• 沒有找到結果。

Section 3.4 The Chain Rule

N/A
N/A
Protected

Academic year: 2022

Share "Section 3.4 The Chain Rule"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 3.4 The Chain Rule

46. Find the derivative of the function. y = q

x +p x +√

x.

Solution:

SECTION 3.4 THE CHAIN RULE ¤ 215

35. Using Formula 5 and the Chain Rule, () = 4

0() = 4(ln 4) 





 = −1

= 4(ln 4)

−−2

= − (ln 4)4

2 .

36.  () =

4+ 1

2+ 1

5

0() = 5

4+ 1

2+ 1

4

(2+ 1)(43) − (4+ 1)(2)

(2+ 1)2 =5(4+ 1)42[22(2+ 1) − (4+ 1)]

(2+ 1)4(2+ 1)2

= 10(4+ 1)4(4+ 22− 1) (2+ 1)6

37.  () = sin  cos(1 − 2) ⇒

0() = sin 

− sin(1 − 2)(−2)

+ cos(1 − 2) · cos  = 2 sin  sin(1 − 2) + cos  cos(1 − 2) 38. () = −cos(2) ⇒ 0() = −[− sin(2)] · 2 + cos(2) · −(−1) = −−[2 sin(2) + cos(2)]

39.  () = tan√

1 + 2⇒ 0() = sec2

1 + 2· 1 2√

1 + 2 · 2 =  sec2√ 1 + 2

√1 + 2

40. () = (1 + cos2)3⇒ 0() = 3(1 + cos2)2[2(cos )(− sin )] = −6 cos  sin (1 + cos2)2 41.  = sin2(2+ 1) ⇒ 0= 2 sin(2+ 1) · cos(2+ 1) · 2 = 4 sin(2+ 1) cos(2+ 1) 42.  = sin 2+ sin(2) ⇒

0= sin 2

sin 2 + cos(2) 

2= sin 2(cos 2) · 2 + cos(2) 2· 2 = 2 cos 2 sin 2+ 22cos(2) 43. () = sin

  1 + 

0() = cos

  1 + 

·(1 + )− () (1 + )2 = cos

  1 + 

·(1 + − )

(1 + )2 =  (1 + )2cos

  1 + 

44.  () = 1

2− 1 ⇒

0() = 1· 1 2√

2− 1· 2 +√

2− 1 · 1·

−1

2

 

1

 = −1; 



−1

= −−2= −1

2

= 1

 

√2− 1−

√2− 1

2

 or 1

3− 2+ 1

2

2− 1

45.  () = tan(sec(cos )) ⇒

0() = sec2(sec(cos )) 

 sec(cos ) = sec2(sec(cos ))[sec(cos ) tan(cos )] 

 cos 

= − sec2(sec(cos )) sec(cos ) tan(cos ) sin 

46.  =

 +

 +√

 ⇒ 0=12

 +

 +√

−12 1 +12

 +√

−12

1 +12−12

47.  () = sin2(2)⇒ 0() = sin2(2)· 2 sin(2) · cos(2) · 2 = 4 sin(2) cos(2)sin2(2)

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

48. Find the derivative of the function. y = 234x. Solution:

SECTION 3.4 THE CHAIN RULE ¤ 201 41.  () = tan() + tan  ⇒ 0() = sec2() · 

() + tan · 

(tan ) = sec2() · + tan · sec2

42.  = sin(sin(sin )) ⇒ 0= cos(sin(sin )) 

(sin(sin )) = cos(sin(sin )) cos(sin ) cos  43. () = (2+ )

0() = (2+ )−1· 

(2+ ) = (2+ )−1· 2(ln ) ·  = 22(ln )(2+ )−1

44.  = 234

0= 234(ln 2) 

34 = 234(ln 2) 34(ln 3) 

4= 234(ln 2) 34(ln 3) 4(ln 4) = (ln 2)(ln 3)(ln 4)434234

45.  = cos

sin(tan ) = cos(sin(tan ))12

0= − sin(sin(tan ))12· 

(sin(tan ))12= − sin(sin(tan ))12·12(sin(tan ))−12· 

(sin(tan ))

=− sin

sin(tan ) 2

sin(tan ) · cos(tan ) · 

tan  = − sin

sin(tan ) 2

sin(tan ) · cos(tan ) · sec2() · 

=− cos(tan ) sec2() sin

sin(tan ) 2

sin(tan )

46.  =

 + ( + sin2)34

⇒ 0= 4

 + ( + sin2)33

·

1 + 3( + sin2)2· (1 + 2 sin  cos )

47.  = cos(sin 3) ⇒ 0= − sin(sin 3) · (cos 3) · 3 = −3 cos 3 sin(sin 3) ⇒

00= −3 [(cos 3) cos(sin 3)(cos 3) · 3 + sin(sin 3)(− sin 3) · 3] = −9 cos2(3) cos(sin 3) + 9(sin 3) sin(sin 3)

48.  = 1

(1 + tan )2 = (1 + tan )−2 ⇒ 0= −2(1 + tan )−3sec2 = −2 sec2 (1 + tan )3. Using the Product Rule with 0=

−2(1 + tan )−3

(sec )2, we get

00= −2(1 + tan )−3· 2(sec )(sec  tan ) + (sec )2· 6(1 + tan )−4sec2

= 2 sec2 (1 + tan )−4

−2(1 + tan ) tan  + 3 sec2 

2 is the lesser exponent for sec  and −4 for (1 + tan )

= 2 sec2 (1 + tan )−4

−2 tan  − 2 tan2 + 3(tan2 + 1)

=2 sec2

tan2 − 2 tan  + 3 (1 + tan )4

49.  =√

1 − sec  ⇒ 0=12(1 − sec )−12(− sec  tan ) = − sec  tan  2√

1 − sec . Using the Product Rule with 0=

12sec  tan 

(1 − sec )−12, we get

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

62. (a) The curve y = |x|

2−x2 is called a bullet-nose curve. Find an equation of the tangent line to this curve at the point (1, 1).

(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.

Solution:

202 ¤ CHAPTER 3 DIFFERENTIATION RULES

00=

12sec  tan 

12(1 − sec )−32(− sec  tan )

+ (1 − sec )−12

12

[sec  sec2 + tan  sec  tan ].

Now factor out −12sec (1 − sec )−32. Note that −32 is the lesser exponent on (1 − sec ). Continuing,

00= −12sec  (1 − sec )−321

2sec  tan2 + (1 − sec )(sec2 + tan2)

= −12sec  (1 − sec )−321

2sec  tan2 + sec2 + tan2 − sec3 − sec  tan2

= −12sec  (1 − sec )−32

12sec  (sec2 − 1) + sec2 + (sec2 − 1) − sec3

= −12sec  (1 − sec )−32

32sec3 + 2 sec2 +12sec  − 1

= sec  (1 − sec )−323

4sec3 − sec2 −14sec  +12

=sec  (3 sec3 − 4 sec2 − sec  + 2) 4(1 − sec )32

There are many other correct forms of 00, such as 00=sec  (3 sec  + 2)√ 1 − sec 

4 . We chose to find a factored form with only secants in the final form.

50.  =  ⇒ 0= · ()0= · 

00= · ()0+ ·

0

= · + · · = · (1 + ) or +(1 + )

51.  = 2 ⇒ 0= 2ln 2. At (0 1), 0= 20ln 2 = ln 2, and an equation of the tangent line is  − 1 = (ln 2)( − 0) or  = (ln 2) + 1.

52.  =√

1 + 3= (1 + 3)12 ⇒ 0=12(1 + 3)−12· 32 = 32 2√

1 + 3. At (2 3), 0= 3 · 4 2√

9= 2, and an equation of the tangent line is  − 3 = 2( − 2), or  = 2 − 1.

53.  = sin(sin ) ⇒ 0= cos(sin ) · cos . At ( 0), 0= cos(sin ) · cos  = cos(0) · (−1) = 1(−1) = −1, and an equation of the tangent line is  − 0 = −1( − ), or  = − + .

54.  = −2 ⇒ 0= −2(−2) + −2(1) = −2(−22+ 1). At (0 0), 0= 0(1) = 1, and an equation of the tangent line is  − 0 = 1( − 0) or  = .

55. (a)  = 2

1 + − ⇒ 0=(1 + −)(0) − 2(−−)

(1 + −)2 = 2−

(1 + −)2. At (0 1), 0= 20

(1 + 0)2 = 2(1) (1 + 1)2 = 2

22 =1

2. So an equation of the tangent line is  − 1 =12( − 0) or  = 12 + 1.

(b)

56. (a) For   0, || = , and  = () = 

√2 − 2

0() =

√2 − 2(1) − 1 2

(2 − 2)−12(−2)

√2 − 22 ·(2 − 2)12 (2 − 2)12

= (2 − 2) + 2

(2 − 2)32 = 2 (2 − 2)32

So at (1 1), the slope of the tangent line is 0(1) = 2and its equation is  − 1 = 2( − 1) or  = 2 − 1.

(b)

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

69. A table of values for f , g, f0 and g0 is given.

Section3.4 The Chain Rule 205

66. If f is the function whose graph is shown, let hsxd − f s f sxdd and tsxd − f sx2d. Use the graph of f to estimate the value of each derivative.

(a) h9s2d (b) t9s2d

x y

0 1

y=ƒ 1

67. If tsxd − sf sxd, where the graph of f is shown, evaluate t9s3d.

x y

0 1

1

f

68. Suppose f is differentiable on R and  is a real number.

Let Fsxd − f sxd and Gsxd − f f sxdg. Find expressions for (a) F9sxd and (b) G9sxd.

69. Suppose f is differentiable on R. Let Fsxd − f sexd and Gsxd − efsxd. Find expressions for (a) F9sxd and (b) G9sxd.

70. Let tsxd − ecx1fsxd and hsxd − ekxfsxd, where f s0d − 3, f 9s0d − 5, and f 99s0d − 22.

(a) Find t9s0d and t99s0d in terms of c.

(b) In terms of k, find an equation of the tangent line to the graph of h at the point where x − 0.

71. Let rsxd − f stshsxddd, where hs1d − 2, ts2d − 3, h9s1d − 4, t9s2d − 5, and f 9s3d − 6. Find r9s1d.

72. If t is a twice differentiable function and f sxd − xtsx2d, find f 99 in terms of t, t9, and t99.

73. If Fsxd − f s3f s4 f sxddd, where f s0d − 0 and f 9s0d − 2, find F9s0d.

74. If Fsxd − f sx f sx f sxddd, where f s1d − 2, f s2d − 3, f 9s1d − 4, f 9s2d − 5, and f 9s3d − 6, find F9s1d.

75. Show that the function y − e2xsA cos 3x 1 B sin 3xd satisfies the differential equation y99 2 4y9 1 13y − 0.

76. For what values of r does the function y − erx satisfy the differential equation y99 2 4y9 1 y − 0?

77. Find the 50th derivative of y − cos 2x.

78. Find the 1000th derivative of fsxd − xe2x. 56. (a) The curve y −

|

x

|

ys2 2 x2 is called a bullet-nose

curve. Find an equation of the tangent line to this curve at the point s1, 1d.

(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.

57. (a) If fsxd − xs2 2 x2 , find f 9sxd.

(b) Check to see that your answer to part (a) is reasonable by comparing the graphs of f and f 9.

58. The function fsxd − sinsx 1 sin 2xd, 0 < x < , arises in applications to frequency modulation (FM) synthesis.

(a) Use a graph of f produced by a calculator to make a rough sketch of the graph of f 9.

(b) Calculate f 9sxd and use this expression, with a calculator, to graph f 9. Compare with your sketch in part (a).

59. Find all points on the graph of the function

fsxd − 2 sin x 1 sin2x at which the tangent line is horizontal.

60. At what point on the curve y −s1 1 2x is the tangent line perpendicular to the line 6x 1 2y − 1?

61. If Fsxd − f stsxdd, where f s22d − 8, f 9s22d − 4, f 9s5d − 3, ts5d − 22, and t9s5d − 6, find F9s5d.

62. If hsxd −s4 1 3f sxd, where fs1d − 7 and f 9s1d − 4, find h9s1d.

63. A table of values for f , t, f 9, and t9 is given.

x fsxd tsxd f 9sxd t9sxd

1 3 2 4 6

2 1 8 5 7

3 7 2 7 9

(a) If hsxd − f stsxdd, find h9s1d.

(b) If Hsxd −ts f sxdd, find H9s1d.

64. Let f and t be the functions in Exercise 63.

(a) If Fsxd − f s f sxdd, find F9s2d.

(b) If Gsxd −tstsxdd, find G9s3d.

65. If f and t are the functions whose graphs are shown, let usxd − f stsxdd, vsxd −ts f sxdd, and wsxd −tstsxdd. Find each derivative, if it exists. If it does not exist, explain why.

(a) u9s1d (b) v9s1d (c) w9s1d

x y

0

f

1 g 1

;

;

;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(a) If h(x) = f (g(x)), find h0(1).

(b) If H(x) = g(f (x)), find H0(1).

Solution:

204 ¤ CHAPTER 3 DIFFERENTIATION RULES 62.() =

4 + 3 () ⇒ 0() = 12(4 + 3 ())−12· 30(), so

0(1) = 12(4 + 3 (1))−12· 30(1) = 12(4 + 3 · 7)−12· 3 · 4 = 625= 65.

63. (a) () = (()) ⇒ 0() = 0(()) · 0(), so 0(1) = 0((1)) · 0(1) = 0(2) · 6 = 5 · 6 = 30.

(b) () = (()) ⇒ 0() = 0( ()) · 0(), so 0(1) = 0( (1)) · 0(1) = 0(3) · 4 = 9 · 4 = 36.

64. (a)  () = (()) ⇒ 0() = 0( ()) · 0(), so 0(2) = 0( (2)) · 0(2) = 0(1) · 5 = 4 · 5 = 20.

(b) () = (()) ⇒ 0() = 0(()) · 0(), so 0(3) = 0((3)) · 0(3) = 0(2) · 9 = 7 · 9 = 63.

65. (a) () = (()) ⇒ 0() = 0(())0(). So 0(1) = 0((1))0(1) = 0(3)0(1). To find 0(3), note that  is linear from (2 4) to (6 3), so its slope is3 − 4

6 − 2= −1

4. To find 0(1), note that  is linear from (0 6) to (2 0), so its slope is0 − 6

2 − 0= −3. Thus, 0(3)0(1) =

14

(−3) = 34.

(b) () = (()) ⇒ 0() = 0( ())0(). So 0(1) = 0( (1))0(1) = 0(2)0(1), which does not exist since

0(2)does not exist.

(c) () = (()) ⇒ 0() = 0(())0(). So 0(1) = 0((1))0(1) = 0(3)0(1). To find 0(3), note that  is linear from (2 0) to (5 2), so its slope is2 − 0

5 − 2= 2

3. Thus, 0(3)0(1) =2 3

(−3) = −2.

66. (a) () = (()) ⇒ 0() = 0( ())0(). So 0(2) = 0( (2))0(2) = 0(1)0(2) ≈ (−1)(−1) = 1.

(b) () = (2) ⇒ 0() = 0(2) · 



2

= 0(2)(2). So 0(2) = 0(22)(2 · 2) = 40(4) ≈ 4(2) = 8.

67.The point (3 2) is on the graph of , so (3) = 2. The tangent line at (3 2) has slope∆

∆ = −4 6 = −2

3.

() =

 () ⇒ 0() = 12[ ()]−12· 0() ⇒

0(3) =12[ (3)]−12· 0(3) =12(2)−12(−23) = − 1 3√

2 or −16

√2.

68. (a)  () = () ⇒ 0() = 0() 

() = 0()−1 (b) () = [()] ⇒ 0() =  [ ()]−10()

69. (a)  () = () ⇒ 0() = 0() 

() = 0() (b) () =  () ⇒ 0() =  ()

 () =  ()0()

70. (a) () = +  () ⇒ 0() = ·  + 0() ⇒ 0(0) = 0·  + 0(0) =  + 5.

0() = + 0() ⇒ 00() = ·  + 00() ⇒ 00(0) = 20+ 00(0) = 2− 2.

(b) () =  () ⇒ 0() = 0() +  () ·  ⇒ 0(0) = 00(0) +  (0) · 0= 5 + 3.

An equation of the tangent line to the graph of  at the point (0 (0)) = (0 (0)) = (0 3) is

 − 3 = (5 + 3)( − 0) or  = (5 + 3) + 3.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

99. Let c be the x-intercept of the tangent line to the curve y = bx(b > 0, b 6= 1) at the point (a, ba). Show that the distance between the point (a, 0) and (c, 0) is the same for all values of a.

SECTION 3.5 Implicit Differentiation 209

99. Let c be the x-intercept of the tangent line to the curve y = bX

(b > 0, b 共 1)at the point 仰,ba). Show that the distance

100. On every exponential curve y = bX (b > 0, b 手 1) ,there is exactly one point (xo, yo) at which the tangent line to the between the points 版,0)and 忙, 0)is the same for all values

of a.

curve passes through the origin. Show that in every case, yo = e. [Hint: You may wish to use Formula 1.5.10.]

y

x

101. If F = fo 9 0 h, where J, g, and h are di旺erentiablefunc- tions, use the Chain Rule to show that

F'(x) =

f'

(g(h(x)) . g'(h(x)) .h'(x)

102. If F =

f

0 g, where J and 9 are twice di叮叮entiablefunc- tions, use the Chain Rule and the Product Rule to show that the second derivative of F is given by

F 叫x) = f叫 g(x)) . [g'(X)]2 +

f'

(g(x)) . 9 叫x)

APPLIED

PROJ 的 j

WHERE SHOULD A PILOT START

0以ENT?

y=P(x)

An approach path for an aircraft landing is shown in the fìgure and satisfìes the fol1owing

之--可1_ conditions:

h

(i) The cruising altitude is h when descent starts at a horizontal distance

e

from touch- down at the origin.

(ii) The pilot must maintain a constant horizontal speed v throughout descent.

(iii) The absolute value of the vertical acceleration should not exceed a constant k (which is much less than the acceleration due to gravity).

01 e

x 1. Find a cubic polynomial P(x) = ax3 + bx 2 + cx + d that satisfìes condition (i) by imposing suitable conditions on P(x) and P'(x) at the start of descent and at touchdown 2. Use conditions (ii) and (iii) to show that

6hv2

一一一一- ,,:三L

e2 、心

3. Suppose that an airline decides not to allow vertical acceleration of a plane to exceed k = 1385 km/h2. If the cruising altitude of a plane is 11,000 m and the speed is 480 km/h, how far away from the airport should the pilot start descent?

4. Graph the approach path if the conditions stated in Problem 3 are satisfìed

3.5 j lmplicit Differentiation

• Implicitly Defined Functions

The functions that we have met so far can be described by expressing one variable explic- itly in terms of another variable-for example,

y

=

#τ了。r y = x Slll X

肘, in general, y = j(x). Some functions, however, are defined implicitly by a relation Solution:

SECTION 3.4 THE CHAIN RULE ¤ 223 97. Since =

180

rad, we have 

(sin ) = 



sin180 

= 180 cos180  =180 cos . 98. (a) () = || =√

2= (2)12 ⇒ 0() = 12(2)−12(2) = √

2=  || for  6= 0.

is not differentiable at  = 0.

(b) () = |sin | =√

sin2 ⇒

0() =12(sin2)−122 sin  cos  = sin 

|sin |cos 

=

cos  if sin   0

− cos  if sin   0

is not differentiable when  = ,  an integer.

(c) () = sin || = sin√

2

0() = cos || · 

||= 

||cos  =

cos  if   0

− cos  if   0

is not differentiable at 0.

99.  =  ⇒ 0= ln , so the slope of the tangent line to the curve  = at the point ( )is ln . An equation of this tangent line is then  − = ln  ( − ). If  is the ­intercept of this tangent line, then 0 − = ln  ( − ) ⇒

−1 = ln  ( − ) ⇒ −1

ln  =  −  ⇒ | − | =



−1 ln 



 = 1

|ln |. The distance between ( 0) and ( 0) is | − |, and this distance is the constant 1

|ln |for any . [Note: The absolute value is needed for the case 0    1 because ln  is negative there. If   1, we can write  −  = 1(ln ) as the constant distance between ( 0) and ( 0).]

100.  =  ⇒ 0= ln , so the slope of the tangent line to the curve  = at the point (0 0)is 0ln . An equation of this tangent line is then  − 0 = 0ln  ( − 0). Since this tangent line must pass through (0 0), we have

0 − 0 = 0ln  (0 − 0), or 0= 0(ln ) 0. Since (0 0)is a point on the exponential curve  = , we also have

0= 0. Equating the expressions for 0gives 0= 0(ln ) 0 ⇒ 1 = (ln ) 0 ⇒ 0= 1(ln ).

So 0= 0= 0ln  [by Formula 1.5.10] = (1(ln )) ln = 1= .

101. Let () = (()) so that  () = ((())) = (()). By the Chain Rule, we have 0() = 0(()) · 0()and, by the Chain Rule and substitution, we have 0() = 0(()) · 0() = 0((())) · 0(()) · 0().

102.  () =  (()) ⇒ 0() = 0(()) · 0()by the Chain Rule. By the Product Rule and Chain Rule we have

00() = 0(()) · 00() + 0() · 

0(()) = 0(()) · 00() + 0() · 00(()) 0()

= 00(())[0()]2+ 0(()) · 00()

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

The first equation gives  = −1, but this does not satisfy the other equations, so the particles do not collide.. All

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience.. Cengage Learning reserves the right to remove additional content

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience.. All

Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All