• 沒有找到結果。

(a) Show that (zn± wn) is convergent to z ± w

N/A
N/A
Protected

Academic year: 2022

Share "(a) Show that (zn± wn) is convergent to z ± w"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

1. Homework 5

If z, w are two complex numbers, we use zw or z · w to denote the multiplication of complex numbers z ? w defined in class.

(1) Let (zn) be a sequence of complex numbers. Suppose (zn) is convergent to z and z0. Show that z = z0.

(2) Let (zn) and (wn) be sequences of complex numbers. Suppose that (zn) and (wn) are convergent to z and w respectively for some z, w ∈ C.

(a) Show that (zn± wn) is convergent to z ± w.

(b) Show that (znwn) is convergent to zw.

(c) Show that if w 6= 0, then there exists N ∈ N such that wn 6= 0 for all n ≥ N. In this case, show that (zn/wn)n≥N is convergent to z/w.

(3) Suppose r, ρ > 0. z = r(cos θ + i sin θ) and w = ρ(cos φ + i sin φ) where 0 ≤ θ, φ < 2π. Prove the following identities:

(a) zw = rρ(cos(θ + φ) + i sin(θ + φ));

(b) 1 w = 1

ρ(cos(−φ) + i sin(−φ));

(c) zn= rn(cos nθ + i sin nθ), for any n ∈ Z.

(4) Let r > 0 and z = r(cos θ + i sin θ) with 0 ≤ θ < 2π.

(a) Sum the geometric progression

1 + z + z2+ · · · + zn,

take the real and imaginary parts and so obtain compact formulas for r sin θ + r2sin 2θ + · · · + rnsin nθ

and for

1

2 + r cos θ + r2cos 2θ + · · · + rncos nθ.

(b) Let sn = 1 + z + z2+ · · · zn, for n ≥ 1. Show that if r = |z| < 1, then

n→∞lim sn= 1 1 − z. (c) Use (b) to obtain formulas for

1 2 +

X

n=1

rncos nθ and

X

n=1

rnsin nθ.

if 0 < r < 1

(d) Use (c) to prove that for 0 < r < 1, 1 − r

1 + r ≤1 2 +

X

n=1

rncos nθ ≤1 + r 1 − r.

(5) Test the convergence/divergence of the infinite series of complex numbers

X

n=1

in n2− i. (6) Let a1, · · · , an be real numbers. Show that

√1 n

n

X

j=1

|aj| ≤ q

a21+ · · · + a2n

n

X

j=1

|aj|.

(7) On R3, we define the norm (length) of a vector v = (v1, v2, v3) by kvk =

q

v21+ v22+ v32. We define the inner product of v, w ∈ R3by

hv, wi = v1w1+ v2w2+ v3w3.

1

(2)

2

Show that

(a) ka · vk = |a|kvk.

(b) hv, vi = kvk2.

(c) kvk = 0 if and only if v = 0.

(d) |hv, wi| ≤ kvkkwk.

(e) kv + wk ≤ kvk + kwk.

(8) We say that a sequence of vectors (vn) is convergent to v in R3if for any  > 0, there exists N∈ N such that

kvn− vk < , whenever n ≥ N.

We say that a sequence (vn) of vectors in R3 is a Cauchy sequence in R3 if for any  > 0, there exists N∈ N such that

kvn− vmk < , whenever n, m ≥ N. Suppose vn= (xn, yn, zn) ∈ R3 for all n ≥ 1.

(a) Show that (vn) is convergent to v = (x, y, z) if and only if

n→∞lim xn= x, lim

n→∞yn= y, lim

n→∞zn= z.

(b) Suppose (vn) is convergent. Show that (vn) is a Cauchy sequence in R3.

(c) Show that (vn) is a Cauchy sequence in R3 if and only if (xn), and (yn), and (zn) are Cauchy sequences in R.

(d) Use (c) to prove that R3 is complete, i.e. every Cauchy sequence in R3 is convergent.

(e) Evaluate the limit of the sequence of vectors (vn) in R3defined by vn=



n tan−1 1

n, 3n + 1 3n − 1

n

, n2 2n − 1sin1

n



, n ≥ 1

(9) A sequence of vectors (vn) in R3 is bounded in R3 if there exists M > 0 such that kvnk ≤ M for all n ≥ 1.

Suppose vn= (xn, yn, zn) for n ≥ 1.

(a) Show that a convergent sequence of vectors in R3 is always bounded.

(b) Show that if (vn) is bounded in R3, then (xn) and (yn) and (zn) are all bounded in R.

(c) Use (b) to prove the Bolzano-Weierstrass theorem: any bounded sequence of vectors in R3 has a convergent subsequence in R3.

(10) Let 0 < C < 1. Suppose that (vn) is a sequence of vectors in R3 and v0 be a vector in R3 such that

kvn+1− vnk ≤ Ckvn− vn−1k, n ≥ 1.

Show that (vn) is a convergent sequence of vectors in R3. (11) Let (vn) be a sequence of vectors in R3.

(a) Show that if

X

n=1

kvnk is convergent in R, then

X

n=1

vn is convergent in R3.

(b) Let vn = (−1)n−1 n

 1

√3, 1

√3, 1

√3



for n ≥ 1. Show that

X

n=1

vn is convergent in R3

while

X

n=1

kvnk is divergent in R.

(c) Suppose that there exists a sequence of positive real numbers (bn) such that 0 ≤ kvnk ≤ bn, n ≥ 1.

Show that if

X

n=1

bn is convergent in R, then

X

n=1

vn is convergent in R3.

(3)

3

(d) Prove that if

X

n=1

vn is convergent in R3, then lim

n→∞vn= 0. Here 0 = (0, 0, 0).

(12) (Ratio/Root Test for infinite series of vectors in R3.) Let (vn) be a sequence of vectors in R3and

ρ = lim

n→∞

kvn+1k

kvnk or = lim

n→∞

pkvn nk.

Prove the following statement.

(a) If ρ < 1,

X

n=1

vn is convergent in R3.

(b) If ρ > 1,

X

n=1

vn is divergent in R3.

參考文獻

相關文件

That the sequence is increasing can be shown by induction... If not,

Here is

This is proved in class... This is proved

To do (9), you need to recall the exercise from hw 1 and hw 2 in Calculus I: (you do not need to turn in the following exercises) If you are not familiar with the exercises below,

[Hint: You may find the following fact useful.. If d is a metric for the topology of X, show that d|A × A is a metric for

[r]

[r]

Let F be the field of real numbers or the field of