• 沒有找到結果。

(iii) ∆xi = xi−xi−1, ∆yj = yj−yj−1and kP k = max{ q ∆x2i + ∆yj2 | 1 ≤ i ≤ n , 1 ≤ j ≤ m} is defined to be the norm of the partition P

N/A
N/A
Protected

Academic year: 2022

Share "(iii) ∆xi = xi−xi−1, ∆yj = yj−yj−1and kP k = max{ q ∆x2i + ∆yj2 | 1 ≤ i ≤ n , 1 ≤ j ≤ m} is defined to be the norm of the partition P"

Copied!
9
0
0

加載中.... (立即查看全文)

全文

(1)

Definitions

(a) Let D be a bounded, closed and connected region in the xy−plane, let ρ : D → R be a continuous function on D and, for each p = (x, y) ∈ D, let ρ(p) be the density (in units of mass per unit area) at the point p. The total mass m of D is defined to be

m = Z Z

D

ρ(x, y) dA = lim

kP k→0 m

X

j=1 n

X

i=1

ρ(xij, yij) ∆xi∆yj,

where

(i) R = [a, b] × [c, d] is a rectangle containing D.

(ii) P = {Rij = [xi−1, xi] × [yj−1, yj] | 1 ≤ i ≤ n , 1 ≤ j ≤ m} is a partition of R, i.e. {xi}ni=0 and {yj}mj=0 are partitions of [a, b] and [c, d], respectively.

(iii) ∆xi = xi−xi−1, ∆yj = yj−yj−1and kP k = max{

q

∆x2i + ∆yj2 | 1 ≤ i ≤ n , 1 ≤ j ≤ m}

is defined to be the norm of the partition P.

(iv) (xij, yij) ∈ [xi−1, xi] × [yj−1, yj] ∩ D for each 1 ≤ i ≤ n and 1 ≤ j ≤ m.

(b) The moment of D about the x−axis, denoted Mx, is defined by Mx =

Z Z

D

y ρ(x, y) dA = lim

kP k→0 m

X

j=1 n

X

i=1

yij ρ(xij, yij) ∆xi∆yj.

Note that |y| equals the distance between the point p = (x, y) and the x−axis.

(c) The moment of D about the y−axis, denoted My, is defined by

My = Z Z

D

x ρ(x, y) dA = lim

kP k→0 m

X

j=1 n

X

i=1

xijρ(xij, yij) ∆xi∆yj.

Note that |x| equals the distance between the point p = (x, y) and the y−axis.

(d) The coordinate (¯x, ¯y) of the center of mass of D is defined by

(2)

where the total mass m of D is given by m =

Z Z

D

ρ(x, y) dA.

(e) The moment of inertia of D about the x−axis, denoted Ix, is defined by

Ix = Z Z

D

y2ρ(x, y) dA = lim

kP k→0 m

X

j=1 n

X

i=1

(yij)2ρ(xij, yij) ∆xi∆yj.

Note that |y| equals the distance between the point p = (x, y) and the x−axis.

(f) The moment inertia of D about the y−axis, denoted Iy, is defined by

Iy = Z Z

D

x2ρ(x, y) dA = lim

kP k→0 m

X

j=1 n

X

i=1

(xij)2ρ(xij, yij) ∆xi∆yj.

Note that |x| equals the distance between the point p = (x, y) and the y−axis.

(g) A function f is called a probability density function (pdf) of a continuous random variable x if

(i) f (x) ≥ 0 for all x.

(ii) Z

−∞

f (x) dx = 1.

(iii) the probability that x lies between a and b is given by P (a ≤ x ≤ b) =

Z b a

f (x) dx.

(h) A function f is called a (joint) probability density function (pdf) of continuous random variables x and y if

(i) f (x, y) ≥ 0 for all x, y.

(ii) Z

−∞

Z

−∞

f (x, y) dxdy = 1.

(iii) the probability that (x, y) lies in D is given by P ((x, y) ∈ D) =

Z Z

D

f (x, y) dA.

(3)

(i) Let f be the probability density function (pdf) of the random variable x. Thenthe expected value µ of x is defined to be

µ = Z

−∞

xf (x) dx = R

−∞ xf (x) dx R

−∞ f (x) dx =the mean value of x.

(j) Let f be the (joint) probability density function (pdf) of random variables x and y. Then the expected value µx of x and the expected value µy of y, also called the x−mean and y−mean respectively, are defined by

µx= Z Z

R2

xf (x, y) dA and µy = Z Z

R2

yf (x, y) dA.

Remarks

(a) A single random variable isnormally distributed if its probability density function is of the form

f (x) = 1 σ√

2πe−(x−µ)2/(2σ2),

where µ is the mean or expectation of the distribution (and also its median and mode), σ is the standard deviation and σ2 is the variance.

(b) Let I = Z

−∞

e−x2dx. Since

I2 =

Z

−∞

e−x2dx Z

−∞

e−y2dy

= Z

−∞

Z

−∞

e−x2−y2dx dy

= Z

0

Z 0

e−r2r dr dθ where we have used x = r cos θ, y = r sin θ and dx dy = rdr dθ

= Z

0

−e−r2 2 |0

= π,

we have shown that

Z

−∞

e−x2dx =√

π. (1)

(c) Setting

y = x − µ σ√

2 =⇒ dx = σ√ 2dy, we find

1 σ√

2π Z

−∞

e−(x−µ)2/(2σ2)dx = 1

√π Z

−∞

e−y2dy =

√π

√π = 1, (2)

1 Z

1 Z

(4)

which implies that

1 σ√

2π Z

−∞

(x − µ) e−(x−µ)2/(2σ2)dx = 0, (4) and

1 σ√

2π Z

−∞

(x − µ)2e−(x−µ)2/(2σ2)dx

= − σ

√2π Z

−∞

(x − µ) · −2(x − µ)

2 · e−(x−µ)2/(2σ2)

 dx

= − σ

√2π Z

−∞

(x − µ) · d

dxe−(x−µ)2/(2σ2)dx

= − σ

√2π(x − µ) · e−(x−µ)2/(2σ2)|−∞ + σ2 σ√

2π Z

−∞

e−(x−µ)2/(2σ2)dx

= σ2. (5)

By combining (3), (4) and (5), we get 1

σ√ 2π

Z

−∞

x2e−(x−µ)2/(2σ2)dx

= 1

σ√ 2π

Z

−∞

(x − µ) + µ2e−(x−µ)2/(2σ2)dx

= 1

σ√ 2π

Z

−∞

(x − µ)2+ 2µ(x − µ) + µ2 e−(x−µ)2/(2σ2)dx

= σ2+ µ2. (6)

(d) Let f : R × R+→ R+ be defined by f (x, t) = 1

√4πte−x2/4t for all x ∈ R and t > 0.

Then (i) 1

√4πt Z

−∞

e−x2/4tdx = 1 for all t > 0.

(ii) fxx− ft= 1

√4πte−x2/4t



−2

4t + 4x2 16t2 + 1

2t − x2 4t2



= 0 for all x ∈ R and t > 0, i.e. f is a solution of the heat equation in R × R+.

Definition Let U and E be smooth bounded, closed regions in Rn. A map T : U → E is said to be an onto C1 transformation with nonzero Jacobian if

(a) for each x = (x1, x2, . . . , xn) ∈ E, there exists a u = (u1, u2, . . . , un) ∈ U such that (x1, x2, . . . , xn) = x = T (u) = (T1(u), T2(u), . . . , Tn(u)),

(b) for each 1 ≤ i ≤ n, the function Ti : U → R is continuously differentiable on U,

(5)

(c) for each u = (u1, u2, . . . , un) ∈ U, the Jacobian JT(u) of T at u is nonzero, i.e.

JT(u) = ∂(x1, x2, . . . , xn)

∂(u1, u2, . . . , un) =

∂x1

∂u1

∂x1

∂u2 · · · ∂x1

∂un

∂x2

∂u1

∂x2

∂u2

· · · ∂x2

∂un

· · · ·

∂xn

∂u1

∂xn

∂u2 · · · ∂xn

∂un

= det

∂x1

∂u1

∂x1

∂u2 · · · ∂x1

∂un

∂x2

∂u1

∂x2

∂u2

· · · ∂x2

∂un

· · · ·

∂xn

∂u1

∂xn

∂u2 · · · ∂xn

∂un

 6= 0

Change of Variables in Multiple Integrals Let U and E be smooth bounded, closed regions in Rn, let T : U → E be an onto C1 transformation with nonzero Jacobian. Suppose that f : E → R is a continuous function on E and T is 1 − 1 except perhaps on the boundary of U.

Then

Z

E

f (x1, x2, . . . , xn) dV = Z

U

f ◦ T (u1, u2, . . . , un) |JT(u)| du1du2· · · dun

= Z

U

f (x1(u), x2(u), . . . , xn(u))

∂(x1, x2, . . . , xn)

∂(u1, u2, . . . , un)

du1du2· · · dun.

Remark If n = 2 and T : S → R is an 1−1 onto transformation from a region S in the uv−plane onto R in the xy−plane.

We can approximate the image region R = T (S) by a parallelogram determined by the secant vectors

a = r(u0 + ∆u, v0) − r(u0, v0) b = r(u0, v0+ ∆v) − r(u0, v0) shown in the following

But

ru = lim

∆u→0

r(u0+ ∆u, v0) − r(u0, v0)

∆u .

and so

r(u0+ ∆u, v0) − r(u0, v0) ≈ ∆u ru. Similarly

r(u0, v0+ ∆v) − r(u0, v0) ≈ ∆v rv.

This means that we can approximate R by a parallelogram determined by the vectors ∆u ru and

∆v rv shown in the following

(6)

|(∆u ru) × (∆v rv)| = |ru × rv| ∆u ∆v Computing the cross product, we obtain

ru× rv =

i j k

∂x

∂u

∂x

∂v 0

∂y

∂u

∂y

∂v 0

=

∂x

∂u

∂y

∂x ∂u

∂v

∂y

∂v

k =

∂x

∂u

∂x

∂y ∂v

∂u

∂y

∂v

k

The determinant that arises in this calculation is called the Jacobian of the transformation and is given a special notation.

Definition Let T : S → R be a transformation defined by

(x, y) = T (u, v) = (g(u, v), h(u, v)) ∀ (u, v) ∈ S.

Then the Jacobian of the transformation T is

∂(x, y)

∂(u, v) =

∂x

∂u

∂x

∂y ∂v

∂u

∂y

∂v

= ∂x

∂u

∂y

∂v − ∂x

∂v

∂y

∂u

Examples (a) Evaluate

Z Z

E

e

x−y

x+y dA, where E = {(x, y) | x ≥ 0, y ≥ 0, x + y ≤ 1}.

(7)

y

E x

1 1

0

x + y = 1

x = 12(u + v) y = 12(v − u)

v

1 u

−1

1

u = v u = −v

0 S

Solution Let u = x − y, v = x + y. Then

(x, y) ∈ E ⇐⇒ u + v ≥ 0, v − u ≥ 0 and 0 ≤ v ≤ 1.

Let

S = {(u, v) | u + v ≥ 0, v − u ≥ 0, 0 ≤ v ≤ 1} = {(u, v) | u ≥ −v, v ≥ u, 0 ≤ v ≤ 1}

and T : S → E be defined by

(x, y) = T (u, v) = 1

2(u + v) , 1

2(v − u)

∀ (u, v) ∈ S.

Then

JT(u, v) =

∂x

∂u

∂x

∂y ∂v

∂u

∂y

∂v

=

1 2

1 2

12 12

= 1

2 =⇒ |JT(u, v)| = 1 2, and

Z Z

E

e

x−y

x+y dA = Z Z

S

e

x(u,v)−y(u,v)

x(u,v)+y(u,v) |JT(u, v)| dA

= Z 1

0

Z v

−v

eu/v1 2du dv

= Z 1

0

v 2eu/v

|u=vu=−vdv

= Z 1

0

v 2

 e − 1

e

 dv

= v2 4

 e − 1

e



|10

= 1 4

 e − 1

e

 .

(b) Find the volume V inside the paraboloid z = x2 + y2 for 0 ≤ z ≤ 1.

Solution Using vertical slices, we see that V =

Z Z

E

(1 − z) dA = Z Z

E

1 − (x2+ y2) dA, where E = {(x, y) | 0 ≤ x2+ y2 ≤ 1}.

Let S = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} and T : S → E be defined by (x, y) = T (r, θ) = r cos θ , r sin θ ∀ (r, θ) ∈ S.

(8)

Then

JT(r, θ) =

∂x

∂r

∂x

∂y ∂θ

∂r

∂y

∂θ

=

cos θ −r sin θ sin θ r cos θ

= r =⇒ |JT(r, θ)| = r, and

V =

Z 0

Z 1 0

(1 − r2) |JT(r, θ)| dr dθ

= Z

0

Z 1 0

(r − r3) dr dθ

= Z

0

 r2 2 − r4

4



|10

= Z

0

1 4dθ

= π

2. (c) Find the volume V inside the cone z =p

x2+ y2 for 0 ≤ z ≤ 1.

Solution Using vertical slices, we see that V =

Z Z

E

(1 − z) dA = Z Z

E

1 −p

x2+ y2)big) dA, where E = {(x, y) | 0 ≤ x2+ y2 ≤ 1}.

Let S = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} and T : S → E be defined by (x, y) = T (r, θ) = r cos θ , r sin θ ∀ (r, θ) ∈ S.

Then

V =

Z 0

Z 1 0

(1 − r) |JT(r, θ)| dr dθ

= Z

0

Z 1 0

(r − r2) dr dθ

= Z

0

 r2 2 − r3

3



|10

= Z

0

1 6dθ

= π

3.

(d) For a > 0, find the volume V inside the sphere x2 + y2 + z2 = a2.

Solution Let S = {(ρ, φ, θ) | 0 ≤ ρ ≤ a, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}, E = {(x, y, z) | 0 ≤ x2+ y2+ z2 ≤ a2} and T : S → E be defined by

(x, y, z) = T (ρ, φ, θ) = ρ sin φ cos θ , ρ sin φ sin θ , ρ cos φ ∀ (ρ, φ, θ) ∈ S.

Then

JT(ρ, φ, θ) =

∂x

∂ρ

∂x

∂φ

∂x

∂y ∂θ

∂ρ

∂y

∂φ

∂y

∂θ

∂z

∂ρ

∂z

∂φ

∂z

∂θ

=

sin φ cos θ ρ cos φ cos θ −ρ sin φ sin θ sin φ sin θ ρ cos φ sin θ ρ sin φ cos θ

cos φ −ρ sin φ 0

= cos φρ2sin φ cos φ(cos2θ + sin2θ) + ρ sin φρ sin2φ(cos2θ + sin2θ)

= ρ2sin φ(cos2φ + sin2φ)

= ρ2sin φ,

(9)

and

V =

Z Z Z

S

dV

= Z

0

Z π 0

Z a 0

|JT(ρ, φ, θ)| dρ dφ dθ

= Z

0

Z π 0

Z a 0

ρ2sin φ dρ dφ dθ

= Z

0

Z π 0

 ρ3 3



|a0 sin φ dφ dθ

= Z

0

a3

3 (− cos φ) |π0

= Z

0

2a3 3 dθ

= 2a3θ 3 |0

= 4πa3 3 .

參考文獻

相關文件

[r]

Generalization Theorem Let f be integrable on K = [a, b] × [c, d] to R and suppose that for each y ∈ [c, d], the function x 7→ f (x, y) of [a, b] into R is continuous except

The proof is similar to that

If vertex i is a universal sink according to the definition, the i-th row of the adjacency-matrix will be all “0”, and the i-th column will be all “1” except the a ii.. entry,

[r]

In fact, we can define the operator norm of T using other norms on R n not only the Euclidean norm of x... Show that f is

Let I be the closed unit interval [0, 1] and X be a topological space. We call this topology the compact-open topology on

 Having found that the fines as a whole are a measure falling within the scope of Article XI:1 and contrary to that provision, the Panel need not examine the European