• 沒有找到結果。

Volume Conjecture and Topological String

N/A
N/A
Protected

Academic year: 2022

Share "Volume Conjecture and Topological String"

Copied!
100
0
0

加載中.... (立即查看全文)

全文

(1)

. .

.. .

.

.

Volume Conjecture and Topological String

Hiroyuki FUJI

Nagoya University

Collaboration with R.H.Dijkgraaf (ITFA& KdVI) and M. Manabe (Nagoya Math.)

18th Dec. @ Taiwan String Theory Workshop 2011 Papers:

R.H.Dijkgraaf and H.F., Fortsch.Phys.57(2009),825-856, arXiv:0903.2084 [hep-th]

R.H.Dijkgraaf, H.F. and M.Manabe, arXiv:1010.4542 [hep-th].

(2)

.

.

1. Introduction

Classification of knots Knot invariants

Borromean Ring

Trefoil (3,2)-torus knot Solomon s Seal knot (5,2)-torus knot Figure eight knot

Hopf link

Knot invariants are invariant underReidemeister move:

Move I Move IIHiroyuki FUJI Volume Conjecture and Topological StringMove III

(3)

Jones polynomial

One of the most famous knot invariant will be the

Skein relation:

K :+ K :- K :0

VK +(q)

q-1 -qVK -(q) = (q - q )1/2 -1/2 VK 0(q) unknot

V :=1(q)

m unknots ...

V ... =(q) (-q - q )1/2 -1/2 m-1 Jones polynomial: V (q)K

(4)

Computation of the Jones polynomial fortrefoil knot 31 :

K+

K- K0

q2 q(q - q )1/2 -1/2

q2 q(q - q )1/2 -1/2

-q - q 1/2 -1/2

V =(q) V =(q) 1 V =(q) 1

K+

K- K0

V31(q) = q2V(q)

+q(q1/2− q−1/2)[

q2V⃝⃝(q) + q(q1/2− q−1/2)V(q)]

=−q4+ q3+ q.

Hiroyuki FUJI Volume Conjecture and Topological String

(5)

Jones polynomial and Chern-Simons gauge theory

[Witten]

The Jones polynomial is related with the expectation value of the Wilson loop operatoralong the knot K with the fundamental representation forSU(2) Chern-Simons gauge theoryonS3.

SCS[A] = k

S3Tr [

AdA + 2

3A∧ A ∧ A ]

.

S3

Wilson loop operator W˜(K ; q)

W˜(K ; q)

⟩ :=

Tr˜P exp [I

K

A ] ⟩

, q := exp ( 2πi

k + 2 )

, VK(q) =

W˜(K )

⟩/⟨

W˜(⃝)

.

(6)

Colored Jones polynomial

Wilson loop operator (R: Spin j representation n := 2j + 1) WR(K ) = TrRPexp

[I

K

A ]

.

S3

Spin j-rep.

Jn(K ; q): Colored Jones polynomial

Jn(K ; q) =

Wj(K ; q)

⟩/⟨

Wj(⃝; q).

Hiroyuki FUJI Volume Conjecture and Topological String

(7)

Surgery and knot complement

FromTQFTpoint of view the colored Jones polynomial is also related with the partition function onS3\N(K).

S3

a U a

M1

j

M2

Z(M ;a)=δ(log m )2 2π(2j+1)

k+2

=

S3

<W (K;q)>(j) Z(M ,m)1 M1

μ

Wj(K ; q)

=

Da ZkSU(2) CS(S3\N(K); a)ZkSU(2) CS(N(K ); a)

= ZkSU(2) CS(S3\N(K); ρ). ρ: holonomy along meridian cycle µ← Pexp[H

µa]

ρ =

( m

0 m−1 )

, m = q2j +1=: eu.

(8)

Knot complement and hyperbolic manifold

For the “most of” knots the complement ofS3 admits the hyperbolic structure. [Thurston] → Section 2

S3

Borromean Ring Trefoil (3,2)-torus knot Solomon s Seal knot (5,2)-torus knot

Non-hyperbolic Knots : Vol(S \K)=03 Hyperbolic Knots : Vol(S \K)≠03

Figure eight knot

Hiroyuki FUJI Volume Conjecture and Topological String

(9)

Analytic continuation of the Chern-Simons gauge theory

[Witten]

SL(2;C) Chern-Simons gauge theory is equivalent to the 3D Euclidean gravity with negative cosmological constant.

⇒ On-shell geometry ishyperbolic manifold . The analytic continuation of the gauge group

SU(2)→ SL(2; C)

⇒ Geometic aspects of knot complement is more manifest.

I = t

M

Tr(AdA + 2

3A∧ A ∧ A) + ¯t

M

Tr(¯Ad ¯A + 2

3A¯∧ ¯A ∧ ¯A), t, ¯t ∈ C SU(2) Chern-Simons theory−→ SL(2; C) Chern-Simons theory

Zk(M3; ρ) Zt,¯SL(2;C)t (M3; ρ)

= ZtSU(2)(M3; ρ)Z¯tSU(2)(M3; ¯ρ)

(10)

Quantization of the Chern-Simons gauge theory Classical flat connection moduli spaceMK of SL(2;C) Chern-Simons gauge theory on M3 =S3\K.

MK is a Riemann surface−→ Quantization Character variety of knot Detail⇒ Section 3 Non-commutative deformation of M [Garoufalidis et.al.][DGLZ]

Quantum Hamiltonian constraint from non-commutative Riemann surface

AˆKℓ, ˆm)ZtSU(2)CS= 0, ˆℓ = q ˆℓ ˆm.

Topological Recursion [Eynard-Orantin][Dijkgraaf-F.-Manabe]

The moduli space MK as the matrix model curve

1 1 h

1 x x x

g

h

1 x x

x

g x

g 

 



q

q q q

k xk

j j i xi

J

= + Σ

x1 xh

l

l l

Hiroyuki FUJI Volume Conjecture and Topological String

(11)

Correspondences

WKB expansion of the Chern-Simons gauge theory ZkSU(2)CS(S3\K; ρu) = exp

[ 1

~S0(u) + S1(u) +

k=1

~kSk+1(u) ]

.

3D Geometry Topological Open String Character variety Spectral curve {(ℓ, m)∈ C× C|˜AK(ℓ, m) = 0} {

(ep, ex)∈ C× C|H(ep, ex) = 0} u = log m: Holonomy u: Spectral parameter Leading order invariant S0(u) Disk Free Energy ¯F(0,1)(u) Subleading order invariant S1(u) Annulus Free Energy ¯F(0,2)(u)

q = e2~ q = egs

In this talk we will explore the following relation:

³

Sk(u)↔ Fk(u) = 2k−2

2g +h=k+1, h≥0

1

h!F¯(g ,h)(u).

µ ´

(12)

CONTENTS 1. Introduction

2. Geometric Aspects of the Knot Complement 3. Quantization of the Chern-Simons Gauge Theory 4. The Topological Recursion on the Character Variety 5. Summary, Discussions and Future Directions

Hiroyuki FUJI Volume Conjecture and Topological String

(13)

.

.

2. Geometric Aspects of the Knot Complement

Hyperbolic 3-manifold

The hyperbolic 3-manifold admits a geodesically complete hyperbolic metric Rij =−2gij.

M3=H3/Γ, Γ: discrete subgrp of PSL(2;C)

The hyperbolic 3-manifold is simplicially decomposed into the ideal tetrahedra .

Geodesic Line

z

Conformal Transformation

Upper half space model

α α

β β

γ γ Conformal ball model

α β

γ

0 1

z

α+β+γ=π

The ideal tetrahedron is specified by the dihedral angles α, β, γ.

They are toggled into a shape parameterz ∈ C.

(14)

Figure Eight Knot Complement

As an example, let us discuss the figure eight knot complement.

Consider a surface S with ∂S = K .

Francis, "A Topological Picturebook"

Intuitively, this surface is created by dipping the knot into viscous liquid.

Viscous Liquid Dip

Hiroyuki FUJI Volume Conjecture and Topological String

(15)

Simplicial Decomposition

Decompose the bounded surface into 4 pieces.

W

E

W

E

S

N S

N

W S N

E

W' S' N'

E'

• The knot complement is decomposed into 2 tetrahedra.

• Knot is localized at the tip of tetrahedra.

(16)

Simplicial decomposition as ideal tetrahedra

The figure eight knot can be decomposed into 2 tetrahedra.

← This decomposition is still onlytopological .

S3

∼=

11w

w 1 z w

z z

1 1

1 z 1

z 1 z

z 1 z

A B C

D

w

w 1 w

1

w 1 w

A' B' D'

C'

The hyperbolic structure is introduced, if the tetrahedra are glued consistently asideal tetrahedra.

α 0

β γ

1 z

β α

γ

0 1

z-1z

0 1

γ 1 1-z

α β

Hiroyuki FUJI Volume Conjecture and Topological String

(17)

Gluing Condition 1

There are two kinds of gluing conditions for ideal tetrahedra.

• Gluing conditions (bulk):

z1

z1z2

1 z1z2z3

z1z2...zk-1

Gluing Condition

Πz = 1i

k i=1

Red edge: zwz−1z w−1w zw = 1

Blue edge : 1−z1 1−w1 z−1z ww−11−z1 1−w1 = 1

⇒ (z2− z)(w2− w) = 1.

w

1 1

w 1

z w

z z

1 1

z

1 1

z 1

z

z 1

z

A B C

D

w

w w

1 1

w 1

w A'

B' D'

C'

(18)

Gluing Condition 2

• Gluing conditions (boundary ∂M ≃ T2):

Boundary is realized bychopping off small tetrahedra.

⇒ Each triangles are glued each other, and the simplicially decomposed boundaryT2 can be constructed.

z

z z 1

1 z 1

1

z 1 z

z 1 z A

B C

D

w

w w 1

1 w 1

1

w 1 w

w 1 w a

b

c

d

A' B' D'

C' e

f

h

g

Meridian µ: wz1

3 = w (1− z) = 1

Longitude ν: (z1z2z3)2(z1)2(w2w3)2 = (z/w )2= 1

z1 z3 z2 z3 z2 z1

a h

b g

c f

z1 z1

w3

w3 w2 w2

d e

ν μ

w1

Hiroyuki FUJI Volume Conjecture and Topological String

(19)

Solution and Hyperbolic Structure

Solving gluing conditions, one finds all dihedral angles.

z = w = eπi /3, αi = βi = γi = π/3, i = 1, 2.

S3

For figure eight knot complement the hyperbolic structure can be admitted.

⇒ SL(2; C) Chern-Simons partition function can give the geometric invariants for the knot complement.

(20)

.

.

3. Quantization of Chern-Simons Gauge Theory

Moduli space of the flat connection

Moduli spaceM of the flat connection for SL(2; C) Chern-Simons gauge theory on M3:

M ={

A, ¯A¯¯FA= 0 = FA¯

}/

Gauge equiv.

Mathematically the flat connection moduli space is rewritten by the the honolomy representation ρ:

ρ : π1(M3)−→ SL(2; C)

C 7→ ρ(C ) = Pexp[

I

C

AC].

M = Hom(

π1(M3), SL(2;C))/

Gauge equiv.

Hiroyuki FUJI Volume Conjecture and Topological String

(21)

The 3-manifold M3 with a torus boundary ∂M3≃ T2

• M: The moduli space of the flat connection on M3

• P: The moduli space of the flat connection on T2

M3

T2

μ ν

The fundamental group ofT2 is π1(T2)≃ Z × Z. ρ(µ) =

( m 0

0 m−1 )

, ρ(ν) =

( 0

0 −1 )

,

⇒ P ={

(m, ℓ)∈ C× C} . M is a submanifold in P: M ⊂ P .

(22)

For the knot complementS3\K the fundamental group is computed viaWirtinger algorithm.

.

Wirtinger

The fundamental group for the knot complement S3\K : π1(S3\K) =

{

x , y|xω = ωy }

, ω41 := xy−1x−1y , ω31 := xy .

ν

μmeridian

longitude

The meridian and longitude holonomies are identified as µ = x ,

ν41 = xy−1xyx−2yx−2yxy−1x−1, ν31 = yx2yx−4,

Hiroyuki FUJI Volume Conjecture and Topological String

(23)

Holonomy representations cannot be diagonalized simultaneously:

ρ(µ) =

( m

0 m−1 )

, ρ(ν) =

(

0 −1 )

. Nontrivial π1 structure

⇒ Constraint on (ℓ, m): A-polynomial [CCGLS]

A41(ℓ, m) = (ℓ− 1)(ℓ + ℓ−1+ (m4− m2− 2 − m−2+ m−4)) = 0, A31(ℓ, m) = (ℓ− 1)(ℓ + m6) = 0.

The moduli spaceMK for S3\K is given by MK =

{

(m, ℓ)∈ C× C¯¯AK(ℓ, m) = 0 }

. M is a Lagrangian submanifold in P: M ,→ P .

(Riemann surface)

(24)

Quantization of the moduli space Quantum Chern-Simons gauge theory

⇒ Quantization of the gauge fields on T2 {Aai(x ), Abj(y )} =

t δabϵijδ2(x− y), {Aai(x ), ¯Abj(y )} = 0, {¯Aai(x ), ¯Abj(y )} =

¯t δabϵijδ2(x− y).

ν

μmeridian

longitude

µ and ν intersect at only one point: m = exp[u], ℓ = exp[v ] ˆ

mˆℓ = q ˆℓ ˆm, q = exp[4π/t], {ˆu, ˆv} =

t , {ˆ¯u, ˆ¯v} =

¯t .

Hiroyuki FUJI Volume Conjecture and Topological String

(25)

The quantum structure ofMK is inherited fromP.

Non-commutative Riemann surface [Garoufalidis et.al.]

Aˆ41ℓ, ˆm) = (q1/2ˆl− 1) (

q ˆm2

(1 + q ˆm2)(−1 + q ˆm4)

(−1 + q ˆm2)(1− q ˆm2− (q + q3) ˆm4− q3mˆ6+ q4mˆ8) q1/2mˆ2(−1 + q ˆm4)(−1 + q3mˆ4) ˆl + q2mˆ2

(1 + q ˆm2)(−1 + q3mˆ4)ˆl2 )

, Aˆ31ℓ, ˆm) = (ˆl(1− q−1mˆ4)− q1/2(1− q3mˆ4))(ˆl + q3/2mˆ6).

These quantum operators satisfies

.

Colored Jones Polynomial

AˆKℓ, ˆm)Jn(K ; q) = 0, ˆ

mf (n) = qnf (n), ℓf (n) = f (n + 1).ˆ

• Inq → 1 limitthe non-commutative A-polynomial reduces to the commutative one.

(26)

WKB expansion[Dimofte-Gukov-Lenells-Zagier]

WKB expansion of the partition function of SL(2;C) Chern-Simons gauge theory:

ZtSU(2)CS(S3\K; ρ) = exp [

1

~S0(u) + S1(u) +

k=1

~kSk+1(u) ]

,

The parturbative invariants are found from ˆAKJn(K ; q) = 0:

Jn(K ; q) = ZtSU(2)CS(S3\K; ρ)/ZtSU(2)CS(unknot; ρ), ZtSU(2)CS(unknot; ρ) = m− m−1

q− q−1 , q := e~. The partition function is expaned in the double scaling limit:

~ → 0, n → ∞, qn= eu : finite, q = e~. Quantum A-polynomial ˆAK is expanded as:

AˆKℓ, ˆm; q) =

d k=0

k=0

ˆj~kaj ,k( ˆm).

Hiroyuki FUJI Volume Conjecture and Topological String

(27)

Leading solution in~ expansion

The leading order equation in~ expansion:

d j =0

ejS0aj ,0(m) = AK(eS0(u), eu) = 0.

aj ,0(m): Coefficient of A-polynomial⇒ ℓ = eS0(u) The leading order term is given by

S0(u)≃

u

u

log ℓ(m)d log m, AK(ℓ(m), m) = 0.

This function is known asNeumann-Zagier function of the hyperbolic manifold. This function is the 1-parameter generalization ofhyperbolic volume (Volume conjecture).

S0(0) = Vol(S3\N(K)).

(28)

Saddle points and braches

In general the A-polynomial is factorized as AK(ℓ, m) =(ℓ− 1)BK(ℓ, m).

⇒ 2 kinds of saddle points for Jn(K ; q):

ℓ = 1: abelian branch, ℓ = ℓ(m): non-abelian branch. Abelian branch ⇒ S0(u) = 0 [Melvin-Morton][Rozanski]

ZtSU(2)CS(S3\K; ρ) behaves as polynomial growth . Non-abelian branch ⇒ S0(u)̸= 0 [Kashaev]

ZtSU(2)CS(S3\K; ρ) behaves as exponetial growth.

One of the saddle point in this branch contains the geometric information as the hyperbolic geometry.

Hiroyuki FUJI Volume Conjecture and Topological String

(29)

Perturbative Invariants

Applying this expansion into q-difference equation, one finds a hierarchy of differential equations:

AˆK(ℓ, m; q) = Xd k=0

X

k=0

j~kaj ,k(m).

Xd j =0

ejS0aj ,0= 0, A− polynomial

Xd j =0

ejS0

»

aj ,1+ aj ,0

1

2j2S0′′+ jS1

«–

= 0,

Xd j =0

ejS0

»

aj ,2+ aj ,1

1

2j2S0′′+ jS1

« + aj ,0

1 2(1

2j2S0′′+ jS1)2+1

6j3S0′′′+1

2j2S1′′+ jS2

«–

= 0,

· · · .

Solving these equations iteratively, one obtains the perturbative invariants Sk(u).

(30)

Computational Results

.

top1

.

top2

.

top3

.

top4

From the q-difference equation, one obtains the expansion of the Wilson loop expectation value aroud thenon-abelian branch.

• Figure eight knot: [Dimofte-Gukov-Lenells-Zagier]

ℓ(m) =1− 2m2− 2m4− m6+ m8+ (1− m4)

1− 2m2+ m4− 2m6+ m8

2m4 ,

S0(u) = log ℓ(m), S1(u) =1

2log

" p σ0(m)

2

#

, σ0(m) := m−4− 2m−2+ 1− 2m2+ m4, S2(u) = −1

12σ0(m)3/2m6(1− m2− 2m4+ 15m6− 2m8− m10+ m12), S3(u) = 2

σ0(m)3m6(1− m2− 2m4+ 5m6− 2m8− m10+ m12).

S1(u) coincides with the Reidemeiser torsion. [Porti][Gukov-Murakami]

T (M; u) = exp [

1 2

3 n=0

n(−1)nlog detEnρ

] .

Eρ: flat line bdle, Enρ: Laplacian on n-forms.

Hiroyuki FUJI Volume Conjecture and Topological String

(31)

.

.

4. Topological Recursion on Character Variety

TheSL(2;C) Chern-Simons gauge theoryandmatrix model/topological B-modelhave similar quantum structure.

Fact [Dijkgraaf-Hollands-Sulkowski]

Non-commutative Riemann surface

D-module structure in top. string

⇒ Quantum invariants can also be calculated via WKB method developed in the matrix model analysis.

3D Geometry Topological String Character variety Spectral curve {(ℓ, m)∈ C× C|BK(ℓ, m) = 0} {

(ep, ex)∈ C× C|H(ep, ex) = 0} u = log m: Holonomy u: Spectral parameter Leading free energy S0(u) Disk Free Energy ¯F(0,1)(u) Subleading free energy S1(u) Annulus Free Energy ¯F(0,2)(u)

q = e2~ q = egs

(32)

BKMP’s Free Energy

In the computations of the matrix model and topological B-model amplitudes, thespectral curveplays the central role.

C ={

(x , y )∈ C× C|H(y, x) = 0} .

Free energies for the B-model world-sheet with boundaries:

Spectral invariants F(g ,h)(u1,· · · , uh), ui: spectral parameter These free energies are integrals of the meromorphic forms Wh(g ).

[Bouchard-Klemm-Marino-Pasquetti]

F(g ,h)(u1,· · · , uh) =

eu1

eu∗1

dx1· · ·

euh

eu∗h

dxhWh(g )(x1,· · · , xh).

In the hermitian matrix model, Wh(g )is nothing but the genus g correlation function of h resolvents:

Wh(g )⟨∏h

i =1

1 zi − M

(g )

, eui ∼ zi.

Hiroyuki FUJI Volume Conjecture and Topological String

(33)

D-brane Free Energy

The D-brane free energy FD(u) is defined by FD(u) =

g

h≥1

gs2g−2+h

h! F(g ,h)(u,· · · , u).

For n D-brane insertions, we should consider FD(u) =

g

h≥1

gs2g−2+h h!

ui=u(1),··· ,u(n)

F(g ,h)(u1,· · · , uh).

u(1)

e

u(2)

e

u(3)

e

V = diag(eu(1),· · · , eu(n)): Set of the location of non-compact D-branes on the spectral curveC

(34)

Topological Recursion

Eynard-Orantin’s topological recursion (2g + h≥ 3):

Wh+1(g )(x , x1,· · · , xh)

=

xi

Resq=qi

dEq(x ) y (q)− y(¯q)

[

Wh+2(g−1)(q, ¯q, x1,· · · , xh) +

g ℓ=0

J⊂H

W|J|+1(g−ℓ)(q, pJ)W|H|−|J|+1(ℓ) q, pH\J) ]

.

q, ¯q: points x = q on the 1st sheet and 2nd sheet of the spectral curve qi: End points of cuts in the double covering ofC.

1 h

1

1 x x x

g

h

1 x x

x

g x

g 

 



q

q q q

k xk

j j i xi

J

= + Σ

x

x1 h

l

l l

dEq(x ): Meromorphic 1-form w/ properties.

• Simple pole at x = q with residue +1

• Zero A-period on the spectral curve C.

Hiroyuki FUJI Volume Conjecture and Topological String

(35)

Disk invariant

The initial condition for W1(0)(x ):

W1(0)(x ) = 0.

x

The top. string free energy is determined independently. [Aganagic-Vafa]

F(0,1)(u) =

u

u

d log x log y (x ), H(y , x ) = 0, u := log x . Annulus invariant

The initial condition for W2(0)(x ):

W2(0)(x , y ) = B(x , y ).

x y

B(x , y ): Bergmann kernel on the spectral curve B(x , y )x∼y dx dy

(x− y)2, I

AI

B(x , y ) = 0, 1 2

¯q q

B(x , p) = dEq(p).

The top. string free energy is regularized. [Marino][F.-Mizoguchi]

F(0,2)(u1, u2) =

x1

x1

x2

x2

[

B(x , y )− 1 (x− y)2

]

, xi = eui

(36)

Topological Recursion in Lower Orders

x1

q

=

=

=

=

q x1 x2

x2 x3 x3

x1

1

q q

q

q q

q

2 2

4

q q

2 3

1 1

1

+

+

+ + 2 q q

4

q q

1 3 2

+

2

+2 +2 +2

W W W W

(0) (x ,x ,x ) (x ) (x ,x ,x ,x ) (x ,x )1

1 1 1

2 2 2

3 3

4

: :

: :

3

(1)

(0)

(1) 1

4

2

x

x1x2x3x4

x1 x2

x2x3 x1 x4 x x x1 x x

x x x

x x x x

x x

W3(0)(x1, x2, x3) =X

qi q=qResi

dEq(x1)

y (q)− y(¯q)B(x2, q)B(x3, ¯q) W1(1)(x ) =X

qi

Resq=qi

dEq(x )

y (q)− y(¯q)B(q, ¯q), W4(0)(x1, x2, x3, x4) =X

qi q=qResi

dEq(x1) y (q)− y(¯q)

B(x2, ¯q)W3(0)(x3, x4, q) + perm(x2, x3, x4) ,

W2(1)(x1, x2) =X

qi q=qResi

dEq(x1) y (q)− y(¯q)

W3(0)(x2, q, ¯q) + 2W1(1)(q)B(x2, ¯q) .

Hiroyuki FUJI Volume Conjecture and Topological String

(37)

Our Set-up: 1

Character variety as spectral curve

We choose the character variety as the spectral curve.

character varietyof knot K . C ={

(ℓ, m)∈ C× C|˜AK(ℓ, m) = 0}

, A˜K(ℓ, m2) := BK(ℓ, m).

i.e. H(y , x ) = ˜AK(y , x ).

Location of D-brane

On the information of D-brane we identify

V = diag(eu(1, eu(2)) ↔ ρ(µ) = diag(m, m−1), m = eu. Actually this choice of D-brane locus is computed as

F¯(g ,h)(u) :=

All signs

F(g ,h)(±u, · · · , ±u).

(38)

Our Set-up: 2 Expansion Parameters

We identify the expansion parameters 2~ ↔ gs.

Therefore we compare the free energies with a fixed Euler number.

Fixed Euler Number

We discuss the following correspondence:

Sk(u)↔ Fk(u) := 2k−2

2g +h=k+1

1

h!F¯(g ,h)(u)

FD(V ) =

k=1

gsk−2Fk.

Hiroyuki FUJI Volume Conjecture and Topological String

(39)

Computational Results

.

perturbative

In the following, we summarize the spectral invariants on the character variety for thefigure eight knot.

Disk invariant:

F¯(0,1)(u) = 2

u

u

d log x log y , BK(y , x ) = 0.

This satisfies the leading order differntial equation in CS:

∂ ¯F(0,1)(u)/∂u = log y = v (u).

Annulus invariant:

1 2!

F¯(0,2)(x ) = log 1

σ(x ),

σ(x ) = x2− 2x − 1 − 2x−1+ x−2, x = m2. Comparing with F1(u) = ¯F(0,2)(u)/2, we find the subleading term of the perturbative invariant S1(u). (Reidemeister torsion)

(40)

2nd order term:

.

perturbative

The spectral invariants ¯F(0,3) and ¯F(1,1) are

1 3!

F¯(0,3)(x ) =12w2− 12w + 7

12σ(x )3/2 , w := x + x−1 2 ,

• ¯F(1,1)(x ) =8(1 + 6G )w3− 4(11 + 21G)w2+ 30w + 87 + 27G

180σ(x )3/2 .

G : Constant in the Bergmann kernel on 2-cut curve G =(q1+ q2)(q3+ q4)− 2(q1q2+ q3q4)

12 E (k)

K (k)(q1− q2)(q3− q4).

The function F2 yields to

F2=192 + 27G− 150w + 136w2− 84Gw2+ 8w3+ 48Gw3

180σ(x )3/2 .

Hiroyuki FUJI Volume Conjecture and Topological String

(41)

3rd order term:

The spectral invariants ¯F(0,4) and ¯F(1,2) are

1 4!

F¯(0,4)(x ) = 25− 67w + 44w2+ 24w3− 32w4+ 16w5

12σ(x )3 ,

1 2!

F¯(1,2)(x ) = 1280w6− 9088w5+ 13136w4+ 22176w3− 17928w2− 26352w + 23193 6480σ(x )3

+G64w4− 232w3+ 156w2+ 378w− 243

1080σ(x )2 + G2(4w− 3)2 3600σ .

Summing these contributions, we find F3.

F3= 2

"

1280w6− 448w5− 4144w4+ 35136w3+ 5832w2− 62532w + 36693 6480σ(x )3

+G64w4− 232w3+ 156w2+ 378w− 243

1080σ(x )2 + G2(4w− 3)2 3600σ

# .

(42)

Change of Gn

Unfortunately both of the contributions does not coincide because of the constant G ∈ C in the Bergmann kernel.

.

Bergmann kernel

G =(q1+ q2)(q3+ q4)− 2(q1q2+ q3q4)

12 E (k)

K (k)(q1− q2)(q3− q4).

But the coincidence is found by the following small changes.

.

.

.

1 Change 1:

We discard thered partwhich consists of the elliptic functions.

Greg(1)= (q1+ q2)(q3+ q4)− 2(q1q2+ q3q4)

12 .

.

.

.

2 Change 2:

We regularize G2 independent of G .

G2→ Greg(2)= (Greg(1))2− (1 − k2)(q1− q3)2(q2− q4)2, These procedure will be ad-hoc, but we expect some

resolutions of this point by the detailed study of the Stokes phenomenon . [Witten][Eynard]

Hiroyuki FUJI Volume Conjecture and Topological String

參考文獻

相關文件

which can be used (i) to test specific assumptions about the distribution of speed and accuracy in a population of test takers and (ii) to iteratively build a structural

Diagonal elements in bosonic environments protected by (fermion) parity so that the qubit state decohere completely but does not thermalize for sub-Ohmic environment.. This is not

Matrix model recursive formulation of 1/N expansion: all information encoded in spectral curve ⇒ generates topological string amplitudes... This is what we

The space of total positive matrices mod GL(n) is finite But the number of Ising networks is infinite. Ising networks are secretly dual to each other though local duality

Q: Can we at least find the exact string theory background that gives our universe. A: A

• Emergent Z_k 1-form &amp; 2-form symmetry. BF theory

In this way, we find out that the Chern-Simons partition function is equal to the topological string amplitude for the resolved conifold... Worldsheet formulation of

The seven columns are potential observables of FRBs and each row gives their consequence for a given model (Blitzars, compact object mergers, exploding primordial blackholes,