• 沒有找到結果。

3 電位

N/A
N/A
Protected

Academic year: 2022

Share "3 電位"

Copied!
44
0
0

加載中.... (立即查看全文)

全文

(1)

3 電位

What is the danger if your hair suddenly stands up?

(2)

Lightning bolt and ground current

How can you reduce your risk from ground current?

(3)

3-1 電位能

Fe and Fg are

mathematically identical

Fe is a conservative force

r d F

W U

U

U f i e

(4)

3-2 電位

Ue depends on q, but Ve does not

q W q

U

q U q

V U V

V

q V U

f i i

f

(5)

3-3 等位面

Four Equipotential Surfaces

(6)

FIGURE 23.22 CONTOUR LINES, CURVES OF CONSTANT ELEVATION

(7)

等位面3例

E.S. for a uniform field, a point charge, and an electric dipole

(8)

3-4 由電場算電位

The differential work done by F

f

i

E d s

q W

s d E

q dW

s d F

dW

 

 

 

0

,

0

(9)

Ex. 1 均勻電場

(a) Along path (a)

(10)

Ex. 1 均勻電場︰路徑(a)

Ed ds

E ds

E

ds E

s d E

V V

f i f

i

f i f

i i f

(cos 0 )

(11)

Ex. 1 均勻電場︰路徑(b)

Ed E d

E ds

ds E

s d E

V V

f c

f i f

i i f

2 2 2

) 45 (cos

 

(12)

3-5 點電荷的電位

cos180

f f

i

E ds E ds E dr

V E ds E dr

   

       

(13)

r V q

r r q

r d V q

r E q

r d E s

d E

V

f f

f f

i

0

0 2

0 2 0

4 1

1 4

1 4

4 1













點電荷的電位

(14)

點 電 荷 的 電 位 圖

(15)

3-6 一組點電荷的電位

• The principle of superposition

n

i i

i n

i

i

r

V q V

0 1

1

4

1



(16)

(a) on a circle

(b) on an arc

0

4 , 12 1

0

E

R V e



Ex.2 Vc and Ec for 12 electrons

0

4 , 12 1

0

E

R V e



(17)

3-7 電雙極的電位

(18)

)

, cos

(

cos 4

1 cos

4 4

) 4 (

1

2

2 0

2 0

0

0 2

1

r r

r d

r r

r p r

d q

r r

r r

q

r q r

V q V

V V

i

i









雙極矩 p = qd

p 由負電荷指向正電荷

(19)

Induced Dipole Moment

感應雙極矩

極化 (polarization)

(20)

水分子與微波爐

(21)

3-8 Polarization (偏振)

Polarized Light

The Plane of Polarization

Linear, Circular and Elliptical polarization

(22)

偏振片

(23)

Polarization of Light

(24)

(25)

3-9 連續電荷分佈的電位

 

r

dV dq r

V q V

n

i i

i n

i

i

1 0

1 0 4

1 4

1





(26)

Line of Charge

2 / 1 2

2 0

0 4 ( )

1 4

1 ,

d x

dx r

dV dq

dx dq

 





(27)

 

 

 

d

d L

V L

d d

L L

d x

x

d x

dx

d x

dV dx V

L L

L

] )

ln ( 4

ln ]

) (

4 ln[

) (

4 ln(

) (

4

) (

4 1

2 / 1 2 2

0

2 / 1 2 2

0

0 2 / 1 2 2

0

0 2 2 1/ 2

0

0 2 2 1/ 2

0











(28)

) 1

2 0 ( z2 R2 E z

 

Charged Disk

(29)

) 2 (

) (

2

) (

) )(

2 ( 4

1 4

1

) )(

2 (

2 2

0

0 2 2 1/2

0

2 / 1 2 2

0 0

z R

z

R z

R d dV R

V

R z

R d R

r dV dq

R d R

dq

R





計算

(30)

3-10 由電位算電場

z E V

y E V

x E V

s E V

ds E dV

ds E

q dV

q dW

z y

x

s

, ,

cos

)

0 (cos

0

• The work done by the electric field

(31)

3-11 The gradient

operator 梯度運算子

, ,

ˆ ˆ ˆ

ˆ ˆ ˆ

=

ˆ ˆ ˆ

( )

x y z

x y z

V V V

E E E

x y z

E E i E j E k

V V V

i j k

x y z

i j k V V

x y z

     

   

   

(32)

The Laplacian operator

0 2

0 2

2 2 2

2 2 2

2 2 2

2 2 2

0

( )

ˆ ˆ

ˆ ˆ ˆ ˆ

( ) ( )

( )

E V E

V V

i j k i j k

x y z x y z

x y z

x y z V

   

    

 

 

(33)

The Laplace Equation

2 2 2

2 2 2

2 2

2 2

2 2

2 2

2 2

2 2

( ) 0

( ) 0, If V(x,y)=X(x)Y(y) ( ) ( ) ( ) ( )

0

( ) ( )

( ) ( ) 0

x y z V

x y V

X x Y y X x Y y

x y

X x Y y

Y y X x

x y

For 2 dimensional problems

x sin

e y

(34)

Solving Laplace Equation by separation of variables

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

( ) ( )

( ) ( ) 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0

1 ( ) 1 ( )

( ) ( ) 0

1 ( ) 1 ( )

( ) , ( )

X x Y y

Y y X x

x y

Y y X x X x Y y

X x Y y x X x Y y y

X x Y y

X x x Y y y

X x Y y

X x x Y y y

 

(35)

The Solution

2 2

2 2

2 2

2

2 2

2

2 2

1 ( ) 1 ( )

( ) , ( )

( ) ( ) 0 ( )

( ) ( ) 0 ( ) sin

x

X x Y y

X x x Y y y

X x X x X x e

x

Y y Y y X x y

y

 

 

(36)

A boundary value problem

(37)

Ex.3

The charged disk

) 1

2 (

) 2 (

) 2 (

2 2

0

2 2

0 2 2

0

R z

z

z R

dz z d z

E V

z R

z V

z

(38)

3-12一組點電荷的電位能

r q W q

r U

V q 1 2

0 1

0 4

1 4

1





• For charges q1 and q2

Ex.4 Three charges

(39)

Ex.4 An alpha particle and a gold nucleus

fm Mev e K e

U

K 24.6

23 .

9

) 79 )(

2 ( 4

1

0



(40)

3-13 Potential of a charged isolated conductor

) 0 (

0 

VE d s E

V

f

i i f

 

• 導體內部及表面為一等位面

(equipotentail surface)

(41)

Discharge

(42)

Plots of E (r) and V(r)

(43)

Calculating electric potential

Vsurface = EsurfaceR

Vmax = EmaxR

e.g. Emax = 3×106 V/m

If R=1 cm Vmax = 30,000V If R=2 m Vmax = 6MV

Example 23.8 A charged conducting sphere

(44)

參考文獻

相關文件

He proposed a fixed point algorithm and a gradient projection method with constant step size based on the dual formulation of total variation.. These two algorithms soon became

11[] If a and b are fixed numbers, find parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle (J as the

3.16 Career-oriented studies provide courses alongside other school subjects and learning experiences in the senior secondary curriculum. They have been included in the

Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the

Hikami proposed a state integral model which gives a topological invariant for hyperbolic 3-manifold.. Saddle Point of

• Follow Example 21.5 to calculate the magnitude of the electric field of a single point charge.. Electric-field vector of a

The Hilbert space of an orbifold field theory [6] is decomposed into twisted sectors H g , that are labelled by the conjugacy classes [g] of the orbifold group, in our case

for a uniform field, a point charge, and an electric