  (3)

Here,BanddenotetheX-raywavelength,theFWHMof(002) peak,andthecorrespondingBraggdiffractionangle,respectively. Theestimatedmeangrainsizesoftheas-depositedthinfilmsis 23.5nmandthatforfilmsannealedat300◦C,400◦Cand500◦C are42.2,60.4and70.8nm,respectively.Itisinterestingto com-parethecurrentresultswiththatobservedforZnOfilmsdeposited using atomic layer deposition (ALD). In that, the as-deposited

(3)

Fig.2.AFMimagesofZnO:Gathinfilms:(a)as-deposited,andannealedatthedifferentannealingtemperaturesof(b)300◦C,(c)400Cand(d)500C.Theinsetofeach

figureshowsthecorrespondingcross-sectionalSEMimage.

ZnO thin filmsdeposited at room-temperatureappeared tobe largelyamorphous andsubsequentannealing inthesame tem-peraturerangeresultedinsmallergrainsize,namelyfrom30nm to50nm[34].

Fig.2 displaysthesurfacemorphology ofthecorresponding ZnO:Gathin filmsrevealedbyAFM.Althoughitisimpossibleto giveadirectmeasureabouttheactualgrainsizefromtheAFM images, the resultsdo exhibit apparent evolution in film grain morphologieswithincreasingannealingtemperatures.The mor-phologystartswithanappearanceofpatchedgrainclustersfor theas-depositedfilm[Fig.2(a)].Aftersubjectedto1hannealing at300◦C,itappearstoevolveintoindividuallydistinctivegrains [Fig.2(b)].Grainagglomerationsareevidentforfilmsannealedat 400◦C [Fig.2(c)].For filmsannealed at500◦C, grains evidently start toalign along somespecific orientations[Fig.2(d)]. Since thefilmsweregrownonglasssubstratesandnoepitaxialrelation

wasexpected,thesephenomenamightbeunderstoodasadirect consequenceofsurfacediffusionenabledthree-dimensionalgrain growth[34].Inthisscenario,higherannealingtemperatureslend morethermalenergytoactivateatomdiffusionand,hence, facil-itate therepairing the dislocated atomic occupanciesand even promotethecoalescenceofadjacentgrains[34,35].Asshownin thecross-sectionalSEMimagesinsertedinFig.2,thefilmsareall withcolumnarstructures.Thus,themajorgraingrowthisexpected toresultinmarkedincreaseinboththeeffectivegrainsizeand thesurfaceroughnessof theresultantfilms[34–36].Indeed,as showninFig.3,theeffectivegrainsizeestimatedfromthe Sher-rer’srelationandthesurfaceroughnessobtainedfromtheAFM measurementsforallZnO:Gathinfilmsdogiverisetoconsistent resultsasexpected.

The typical load–displacement curves for the as-deposited and the annealed ZnO:Ga thin films are displayed in Fig. 4.

(4)

1264 S.-K.Wangetal./AppliedSurfaceScience258 (2011) 1261–1266

Fig.3. Grainsize(D),averagesurfaceroughness(Ra)androot-mean-squareaverage

surfaceroughness(RRMS)ofas-depositedandannealedZnO:Gathinfilms.

The load–displacement response obtained by nanoindentation containsinformationabouttheelasticandplasticdeformationof theindentedmaterials.Thus,itisoftenregardedasa“fingerprint” of the film properties under identification. Mechanical proper-ties,suchasthehardnessand Young’smodulus,canbereadily extractedfromtheload–displacementcurveslikethosedisplayed inFig.4.Forinstance,thehardness,H,beingdefinedasthemean pressureundertheindenter,canbecalculatedasthemaximum appliedloadduringindentationmeasurement,Pmax,dividedbythe

projectionarea,Ac,ofcontactbetweentheindenterandthesample

asexpressedbelow, H=Pmax

Ac (4)

Theprojectioncontactareaisafunctionoftheindenter’sshapeand thecontactdepth,hc.Forthecaseofanidealpyramidalindenter,

theareafunction(Ac)isgivenby[32]:

Ac≈24.5h2c (5)

Thecontactdepthpriortounloadingthuscanbedirectlyestimated fromtheload–displacementdatabythefollowingexpression[32]: hc=hmax−εPmax

S (6)

whereεisthegeometricconstantand,thevalueε=0.72isgenerally usedforaconicalorpyramidalindenter[32],Sisthe experimen-tallymeasuredstiffnessoftheupperportionoftheunloadingdata, whichisgivenby:

S=dP

dh (7)

Similarly,Young’smodulusisdeterminedbyassumingthatthearea incontactremainsconstantduringinitialunloading.The relation-shipbetweenloadanddisplacementoninitialunloadingisrelated tothestiffnessofthesampleandtheindenterand,totheconstant contactareabetweenthesampleandtheindenter,andisgivenby [37]: Er= 1 2ˇhc



 24.5



dP dh



(8)

(5)

1 Er = 1

v

2 E + 1−

v

2 i Ei (9) whereˇisaconstantdependingonthegeometryoftheindenter, Eristhereducedmodulus,Eand

v

aretheYoung’smodulusand

Poisson’sratioforthesampleand,Eiand

vi

arethesameparameters

fortheindenter.Poisson’sratioforthesampleisassumedtobe0.25 [38]and,theelasticpropertiesofthediamondindenterusedinthis studyareEi=1141GPaand

vi

=0.07[32].

ThehardnessandYoung’smodulusfor theas-deposited and the annealed ZnO:Ga thin films as a function of penetration depthobtainedusingtheanalysesdescribedaboveareillustrated in Fig. 5(a) and (b), respectively. As shown in Fig. 5(a), all of thehardness–displacementplotscanbedividedintotwostages, namely, initial increase to a maximum value and subsequent decreasetoa constantvalue. Theincreasein hardnessatsmall penetrationdepthisusuallyattributedtothetransitionbetween purelyelastictoelastic/plasticcontactandatthisstagethe hard-nessisnotaccuratelymeasuredbythemeancontactpressure.Only undertheconditionofafullydevelopedplasticzonedoesthemean contactpressurerepresentthehardness.Whenthereisnoplastic zone,oronlypartiallyformedplasticzone,themeancontact pres-sureislessthanthenominalhardness[32].Afterthefirststage, thehardnessdecreasesandreachesaconstantvalue.Theconstant characteristicofhardnessisconsistentwiththatofasingle mate-rial;therefore,thehardnessvaluesatthisstagecouldberegarded asintrinsicpropertiesofthefilms.Theobtainedhardnessforthe as-depositedZnO:Gathinfilmsandthoseannealedat300,400and 500◦Care8.5,7.4,9.6,11.8GPa,respectively.Thehardness val-uesobtainedfromtheabovementionedCSMmeasurementsforall samplesunderstudyaresummarizedinFig.5.Theinitialdropof thehardnessfrom8.5GPato7.4GPafortheas-depositedZnO:Ga thinfilmandthatannealedat300◦Cisbelievedtoresultfromthe relaxationofresidualstressinthefilmbytheannealingprocess [39].

Ontheotherhand,asdisplayedinFigs.3and5,thereisaclear tendencyshowingthat,whileincreasingtheannealing tempera-turehasevidentlyincreasedthegrainsizeofZnO:Gathinfilms, theannealingtreatmenthasledtotheincreaseoffilmhardness, aswell.Theresultsappearedtofollowthenotionoftheinverse Hall–Petcheffect[40].It hasbeenpointedoutthat dislocations areplayingtheprimaryroleintheHall–Petcheffect,whileforthe inverseHall–Petcheffectgrainboundaryslidingisprominentfor thefilmhardness[41,42].Consequently,thebehaviorsobserved heremaybeindicativethatgrainboundarystructureismore rel-evanttotheprimarymechanicalresponsesduringindentationin theZnO:Gathinfilms.Thismightalsoexplaintheabsenceof appar-entpop-ineventintheload–displacementcurvesshowninFig.4, whereinthegrainboundariesacttheprimarystrain compensa-tionsitesandhencesuppressthenucleationandpropagationof threadingdislocationsneededforexhibitingpop-ins[43].

Fig.5(b)displaysaplotofYoung’smodulusofas-depositedand theannealedZnO:Gathinfilmsdeterminedusingthemethodof OliverandPharr[32].Thetendencyofvariationissimilartothe hardnessresultsillustratedinFig.5(a).ThevaluesofYoung’s mod-ulusforas-depositedfilmis113.4GPa,andthatforfilmsannealed at300,400,and500◦Care101.3,120.6,138.4GPa,respectively(see Fig.5(c)).Furthermore,thenanomechanicalpropertiesofZnOthin filmsbynanoindentationaresummarizedinTable1.

Asdiscussedabove,thenanoindentation-induceddeformation inthepresentfilmsbehavesverydifferentlyfromthoseexpected forbulkZnO [48].Namely,theinitiationofplasticdeformation, insteadofresultingfromthesuddenformationandrapidsliding ofalargenumberofdislocations,mayhavebeenmorerelevant tograinboundaryslidingand/orgrainrotations[41,42].Therefore, thegenerallylargergrains(∼40to70nm)obtainedinthecurrent

Fig.5. Nanoindentationresults:(a)thehardnessand(b)Young’smodulusvs. pen-etrationdepthcurvesofas-depositedandannealedZnO:Gathinfilms;(c)the hardnessandYoung’smodulusofas-depositedandannealedZnO:Gathinfilms.

studyascomparedtothatoftheatomic-layer-depositionZnOthin films,where grainsizeintherangeof30–50nmwereobtained [34],mayexplainthemechanicalresponsesobservedhere.Itis notedthatdopingmightalsomodifythegrainmorphologyand, hence,themechanicalbehaviorsofZnOthinfilms.For instance, Zhaoetal.[45]reportedthatborondopingcandecreasethe thick-nessofgrainboundariesinpulsedlaserdepositedZnOthinfilms, whicheventuallybroughtonimprovementoffilmshardness.

(6)

1266 S.-K.Wangetal./AppliedSurfaceScience258 (2011) 1261–1266

Table1

ThemechanicalpropertiesofZnOthinfilmsbynanoindentation.

ZnOfilms/a-SA ZnOfilms/c-SA ZnOfilms/6H-SiC ZnOfilms Al-dopedZnOfilms Ga-dopedZnOfilms

H

11.5±0.8GPa[38] 7.4±0.1GPa[38] 5.9±0.2GPa[38] 7.2–9.8GPa[34] 4.8±1.3–7.1±1.8GPa[47] 7.4–11.8GPaa

6.6±1.2GPa[44] 5.7±0.8GPa[44] 9.3–12.1GPa[45]

8.7±0.2GPa[46]

E

212.2±0.1GPa[38] 150.1±5.7GPa[38] 117.1±0.4GPa[38] 139.5–168.6GPa[34] 87.9±5.5–92.2±12.6GPa[47] 101.3–138.4GPaa

318.2±50GPa[44] 310.1±40GPa[44] 103.5–114.4GPa[45]

154±5GPa[46]

SA:sapphire.

aThepresentstudy.

4. Conclusion

Inconclusion,acombinationofXRD,AFM,cross-sectionalSEM andnanoindentationtechniqueshasbeencarriedouttoinvestigate themicrostructuralandnanomechanicalcharacteristicsofZnO:Ga thinfilmsannealedatthevarioustemperatures.

TheXRDanalysisshowedthatZnO:Gathinfilmswereequi-axial polycrystallineinnature,albeitthatpredominant(002) orienta-tionandaroughersurfacemorphologywasgraduallydeveloped withincreasingannealingtemperature.Nanoindentationresults indicatedthat,whilethegrainsizewasincreasedwithincreasing annealingtemperature,theZnO:Gathinfilmshavehardness rang-ingfrom7.4to11.8GPaandYoung’smodulusrangingfrom101.3 to138.4GPawithincreasingannealingtemperature.The appar-entinverseHall–Petcheffectisattributedtothegrainboundary dominatedmechanicalresponsesascomparedtothetraditional dislocationthreadingmechanism.

Acknowledgements

ThisworkwaspartiallysupportedbytheNationalScience Coun-cilofTaiwan,underGrantNo.:NSC100-2221-E-214-024.J.Y.J.is partiallysupportedbytheMOE-ATUprogramoperatedatNCTU. AuthorlikestothankDr.Y.-S.Lai,Dr.P.-F.Yang,Dr.G.-J.Chenand Dr.Y.-T.Chenfortheirtechnicalsupports.

References

[1]C.Lee,K.Lim,J.Song,Sol.EnergyMater.Sol.Cells43(1996)37. [2]C.G.Granqvist,Sol.EnergyMater.Sol.Cells91(2007)1529.

[3]T.Kwon,S.Park,J.Ryu,H.Choi,Sens.ActuatorsB:Chem.46(1998)75. [4]D.S.Ginley,C.Bright,MRSBull.25(2000)15.

[5]H.L.Hartnagel,A.L.Dawar,A.K.Jain,C.Jagadish,SemiconductorTransparent ThinFilms,InstituteofPhysicsPublishing,BristolandPhiladelphia,1995. [6]J.J.Ding,H.X.Chen,S.Y.Ma,Appl.Surf.Sci.256(2010)4304.

[7]X.Bie,J.G.Lu,L.Gong,L.Lin,B.H.Zhao,Z.Z.Ye,Appl.Surf.Sci.256(2009)289. [8]Y.R.Park,J.Kim,Y.S.Kim,Appl.Surf.Sci.256(2009)1589.

[9]S.J.Henley,M.N.R.Ashfold,D.Cherns,Surf.Coat.Technol.177(2004)271. [10]V.Assuncão,E.Fortunato,A.Marques,H.Águas,I.Ferreira,M.E.V.Costa,R.

Martins,ThinSolidFilms427(2003)401.

[11]C.Y.Tsay,C.W.Wu,C.M.Lei,F.S.Chen,C.K.Lin,ThinSolidFilms519(2010) 1516.

[12]A.R.Kaul,O.Y.Gorbenko,A.N.Botev,L.I.Burova,SuperlatticesMicrostruct.38 (2005)272.

[13]H.J.Ko,Y.F.Chen,S.K.Hong,H.Wenisch,T.Yao,D.C.Look,Appl.Phys.Lett.77 (2000)3761.

[14] V.Bhosle,A.Tiwari,J.Narayan,J.Appl.Phys.100(2006)033713. [15]K.Yim,C.Lee,J.Mater.Sci.18(2007)385.

[16]W.T.Yen,Y.C.Lin,P.C.Yao,J.H.Ke,Y.L.Chen,ThinSolidFilms518(2010) 3882.

[17] P.F.Yang,Y.S.Lai,S.R.Jian,J.Chen,R.S.Chen,Mater.Sci.Eng.A485(2008)305. [18]S.R.Jian,J.B.Li,K.W.Chen,J.S.C.Jang,J.Y.Juang,P.J.Wei,J.F.Lin,Intermetallics

18(2010)1930.

[19]K.W.Chen,S.R.Jian,P.J.Wei,J.S.C.Jang,J.F.Lin,Intermetallics18(2010)1572. [20] J.Chen,S.J.Bull,J.Phys.D:Appl.Phys.40(2007)5401.

[21]S.R.Jian,J.S.C.Jang,Y.S.Lai,P.F.Yang,C.S.Yang,H.C.Wen,C.H.Tsai,Mater. Chem.Phys.109(2008)360.

[22]S.R.Jian,G.J.Chen,T.C.Lin,NanoscaleRes.Lett.5(2010)935.

[23] S.R.Jian,J.Y.Juang,N.C.Chen,J.S.C.Jang,J.C.Huang,Y.S.Lai,Nanosci. Nanotech-nol.Lett.2(2010)315.

[24]X.D.Li,H.S.Gao,C.J.Murphy,K.K.Caswell,NanoLett.3(2003)1495. [25]M.K.Kang,B.Li,P.S.Ho,R.Huang,J.Nanomater.2008(2008)132728. [26] Y.H.Lai,C.J.Lee,Y.T.Cheng,H.S.Chou,H.M.Chen,X.H.Du,C.I.Chang,J.C.Huang,

S.R.Jian,J.S.C.Jang,T.G.Nieh,ScriptaMater.58(2008)890.

[27]T.H.Sung,J.C.Huang,J.H.Hsu,S.R.Jian,Appl.Phys.Lett.97(2010)171904. [28]J.Y.Tseng,Y.T.Chen,M.Y.Yang,C.Y.Wang,P.C.Li,W.C.Yu,Y.F.Hsu,S.F.Wang,

ThinSolidFilms517(2009)6310.

[29] K.Miyoshi,Y.W.Chung,SurfaceDiagnosticsinTribology:Fundamental Princi-plesandApplications,WorldScientificPublishing,Singapore,1993. [30]D.Cáceres,I.Vergara,R.González,E.Monroy,F.Calle,E.Mu ˜noz,F.Omnès,J.

Appl.Phys.86(1999)6773.

[31] X.D.Li,B.Bhushan,Mater.Charact.48(2002)11. [32]W.C.Oliver,G.M.Pharr,J.Mater.Res.7(1992)1564.

[33]B.D.Cullity,S.R.Stock,ElementofX-Raydiffraction,PrenticeHall,NewJersey, 2001,p.170.

[34] C.Y.Yen,S.R.Jian,G.J.Chen,C.M.Lin,H.Y.Lee,W.C.Ke,Y.Y.Liao,P.F.Yang,Y.S. Lai,J.S.C.Jang,J.Y.Juang,Appl.Surf.Sci.257(2011)7900.

[35]Z.B.Fang,Z.J.Yan,Y.S.Tan,X.Q.Liu,Y.Y.Wang,Appl.Surf.Sci.241(2005)303. [36] X.Q.Wei,J.Z.Huang,M.Y.Zhang,Y.Du,B.Y.Man,Mater.Sci.Eng.B166(2010)

141.

[37]I.N.Sneddon,Int.J.Eng.Sci.3(1965)47.

[38]S.R.Jian,I.J.Teng,P.F.Yang,Y.S.Lai,J.M.Lu,J.G.Chang,S.P.Ju,NanoscaleRes. Lett.3(2008)186.

[39]H.Wang,S.Zhang,Y.Li,D.Sun,ThinSolidFilms516(2008)5419.

[40]J.Schiotz,T.Vegge,F.D.DiTolla,K.W.Jacobsen,Phys.Rev.B60(1999)11971. [41]H.VanSwygenhoven,Science296(2002)66.

[42] J.Chen,W.Wang,L.H.Qian,K.Lu,ScriptaMater.49(2003)645. [43]L.Y.Lin,D.E.Kim,ThinSolidFilms517(2009)1690.

[44]V.A.Coleman,J.E.Bradby,C.Jagadish,P.Munroe,Y.W.Heo,S.J.Pearton,D.P. Norton,M.Inoue,M.Yano,Appl.Phys.Lett.86(2005)203105.

[45]S.Zhao,Y.Zhou,Y.Liu,K.Zhao,S.Wang,W.Xiang,Z.Liu,P.Han,Z.Zhang,Z. Chen,H.Lu,K.Jin,B.Cheng,G.Yang,Appl.Surf.Sci.253(2006)726. [46]R.Navamethavan,K.K.Kim,D.K.Hwang,S.J.Park,J.H.Hahn,T.G.Lee,G.S.Kim,

Appl.Surf.Sci.253(2006)464.

[47]L.Y.Lin,M.C.Jeong,D.E.Kim,J.M.Myoung,Surf.Coat.Technol.201(2006)2547. [48]S.R.Jian,J.AlloysCompd.494(2010)214.

數據

Fig. 1. XRD patterns of (a) as-deposited ZnO:Ga thin film, and annealed ZnO:Ga thin films at the different annealing temperatures of (b) 300 ◦ C, (c) 400 ◦ C and (d) 500 ◦ C.
Fig. 2. AFM images of ZnO:Ga thin films: (a) as-deposited, and annealed at the different annealing temperatures of (b) 300 ◦ C, (c) 400 ◦ C and (d) 500 ◦ C
Fig. 4. The load–displacement curves of as-deposited and annealed ZnO:Ga thin films.
Fig. 5 (b) displays a plot of Young’s modulus of as-deposited and the annealed ZnO:Ga thin films determined using the method of Oliver and Pharr [32]

參考文獻

相關文件

In the third quarter of 2013, visitor arrivals increased by 6.6%; per-capita spending of visitors grew by 4.6%; exports of gaming services rose by 13.3% in real terms; guests of

The economy of Macao expanded by 21.1% in real terms in the third quarter of 2011, attributable to the increase in exports of services, private consumption expenditure and

Monopolies in synchronous distributed systems (Peleg 1998; Peleg

Corollary 13.3. For, if C is simple and lies in D, the function f is analytic at each point interior to and on C; so we apply the Cauchy-Goursat theorem directly. On the other hand,

Microphone and 600 ohm line conduits shall be mechanically and electrically connected to receptacle boxes and electrically grounded to the audio system ground point.. Lines in

This thesis focuses on the use of low-temperature microwave annealing of this novel technology to activate titanium nitride (TiN) metal gate and to suppress the V FB

The effects of radius of the pulse laser and ratio of delay times on the temperature distributions were discussed in detail.A nondiemensional parameter B was defined as the ratio

Numerical simulations were conducted and the results indicated that sediment deposited at berths of the Container Terminal #4 is transported into the harbor basin from coastal