• 沒有找到結果。

The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts

N/A
N/A
Protected

Academic year: 2021

Share "The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts"

Copied!
10
0
0

加載中.... (立即查看全文)

全文

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

B:

Environmental

jo u r n al ho m e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

The

roles

of

surface-doped

metal

ions

(V,

Mn,

Fe,

Cu,

Ce,

and

W)

in

the

interfacial

behavior

of

TiO

2

photocatalysts

Sue-min

Chang

,

Wei-szu

Liu

1

InstituteofEnvironmentalEngineering,NationalChiaoTungUniversity,1001,UniversityRoad,Hsinchu30068,Taiwan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15December2013 Receivedinrevisedform8March2014 Accepted22March2014

Availableonline2April2014 Keywords:

Surfacedoping Photocatalyticactivity Electronicstructures Chargerecombination Interfacialchargetransfer

a

b

s

t

r

a

c

t

Sixtypesoftransitionmetalions,includingV,Mn,Fe,Cu,Ce,andW,aredopedintothesurfacelattice ofTiO2 powders,andtheirrolesinthechargetrapping,recombination,interfacialtransfer,and

pho-tocatalyticactivityaresystematicallystudied.Thesurface-dopedTiO2powdersexhibitphotocatalytic

activityintheorderofFe/TiO2>Cu/TiO2>V/TiO2>W/TiO2>Ce/TiO2>Mn/TiO2.WhiletheFe,CuandV

ionsimprovetheactivity,theW,Ce,andMnionscausedetrimentaleffects.Thedifferentinfluencesare associatedwiththeirenergylevels,coordinationnumbersandelectronegativity.Thesurface-dopedions trapchargecarriersandinteractwithadsorbatestoprovidealternativepathwaysforinterfacialcharge transfer.TheFeandCuionsinhibitdefect-mediatedannihilation,facilitatinginterfacialchargetransfer intermsofd–dtransitionsandthermallyinducedde-trapping.TheMnions,whichintroduceboth occu-piedandunoccupiedstatesinthemid-band-gapregion,incontrast,trapholesandelectronstoseverely consumechargecarriersviaintra-atomicrelaxation.TheCeandWions,whichhavehighcoordination numbersandelectronegativity,stronglybondtheO2−radicals,thuslimitingchargeutilizationaswellas

photocatalyticperformance.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Photocatalysts, which absorb photons to promote chemical reactions,havebeenconsideredasimportantgreenmaterialsfor environmental and energy applications [1,2]. Titanium dioxide (TiO2)isthemostusedphotocatalystbecauseithashigh chemi-calstability,lowtoxicity,andsolarsensitivity.Inaddition,itshigh densityofstatesinbandsenablesefficientphoton-to-current con-version,and leadstoTiO2 catalysts becomingmoreactive than othersemiconductors[3].Photocatalyticactivitycorrelatestothe numberofchargecarrierswhichsuccessfullyescapefrom recom-binationand transfertotheadsorbates acrosstheinterface.To maintainahighlevelofeffectivechargecarriers,dopingtransition metalionsintotheTiO2latticetoinhibitrecombinationhasbeen extensivelystudied[4,5].

Conventionaldopingincorporatesionshomogeneouslyintothe bulklattice.Thedopedionsintroduceadditionalenergylevelsinto thebandstructure which areabletotrapelectronsor holesto

∗ Correspondingauthor.Tel.:+88635712121x55506;fax:+88635725958. E-mailaddress:chang@mail.nctu.edu.tw(S.-m.Chang).

1 Presentaddress:DepartmentofMaterialsScienceandEngineering,National

TsingHuaUniversity,101,Section2,Kuang-FuRoad,Hsinchu,30013,Taiwan.

separate charge carriers from the bands, thus allowing more chargecarrierstosuccessfullydiffusetothesurface[5]. Depend-ingonthe typesand thechemical states, transitionmetalions providedifferentcontributionstothephotocatalyticactivity.Xu etal. [4]improvedthephotocatalytic activityofTiO2 nanopar-ticles by doping seven types of rare-earth ions individually into the TiO2 matrix, and the enhancement is in the order of Gd3+>Nd3+>La3+>Pr3+(Er3+)>Ce3+>Sm3+.Choietal.[5]reported thatdopingTiO2 colloids withFe3+,Mo5+,Ru3+,Os3+,Re5+,V4+, andRh3+ionsimprovesphotoactivity,whereasCo3+andAl3+ions reducetheactivity.Thedopantswithclosed-shellconfigurations areconsideredtohavelittleeffectontheactivity.Incontrast,good dopantsintroducetheirenergy levelsintheconduction/valence bands.Suchdopantsnotonlytrapchargecarriersinorderto sup-pressband-to-bandrecombination,butalsoreleasethetrapped carriers viathermaltransitionsoastomaintaina highlevelof effectivechargecarriers.Similarde-trappingofshallowlytrapped chargecarriers alsotakesplace inthedopantswiththeenergy levelsclosetothebandedges[7].

Althoughtheimprovedactivityofbulk-dopedTiO2particleshas beendemonstrated,manystudieshaveindicatedthatdetrimental effectsarethegeneralconsequenceofdopingbecausethetrapped charge carriers quickly recombine with the counter carriers, irrespectiveofshallowordeeptrapping[6,8,9].Thecontroversial http://dx.doi.org/10.1016/j.apcatb.2014.03.044

(2)

Fig.1.Thecross-sectionalviewofsurface-dopedTiO2particles.

effectsofdopingonthephotocatalyticperformanceareattributed tothedifferentdopingamountsandthedifferentsizesofdoped photocatalysts.Withtheappropriateamountsofdopants,small sacrificesinchargecarriersreducethecarrierdensityinthebands. The dopants thus inhibit band-to-band relaxation and allow a largefractionoftheremainingcarrierstosuccessfullydiffuseto thesurface. The optimal loadingfor the highest photocatalytic performance is particle-size dependent. According to reported data, a model developed by Bloh et al. indicates that optimal doping amounts decrease with increasing particle sizes [10]. Heavydopingisunfavorableforlargeparticlesbecauseitinduces moredefect-mediatedrecombinationduringthelongjourneyof thecarriers tothe surface[11–13]. In contrasttothe annihila-tioninsidethebulkparticles,thetrappedchargecarriersinthe quantum-sizedparticlesareabletoreachtheinterfacebecause theirwavefunctionspreadsovertheentirecatalystcluster[5].

Toenablethetrappedchargecarrierstoeffectivelyparticipate inthesurfacereactions,Vionsweredopedintothesurface lat-ticeofmicrometer-sizedTiO2 particlesinapreviousstudy[14]. Inaddition,theinfluencesofsurfacedopingandbulkdopingon photocatalyticactivitywereclarified.ItwasfoundthattheVions withinthesurfacelatticesignificantlyenhancetheactivityasthe concentrationincreases.Incontrast,unlesstraceamountsofVions arepresent,bulkdopingreducestheactivity.Thesurface-doped ionscreateaninternalelectricfield todrivethecharge carriers thataredriftingfromthebulk tothesurfaceandsuppress sur-facerecombinationviatrapping,thuspromotingchargeutilization. Similarimprovements where surface dopingcontributes tothe activityarealsodemonstratedintheP5+-andZr4+-dopedTiO

2,the Zn2+-dopedSnO

2andtheBa-dopedCd0.8Zn0.2Spowders[15–18]. Unlikethedopantswithinthebulklattice,thesurface-dopedions areinvolvedintheadsorptionandinterfacialchargetransferin additiontotrapping.Therolesofdifferentsurface-dopedionsinthe interfacialbehaviorsandtheircontributionstothephotocatalytic activityarestillunclear.

Inthisstudy,weseparatelyincorporatesixdifferenttypesof transitionmetalions,includingV,Mn,Fe,Cu,Ce,andW,intothe TiO2surfacelattice,andthephotocatalyticactivityofthe surface-dopedTiO2powdersaresystematicallyexamined.Surfacedopingis carriedoutbycoatingas-preparedTiO2particleswithathindoped filmfollowedbycalcination.Fig.1showsthecross-sectionalview ofthesurface-dopedTiO2samples.Toexplorethedifferent contrib-utionstotheactivitybythesurface-dopedions,wedeterminethe chargetrapping,recombination,andinterfacialchargetransferat thesurfaces.Therolesofthedopantsintheinterfacialbehaviorsare elucidatedwithrespecttotheirelectronicstructures,coordination numbersandelecotronegativity.

2. Experimental

2.1. SurfacedopingofTiO2photocatalystswithtransitionmetal ions

Bothpureandsurface-dopedTiO2sampleswerepreparedusing sol–gelprocesses, in which titanium isopropoxide (TTIP, Acros, 98%)compoundswereusedastheprecursorfortheTiO2powders. TheTTIPliquidwasdilutedwithisopropanol(IPA,J.Backer,99.5%) toreacha molarratioof TTIP/IPA=1/30.Theprecursor solution washeatedat150◦Cunderambientconditionsfor3htoinduce hydrolysisandcondensation.Thesolidwasthencalcinedat500◦C for3htoobtainpureTiO2powders.Surface-dopedTiO2powders werepreparedbycoatingtheas-driedTiO2powders(2.0g)witha thindopedTiO2film.TheTiO2powdersweredispersedina coat-ingsolutionthatcontainsTTIPandtransitionmetalions(M)inIPA atamolarratioofM/TTIP/IPA=0.2/1.0/1200.Sixtypesof transi-tionmetalions,VO(OC3H7)3(VTIP,Aldrich,99%),Mn(NO3)2·4H2O (Merck),Fe(NO3)3·9H2O(Riedel-deHaën),CuCl2·2H2O(SHOWA), WCl6 (Aldrich),andCe(NO3)3·6H2O(SHOWA),wereusedasthe dopants. To completely coat the TiO2 particles with the coat-ingsolutions,thesuspensionsweretreatedusingsonicationfor 10min.Then,thepowderswereseparatedfromthecoating solu-tionthroughcentrifugationat15,000rpmfor3min.Afterremoving thesupernatant,theremainingsolutionwasfurtherdrainedusing suction.Simultaneously,theadsorbedprecursorsbegantoreact withthewatervaporintheambientairtoformadopedthinfilm ontheTiO2surface.Priortocalcinationat500◦Cfor3h,thesamples weredriedat100◦Ctostabilizethestructureofthefilms.Doping concentrationswereadjustedbychangingtheM/TTIPratiosinthe coatingsolution.

2.2. Characterizations

Themorphologyofthesurface-dopedTiO2powderswas char-acterized usinga transmission electron microscope(TEM, JOEL JEM-3000F) operated at an acceleration voltageof 300kV. Ele-mentalline-scanningandmappinganalysisweremeasuredusing an energy-dispersivespectrometer (EDS)equippedin the TEM. The chemical states of thedopants and thechemical composi-tionswereidentifiedusinganX-rayphotoelectronspectrometer (XPS,PHI1600)operatedwithanAlK␣radiation(1486.6eV).The photoelectrons werecollectedin the analyzerat a passenergy of 23.5eVand ata collectioninterval of 0.1eV.Chemicalshifts resultingfromthechargingeffectswerecalibratedbyfixingthe C1speakofthesurfacecarbonaceouscontaminantsat284.8eV. The crystalline structures of the TiO2 powders were examined usinganX-raypowderdiffractometer(XRPD,MACScience,MXP18) withaCuK␣radiation(=1.5406 ´˚A),anacceleratingvoltageof 30kV, and an emission current of 20mA. The diffraction pat-ternswererecordedatthe10–80◦2positionswithasampling widthof 0.03◦ and a scanningspeedof 10◦/min.The electronic structuresof thesampleswereanalyzedusinganUV–vis spec-trometer (HITACHI 3010) in diffused reflectance mode with a scanning range from 900to 200nm. Aluminum oxide (Al2O3), whichwasconsideredtodelivertotalreflection,wasusedasthe referenceforallthemeasurements.Thediffusedreflectancewas thenconvertedintoabsorptionsaccordingtotheKubelka–Munk formula[19].Nitrogenadsorption/desorptionisothermswere mea-suredusingagassorptionanalyzer(Micromeritics,Tristar3000)at 77K.TheBrunauer–Emmett–Teller(BET)modelwasusedto esti-mate thesurfaceareas ofthesamplesbased ontheabsorption data.

(3)

2.3. Chargetrappingandinterfacialtransfer

Electronparamagneticresonance(EPR)spectrawererecorded usingaBrukerEMXspectrometeroperatedatanX-bandfrequency. A500WXelamp(UshioInc.),withitsmajoroutputwavelength setto365nm,servedasthelightsourcefortheactivationofthe photocatalystsandwaspositionedatafixeddistancefromasample cavity.Priortotheanalysis,thepowdersinthesampletubeswere evacuatedat120◦Cfor2htoremoveadsorbedwaterfromthe sur-face.Thespectraofthetrappedchargesinthephotocatalystswere recordedat77Kunderavacuumbothinthedarknessandwith UVillumination.Toexaminetheinterfacialchargetransferfrom thesurfacetotheadsorbates,thesametubesweresubsequently filledwithO2gas,andthespectraofthesamplesintheO2 atmo-spherewereacquiredusingthesameprocesses.Theinstrumental conditionsweresetatacenterfieldof3050Gandasweepwidth of6000.0G.Themicrowavefrequencywas9.65GHzwithapower of15.0mW.

2.4. Photocatalyticactivity

Thephotocatalyticactivitiesofthepureandthesurface-doped TiO2powderswereexaminedbasedonthedegradationof bisphe-nolA(BPA,20mg/L)inanaqueoussolutionundertheirradiation of305nmUVlight.Thecatalystsweresuspendedultrasonicallyin theBPAsolutionsinfused-silicatubes.Priortoirradiation,the sus-pensionwaspurgedusingO2gasindarknessaccompaniedwith stirringfor30mintoequilibratetheadsorptionanddesorptionof BPAandtosaturatethesolutionwithO2.Thedegradationofthe BPAmoleculeswasmonitoredbysamplingthesuspensionat differ-entintervalsofirradiationtimeandanalyzingtheconcentrationof themoleculesintheremainingsolutionusingahighperformance liquid chromatograph (HPLC, Waters Alliance 2695) equipped witha C18column(5␮m,4.6mm×250mm)and aphotodiode array detector (PDA, Waters 2996). The mobile phase was a methanol–watermixture(80/20,V/V)ataflowrateof1.0mL/min.

3. Resultsanddiscussion

3.1. Bulkcharacteristicsofthesurface-dopedTiO2photocatalysts Fig.2showsTEMimage,EDSelementalline-scanningand map-pingresultsfortheFe-dopedTiO2particles.Thesizesandshapes ofthesol–gel-derivedTiO2powderswereirregular,andmostwere ata nanometerscale.High concentrations ofFeelementswere measuredintheedgesoftheparticlesatathicknessof10–20nm. Thisresultrevealsthesurface-dopedfeatureofthesample.Other dopedpowdersexhibitedsimilarmorphologies,buthadthinner dopedlayers (<10nm).The bulk properties,includingthe crys-tallinestructures,theelectronicstructuresandthesurfaceareas,of thesampleswereexaminedusingXRD,UV–visspectroscopy,and N2 adsorption–desorption measurement, respectively (see Sup-plementarymaterials,TableS1).PureTiO2powdersexhibitedan anatasephasewithacrystallitesizeof16.5nm.Thebandgapof theTiO2particleswas3.28eV,whichisclosetothatofbulkanatase TiO2crystals[20].Surfacedopingwithtransitionmetalions, includ-ingV,Mn,Fe,Cu,Ce,andW,hadlittleeffectonthebulkcrystalline structures,andsimilarsizedanataseTiO2crystals(14.8–16.8nm) werealsomeasuredinthesurface-dopedpowders.An insignifi-cantshiftinthe(101)diffractionpeak(2=25.29–25.32)indicates thatthedopedionsmainlyremainwithinthesurfacelattice,and thermally-inducedinwardmigrationisunfavorable(see Supple-mentarymaterials,Fig.S1). Thesedoped ionsslightly inhibited particlecoalescenceandincreasedthespecificsurfaceareaofthe TiO2powdersfrom48to52–60m2/g.ThedopedTiO2powdershad

Fig.2. (a)TEMimage,(b)EDSline-scanningand(c)mappingresultsforthe Fe-dopedTiO2particles.GreenandreddotsinthemappingresultstandforFeandTi

elements,respectively.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

(4)

Table1

TheM/Tiratios,chemicalstates,andthepeakfeaturesofthephotoelectronlinesofdopedtransition-metalions.

Dopant XPS-surface XPS-subsurface EPR

BEa(eV) DSb(eV) FWHMc

(eV)

Chemical states

M/Tiratios BEa(eV) DSb(eV) FWHMc

(eV) Chemical states Chemical states V 516.7 7.6 1.5 V4+ 0.05 516.6 7.6 1.5 V4+ V4+(V3+)d Mn 641.6 11.5 4.0 Mn3+ 0.11 641.5 11.5 4.5 Mn3+ Mn4+ (Mn3+) Fe 710.8 13.1 5.0 Fe3+ 0.48 709.6 13.6 4.0 Fe2+ Fe3+(Fe2+) Cu 933.0 19.9 2.0 Cu+ 0.11 932.7 19.9 2.5 Cu+ Cu2+(Cu+) Ce 886.1 882.0 18.5 18.1 4.5 4.0 Ce0(55)e Ce4+(45) 0.09 885.7 881.6 18.5 18.3 4.5 4.0 Ce0(66) Ce4+(34) Ce0,Ce4+ W 36.3 2.2 1.8 W6+ 0.12 35.9 2.2 1.7 W6+ W6+ aBE—bindingenergy.

bDS:energydifferencebetweenthedoubletsplittingpeaks. c FWHM—fullwidthathalfmaximum.

d ThespeciesintheparenthesesaredeterminedbasedontheincreasedintensityofoxidizedspeciesintheEPRspectraafterexposuretoO

2molecules. eValuesintheparenthesesaretheatomicpercentageofthespecies.

anintrinsicbandgapof3.21–3.31eV.Inaddition,thesurface-doped V,Mn,andFeionsintroducedextrinsicbandgapsof2.73,2.54,and 2.15eV,respectively,inthedopeddomain.

3.2. Surfacecompositionsandchemicalstatesofdopants

Thesurfacecompositionsandthechemicalstatesofthedopants werecharacterizedusingbothXPSandEPRmethods.TheXPS spec-traofthedopants inthetop-mostandsub-surfacelayerswere acquiredbothbeforeandaftersoftArsputtering.Toensurethat thesoft sputtering didnot induce reduction ofthe dopedions in thesamples,Fe2O3 powderswereused asthe standard and thephotoelectronlinesoftheFeionsweremeasuredbothbefore and after thesputtering. A minute chemical shift betweenthe photoelectronpeaksconfirmsthatthisactionhaslittleinfluence onchangingthechemicalstates.Table1summarizesM/Tiratios (Mdenotesthetransitionmetalions),thechemicalstatesofthe dopants,anddetailedfeaturesoftheircorresponding photoelec-tronlinesintheXPSspectra.ThemajorityofthemeasuredM/Ti ratiosofthedopedpowders(0.05–0.12)werelessthanthe nom-inalvalue(0.20),exceptfortheFe-dopedTiO2sample,whichhad anFe/Tiratioof0.48.ThelowM/Tiratiosareastheresultofthe reducedthicknessesofthedopedshells(<10nm)comparedtothe samplingdepthofXPS.Infact,thesurfaceFe/Tiratiowas0.22prior tocalcination.Theincreaseintheratioaftercalcinationindicates thatcalcinationforcestheFeionstomovetowardthesurface.The segregationoftheFeionsisduetotheirlowsolubilityintheTiO2 matrixandtheHüttigtemperaturesofironoxides(defined empir-icallyas0.3Tm,whereTmisthemeltingpoint.Fe2O3:470◦C,FeO: 413◦C)thatarelowerthanthecalcinationtemperature(500◦C) [21,22].AlthoughMn-,V-,andCu-basedoxidesalsohavelow Hüt-tigtemperatures(Mn2O3:266◦C,V2O5:207◦C,CuO:316◦C,Cu2O: 289◦C),increasedM/TiratiosarenotmeasurableusingXPSbecause oftheultra-thincoatingofthedopedshells[23].

Thestates ofthetransition metalions,V4+,Mn3+,Fe3+,Cu+, Ce0/Ce4+, and W6+, were characterized in the top-most lattice. ExceptfortheW6+andFe3+ions,whichmaintainthesamevalence numbersasthoseoftheirprecursors,theV4+,Cu+,andCe0species arethereducedforms,and theMn3+andCe4+ionsarethe oxi-dizedformsoftheirprecursors.Afterremovalofseveralatomic layersusingsoft sputtering,wedeterminedthechemical states ofthedopantslocatedwithinthesub-surfacelattice.Whilethe otherdopedionsexhibitedthesamechemicalstatesasthosein theouterlattice,reducedFe2+speciesandanincreasedfraction ofCe0 atomsweremeasured.TheFe3+andV5+ionscouldhave beenreducedbytheisopropanolintheprecursorsolutionsbecause thereductionpotentialoftheFe3+/Fe2+(0.711V)andtheV5+/V4+ (E0=1.00V)couples is higher than that of isopropanol/acetone

5000 4500 4000 3500 3000 2500 2000

Intensity

(A.

U.

)

Magnetic field

(G

)

TiO2 V-TiO2 Mn-TiO2 Fe-TiO2 Cu-TiO2 Ce-TiO2 W-TiO2 2000 1800 1600 1400 1200 1000 G

Fig.3. EPRspectraforboththepureandtheM-dopedTiO2powders(M=V,Mn,Fe,

Cu,Ce,andWionswithinthesurfacelattice).Allspectraarerecordedindarkness inthevacuum.

(E0=0.28V) [14,24]. Moreover, thermally-induced dehydroxyla-tionanddeoxygenationalsoforcethereductionofthedopedions [24,25].TheexposureofsurfaceFeionstoO2 moleculesathigh temperaturesdominates theFe3+stateinthetop-mostlayer.In contrast to reduction, Mn2+-to-Mn3+ conversion occurs via the thermal decompositionof a MnO2 moiety atabout 500◦C [26]. TheincompatiblestructureoftheMnOmoietyintheTiO2matrix couldbethereasonfortheMnO-to-MnO2transformationatlow temperatures.ThedisproportionationoftheCe3+ionsleadstothe coexistenceoftheoxidizedCe4+andreducedCe0species.

Fig.3showstheEPRspectraforthepureandthesurface-doped TiO2 powders recorded in a vacuum.EPR is sensitive to para-magneticspeciesandprovidesadditionalinformationaboutthe chemicalstatesofthedopants.ThepureTiO2powdersexhibited aweaksignalatg=2.003indarkness,whichdenotesthetrapped holesatthesurfaceO−species[15].AllthedopedTiO2 samples showedintensivepeaks,otherthantheO−signal,intheirEPR spec-tra,indicatingtheparamagneticfeaturesofthedopedions.Vions (S=1/2,I=7/2)inthedopedTiO2powderscontributedtoanoctet in theERPspectrum astheresultofnucleus hyperfine interac-tions.ThesimulatedspinHamiltonianparametersfortheVions areg=1.962,A=52G,g//=1.938,andA//=165G,indicatingthe V4+ions[14].Thehyperfineinteractionsof55Mnelements(I=5/2)

(5)

4000 2000 -13000 0 13000 4000 2000 -40000 0 40000 4000 2000 -30000 0 30000

W-Ti

O

2

Ce-TiO

2

Cu-TiO

2

Fe-TiO

2

Mn-TiO

2

V-TiO

2 4000 2000 -225000 0 225000 4000 2000 -20000 0 20000 4000 2000 -20000 0 20000

Δ

I

Magnetic field

(G

)

Fig.4. EPRdifferencespectrafortheM-dopedTiO2powders.I=IO2−Ivac,whereIO2andIvacrepresenttheintensityofthesignalsrecordedintheO2atmosphereandin

thevacuum,respectively.

showedtwosetsofsextetintherangeof2835–3976G[27].The simulatedHamiltonianparametersfortheMnionsaregx=2.008, gy=1.994,gz=1.992,andAiso=86G,indicatingtheMn4+ionswith ad3 electronicconfigurationandS=3/2.Mn3+ions,whichwere examinedasthemajordopedspeciesinXPS,weresilentinEPR. TheFe-dopedTiO2sampleshowedtworesonancepeaksatg=4.3 and2.0,indicatingtheFe3+ionsatthesubstitutionalsiteinthe anataseTiO2lattice[28].Cuions(I=3/2)showedthreesetsof4-fold hyperfine-structurelines,indicatingCu2+ionswithad9electronic configuration.Thesepeakscanberesolvedusingtwogroups of Hamiltonianparameters.Thefirstisg=2.07,A=30G,g//=2.33, A//=70G,andtheotherisg⊥=2.07,A⊥=30G,g//=2.24,A//=70G, whichindicatetheCu2+ionsatthesubstitutionalsitesandtheCu2+

ionsintheCuOcluster,respectively[29].CeandWionsweresilent intheEPRspectra,revealingtheirdiamagneticproperties.These resultsareinagreementwiththechemicalspecies(W6+,Ce4+,and Ce0)determinedfromXPS.WefurtheracquiredtheEPRspectrafor thedopedsamplesintheO2atmospheretoexaminetheinteraction ofthesampleswithO2molecules.Fig.4showstheEPRdifference spectraobtainedbysubtractingthesignalsrecordedinthe vac-uumfromthoserecordedintheO2atmosphere.Inthepresenceof O2molecules,theintensityoftheV4+,Mn4+,Fe3+,andCu2+species increasedinthedopedTiO2powders.Theseresultsrevealthe exist-enceofreducedspeciesinthelattice,includingV3+,Mn3+,Fe2+,and Cu+ions.Inaddition,thedopedionsareabletotransferelectrons totheadsorbedO2moleculesacrosstheinterface.

(6)

4000 2000 -20000 -10000 0 10000 20000

Δ

I

TiO

2 4000 2000

V-TiO

2 4000 2000

Fe-

TiO

2 4000 2000

Cu-TiO

2 4000 2000

Mn-TiO

2 4000 2000

Ce-TiO

2 4000 2000

(a)

Magnetic field

(G)

W-TiO

2 4000 2000 -20000 -10000 0 10000 20000

Δ

I

Magnetic fie

ld (G)

W-TiO

2

Ce-TiO

2

Cu-TiO

2

Fe-TiO

2

Mn-TiO

2

V-TiO

2

TiO

2 4000 2000 2000 4000 2000 4000 2000 4000 2000 4000 2000 4000

(b)

Fig.6. EPRdifferencespectraforthepureandthesurface-dopedTiO2powders(a)inthevacuumand(b)intheO2atmosphere.I=Iirradiation−Idarkness,whereIdarknessand

Iirradiationrepresenttheintensitiesacquiredbeforeandafterirradiation,respectively.

BasedonthespeciesdeterminedfromXPSandEPR character-izations,weillustratetheelectronicstructuresofthedopedTiO2 domainsinFig.5.Theconductionbandandthevalencebandof TiO2matrixareprimarilycomprisedofTi(3d)andO(2p)orbitals, respectively[30].Whenadditionalionsareintroducedintothe lat-tice,interactionbetweentheouter-shellorbitalsoftheseionsand theenergystatesinthebandscreatesimpuritylevelsandchanges thebandstructures.Theinfluenceofthedopantsontheelectronic structuresisassociatedwiththeiratomicnumbers,ionicradiiand oxidationstates[30].Ingeneral,theconductionbandminimum

(CBM)moves downward toa lowerenergy whena severe dis-tortionoftheoctahedralgeometryiscausedbysmalldopedions. Theions,whichhavehighoxidationstates,decreasetheenergyof boththevalencebandmaximum(VBM)andtheCBMbecausemore oxygenionsareneededforchargecompensation.Thehigh occu-pancyofd-orbitalslowerstheenergyofthedstates,thusmoving theenergylevelsawayfromtheconductionbandandcontributing totheVBM.IntheV-dopedTiO2domain,thede-localizeddxz/dyz statesoftheV3+andV4+ionsextendtheCBMtoalowerenergy [30].TheoccupiedV3+andV4+(3d

(7)

0.43and1.00eV,respectively,belowtheCBM[31].DopedMn3+ ionshaveoccupied3dxyand3dxz/3dyzstatespositionedat1.0eV abovetheVBMandanunoccupied3dx2−y2statesat0.9eVbelow theCBM[32,33].RelativetotheMn3+ions,theenergystatesof Mn4+ionsshifttolowerenergyvaluesinthebandgap[33].The highsplittingenergyofFe3+ionsintroduceslocalizedFe(3d

x2−y2) statestotheVBMtoincreasetheband-edgeenergy.De-localized Ti4+/Fe3+(3d

z2)states,whichareoccupiedwithelectrons,are pos-itionedat0.5–0.8eVabovetheVBM,whilethelocalizedFe3+(3d

xy) andthedelocalizedTi4+/Fe3+(3d

xz/3dyz)states,whichare unoc-cupied,arelocatedat0.7eVbelowtheCBM[30].Fe2+ionshave alower oxidationnumber anda largerionicradii (0.78 ˚A)than Fe3+ ions(0.65 ˚A).Accordingly,theVBMof theFe2+-dopedTiO

2 domainsand theenergy statesof theFe2+ ionsmovetohigher energyvalues.Cu+ ionshavelow potentiald statesbecausethe d-orbitalsarecompletelyfilled.ThelocalizedCu+(3d

x2−y2)andthe de-localizedTi4+/Cu+ (3d

z2)statesdominatetheVBMofthe Cu-dopedTiO2clustersandincreasetheband-edgetoahigherenergy [30,34].DopedCu2+ionshaveenergystatesclosetothoseoftheCu+ ionsinthebandstructure[34,35].Ce4+ionsintroduceunoccupied 4fstateslocatedat1.5eVbelowtheCBM[36,37].Twounoccupied statesfromtheW6+(5d

xz)and(5dx2−y2)orbitalslieat0.8and2.1eV belowtheCBM,respectively[37,38].Thesemodelsimulationsare inaccordancewiththeelectronicstructuresmeasuredinthisstudy. TheextrinsicbandgapsofthepowdersdopedwithV (2.73eV), Mn(2.54eV),andFe(2.15eV)ionscorrespondtotheenergyfor theelectrontransitionfromtheVBMtothede-localizedVdxz/dyz states,theoccupiedMn3dxyand3dxz/3dyzstatestotheCBM,and theoccupiedFedstatestotheunoccupieddstates,respectively [12].

3.3. Chargetrapping,recombinationandinterfacialtransfer Thedopedionswithinthesurfacelatticeareinvolvedincharge trapping,recombinationandinterfacialtransfer.Toascertainthese behaviors,werecordedtheEPRspectrafortheTiO2powders irra-diated with UV light and semi-quantified the photo-generated speciesbothintheabsenceandinthepresenceofO2molecules. Fig. 6 shows the EPR difference spectra for the pure and the dopedTiO2 powdersboth in the vacuumand in theO2 atmo-sphere.Thespectral differencesareobtainedbysubtractingthe spectrarecordedinthedarknessfromthoseafterirradiation,and thesignalsin thespectraindicatethephoto-generated species. Thequantitiesofthesamespeciescanbedirectlyrelatedtothe correspondingintensitiesbecauseallthesampleshaveanequal massandasimilarsurfacearea.ThepureTiO2 powdersshowed anintensivepeakatg=2.003inthevacuum,indicatinga substan-tialnumberofphoto-generatedholestrappedatthesurfaceO− sites.However,therewerefewerthephoto-generatedholesinthe O2atmosphere.Coronadoetal.[39]reportedthatO2 molecules areabletoparticipateinthesurfacechargetrappingbygenerating eitherozonideions(Ti4+ O

3−)orsuperoxidespecies(Ti4+ O2−) whentheyreactwiththesurfacetrappedholesorelectrons, respec-tively.Inthisstudy,thedisappearanceofthephoto-generatedholes andtheabsenceofTi4+ O

3−andTi4+ O2−speciesindicatethatthe adsorbedO2moleculesmediatechargerecombination.Infact, sur-faceO−speciesdisappearedwhenrecordedindarknessafterthe pureTiO2powderswereexposedtoO2gas.Thisfindingsupports theunderstandingthattheadsorbedO2 moleculesinteractwith thetrappedholes.

Eachofthedopantsalsoeliminatedthephoto-generatedholes todifferentextentswhenirradiatedinthevacuum,andtheholes wereevenunabletobedetectedintheMn-dopedsamples.The dopedions,which introduceenergylevelsbetweenthe conduc-tionand valencebands,areabletomediatechargeannihilation

Fig.7.ThephotocatalyticactivityofthepureandthedopedTiO2powders.

through trapping. Because there are noobvious signals of the dopantspresentinthedifferencespectra,mediatedannihilationis rapidinallthedopedsamples.Basedonthepeak-to-peakheights, wesemi-quantifiedtheremainingtrappedholesinthedopedTiO2 powders.ItwasfoundthatFeionsmaintainedthehighest num-bersoftrappedholes,followedinorderbyW-,V-,Ce-,Cu-,and Mn-ions.Thed–dtransitionoftheFeionsinhibitschargetrapping andsoreducesthemediatedrecombination.ComparedtotheV ionswhichintroduceasingleoccupiedstatebelowtheCBM,the twounoccupiedstatesoftheWionsmediatecharge recombina-tionmoreslowlybecauseelectronsrequiremultipleprocessesto recombinewithholes.TheCe-dopedpowderscontaineda substan-tialnumberofmetallicCeatoms.Thesemetallicatomsmediate chargerecombinationbyreceivingelectronsfromtheTiO2 con-ductionband,andthenreturningtheelectronstorefilltheholes inthevalenceband.Similarmediatedrecombinationisalsofound attheinterfacebetweenPtnanoparticlesandTiO2 crystals[40]. Mn3+andMn4+ions,whichintroducebothoccupiedand unoccu-piedlevelsinthemid-band-gapregion,trapelectronsandholesat almostthesametime.Intra-atomicrelaxationsoonannihilatesthe trappedchargecarriers.TheoccupiedstatesoftheCu+andCu2+ ionsarepositionedinthevalenceband.Theremarkablereduction inthenumberoftrappedholesandtheslightlyincreasedintensity oftheCu2+peakindicatethattheCuionsareabletoefficientlytrap holes.

Throughlatticetrappingandinterfacialtransfer,bothdopants andoxygenmoleculesareabletomediaterecombination.To deter-minewhichprocessismoreefficient,wecomparethequantities ofthetrappedholesinthedopedTiO2 powdersinthevacuum (Fig.6a,dopedpowders)withthoseinthepureTiO2powdersin theO2 atmosphere (Fig.6b,TiO2).The higherintensitiesofthe trappedholesintheFe-,W-,andV-dopedsamplesrevealthat inter-facialchargetransferfromtheconductionbandtotheadsorbedO2 moleculesismoreefficientthanthelatticetrappingbythedopants, whereas,incontrast,theCe,Cu,andMnionsinducedanopposite effect.

IntheO2atmosphere,adsorbedO2moleculesmediated recom-bination,andfurthereliminatedthephoto-generatedholesinthe dopedTiO2powders.However,areductioninthequantityofthe holes of only 6%was foundin theW-doped powders.Because charge transfer betweentheTiO2 surfaceand the adsorbedO2 moleculeshasbeendemonstratedtobefasterthanlatticetrapping bytheWions,thissmallreductionsuggeststhattheWionsinhibit theinteractionoftheO2−anionswiththeholes.Similarbehavior wasfoundontheCe-dopedpowders,forwhichO2moleculeseven increasedthenumberofphoto-generatedholes.

(8)

Fig.8.Therolesofthesurface-dopedionsinchargetrapping,recombination,interfacialtransfer,andinteractionwithsurfacespecies.

3.4. Photocatalyticactivity

The photocatalytic activities of the pure and surface-doped TiO2 powders were examined based on the degradation of BPA (20mg/L) under UV irradiation. The degradation followed pseudo-first order kinetics, and the rate constants (k) were determined from the slope of the linear dependence between ln(C/C0) and the reaction time, where C0 and C are the BPA concentrations at the beginning and after a certain reaction time, respectively. Fig. 7 shows the photocatalytic activity of boththepureanddopedpowders.Thephotocatalystsexhibited activityintheorderofFe-dopedTiO2(k=3.59×10−2min−1)> Cu-doped TiO2 (k=2.35×10−2min−1)>TiO2 (k=1.94×10−2min−1) ∼ V-doped TiO2 (k=1.78×10−2min−1)>

W-doped TiO2 (k=1.14×10−2min−1)>Ce-doped TiO2 (k=9.33×10−3min−1)>Mn-doped TiO2 (k=6.40×10−3min−1). WefurtheroptimizedtheFeloadingandfoundthatthehighest activity (k=3.88×10−2min−1)occurred ata surface Fe/Tiratio of0.67 (seeSupplementarymaterials,Fig.S2). Thisactivitywas two-timeshigherthanthatofthepureTiO2powders.

Photocatalysisisinvolvedwithchargegeneration,charge dif-fusionfromthebulktothesurface,andinterfacialchargetransfer totheadsorbates.Chargerecombinationreducesthenumberof availablechargecarriersforthesurfacereactions,andisthekey tolowphotocatalyticactivity.Chargerecombinationoccurseither throughband-to-bandrelaxationorthroughdefect-mediated anni-hilation.Incorporationofionsintothesurfacelatticecreatesan internalelectricfieldtotriggerthechargecarrierstodiffusefrom

(9)

thebulktothesurface.In addition,surface-dopedionstrapthe chargecarriersandinhibitband-to-bandrecombination.Unlikethe dopantspresentinthephotocatalysts,thedopantswithinthe sur-facelatticeareabletointeractwithadsorbates.Interfacialcharge transferviathesurface-dopedionstotheadsorbatescompeteswith mediatedannihilationtogovernthephotocatalyticactivity,and theprobabilityoftheseprocessesoccurringisdeterminedbythe energystates,thecoordinationnumbersandtheelectronegativity ofthesurface-dopedions.

Fig.8schematicallyillustratestherolesoftheV,Mn,Fe,Cu,Ce, andWionsintheinterfacialbehaviorsofthesurface-dopedTiO2 photocatalysts.Surface-dopedFeandCuionsimprovethe photo-catalyticactivitybecausetheytrapthechargecarriersandinteract withtheadsorbatestoprovidealternativepathwaysfor interfa-cialchargetransfer.Inaddition,thed–dtransitionsoftheFeions provideadditionalchargecarrierstocompensateforthecharge recombination.TheoptimalsurfaceFe/Tiratioforthehighest pho-tocatalyticactivityis0.67.Althoughthisvalueishigherthanthe solubilityofFeions(1–10at.%)intheTiO2matrix,Fe2O3clusters aretoominutetobedetectedinthedopeddomainexploredinthis study[22,41].Abovethisvalue,tunnelingofthetrappedcarriers promotesannihilationandconsequentlyreducethephotocatalytic activity[5].Cu+ions,whichintroduceoccupiedandunoccupied statesinthevalenceandconductionbands,respectively,efficiently trapthechargecarriers.Moreover,thetrappedchargecarrierscan leavethetrappingsitesandescapefromrecombinationthrough thermallyinducedtransitioninthebands.Theappearanceofsmall Cu2+signalsin theEPRspectrumafterirradiationsupports this deduction(seeFig.6).Theelectronicstructureenablesthe surface-dopedCuionstostabilizeahighnumberofchargecarriersatthe surface,thusfacilitatinginterfacialchargetransfer.Surface-doped Vionshavebeendemonstratedtoimprovethephotocatalytic activ-ityofthedopedTiO2powderswhenthesurfaceV/Tiratioishigher than0.14[14].However,theVionsexaminedinthisstudy con-tributelittletotheactivityasaconsequenceofthelowdopinglevel (i.e.theV/Tiratioisonly0.05).Fromtheelectronicstructurepoint ofview,V3+/4+ionshaveoccupiedstatesclosetheCBM.The high-energystatesofferathermodynamicallyfavorable pathwayand allowtheelectronsthathaveahighpotentialtoundergointerfacial transferthroughtheVions,andinhibitsurfacerecombination.

IncontrasttoFe,Cu,andVions,surface-dopedW,Ce,andMn ionscausedetrimentaleffectsonthephotocatalyticactivity.The Mnand Ce elementsreduce theactivitybecause theyserve as recombinationcenters.Mn3+/4+ ions,which have bothoccupied and unoccupiedstates withinthebandgap,trapelectrons and holesonthesamesitesandrapidlyannihilatethetrapped carri-ersthroughintra-atomicrelaxation.Althoughtheions,whichare abletotrapbothelectronsandholes,areconsideredtoeffectively inhibitrecombinationviaseparatingchargecarriersontheir dif-ferentsites[42,43],wedemonstrated,inthisstudy,thatsuchions aremorecapableofpromotingannihilation.UnlikeFeions,d–d transitionintheMnionsisinactiveintheirradiationspectrum. Chargerecombinationoccurstoofasttoallowinterfacialtransfer, thusconsumingasubstantialnumberofeffectivechargecarriers. MetallicCe elementsare responsiblefor thesevere recombina-tionandthelowactivityoftheCe-dopedTiO2powders.Schottky barrierat thehetero-junction hasbeenextensively reportedto effectivelyseparatethecharge carriersand enhancethe photo-catalyticactivity[44].However,theabsenceofelectronreceptors withintheTiO2matrixforcestheelectronsthataccumulateinthe metallicCeelementstorefilltheholesinthevalencebandofthe TiO2 matrix.Inaddition,theEPRresultshowsthattheadsorbed O2moleculesexperiencedifficultyinmediatingcharge recombi-nationontheCe-dopedTiO2powders.Thisphenomenonreveals thatthesurfaceCe4+ionsstronglybindthechemisorbedO

2− radi-calstoinhibittheinteractionoftheradicalswiththetrappedholes.

SimilarEPRfeaturesandlowphotocatalyticactivityarealsofound intheW-doped-TiO2-basedsystem.Thesefindingsconnectthelow photocatalyticactivitytothestrongbindingofO2−radicalsonthe surface.WeattributethisadverseeffecttothehighLewisacidityof thesedopedions.TheW6+andCe4+ionsare6-and8-coordinated, respectively,intheWO3 andCeO2 moiety,whereastheyare 4-coordinatedintheTiO2matrix[45,46].Unsaturatedcoordination allowstheseionstobondwiththeO2−radicalswhentheytransfer thetrappedelectronstotheadsorbedO2molecules,orwhentheO2 moleculesreceiveelectronsfromtheconductionband.Lewis acid-ityhasbeenconsideredtoimprovephotocatalyticactivitybecause itpromoteschemisorption ofO2 moleculestofacilitate interfa-cialelectrontransfer[47–49].However,thehighelectronegativity oftheW6+ions(Pauling’sscale:2.36)andthehighoxygen defi-ciencyoftheCe4+ionsleadtheO

2−speciestobetightlybound, consequentlyimpedingsubsequentinterfacialchargetransferand reducingtheactivity.

4. Conclusions

Therolesof V,Mn, Fe,Cu,Ce,and Wions intheinterfacial behaviorofsurface-dopedTiO2particlesweresystematically stud-iedintermsofchargetrapping,recombination,interfacialcharge transferandphotocatalyticactivity.ThedopedFe,CuandVions improvethephotocatalyticactivity,whereastheMn,Ce,andW ionscauseadverseresults.Surface-dopedionscaneithermediate chargerecombinationortransfertrappedcarrierstoadsorbates. Theelectronicstructures,thecoordinationnumbersandthe elec-tronegativityofthedopedionsdeterminetheprobabilityofthese two processes occurring and the photocatalytic activity of the surface-dopedphotocatalysts.Suitabledopantshaved–d transi-tionsintheirradiationspectrum,energylevelsclosetoorwithin theconductionandvalencebands,ormultipleunoccupiedstatesin thebandgap.Theseelectronicstructuresretarddefect-mediated recombination and provide an alternative pathway that facili-tatesinterfacialcharge transfer viathedopedions. Incontrast, unsuitabledopantspromoterecombinationorconfinethecharge carriersatthesurface,therebyinhibitingchargeutilization.Such dopantsintroducebothoccupiedandunoccupiedstatesinthe mid-band-gapregion,whichtrapelectronsandholestorapidlyinduce annihilationviaintra-atomicrelaxation.Inaddition,theionswith highcoordinationnumbersorelectronegativitystronglybondwith O2− radicals,thuslimiting surfacereactivity. Theresultsin this studynotonlyextendtheknowledgerelatedtothebehaviorsof surface-dopedions atthe interface,butalso provideimportant information to improve materialsthat exhibit high photon-to-currentconversionefficiency.

Acknowledgment

WethanktheNationalScienceCouncil,Taiwan,R.O.C.(Grant no.NSC101-2628-E-009-022-MY3)forfinanciallysupportingthis study.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found,intheonlineversion,athttp://dx.doi.org/10.1016/j.apcatb. 2014.03.044.

References

[1]X.L.Hu,G.S.Li,J.C.Yu,Langmuir26(2010)3031–3039.

[2]M.Anpo,PureAppl.Chem.72(2000)1265–1270.

[3]M.Quintana,T.Edvinsson,A.Hagfeldt,G.Boschloo,J.Phys.Chem.C111(2007) 1035–1041.

(10)

[4]A.W.Xu,Y.Gao,H.Q.Liu,J.Catal.207(2002)151–157.

[5]W.Y. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem.—US 98 (1994) 13669–13679.

[6]K.Nagaveni,M.S.Hegde,G.Madras,J.Phys.Chem.B108(2004)20204–20212.

[7]J.X.Li,J.H.Xu,W.L.Dai,H.X.Li,K.N.Fan,Appl.Catal.,B:Environ.85(2009) 162–170.

[8]M.Schiavello,V.Augugliaro,L.Palmisano,K.Sclafani,A.M.Venezia,Langmuir 11(1995)3278.

[9]D.Dvoranova,V.Brezova,M.Mazur,M.A.Malati,Appl.Catal.,B:Environ.37 (2002)91–105.

[10]J.Z.Bloh,R.Dillert,D.W.Bahnemann,J.Phys.Chem.C116(2012)25558–25562.

[11]Z.B. Zhang,C.C.Wang,R. Zakaria, J.Y.Ying,J. Phys.Chem.B102 (1998) 10871–10878.

[12]J.F.Zhu,F.Chen,J.L.Zhang,H.J.Chen,M.Anpo,J.Photochem.Photobiol.,A: Chem.180(2006)196–204.

[13]J.F.Zhu,Z.G.Deng,F.Chen,J.L.Zhang,H.J.Chen,M.Anpo,J.Z.Huang,L.Z.Zhang, Appl.Catal.,B:Environ.62(2006)329–335.

[14]S.M.Chang,W.S.Liu,Appl.Catal.,B:Environ.101(2011)333–342.

[15]S.M.Chang,P.H.Lo,C.T.Chang,Appl.Catal.,B:Environ.91(2009)619–627.

[16]S.M.Chang,C.Y.Hou,P.H.Lo,C.T.Chang,Appl.Catal.,B:Environ.90(2009) 233–241.

[17]L.P.Li,J.J.Liu,Y.G.Su,G.S.Li,X.B.Chen,X.Q.Qiu,T.J.Yan,Nanotechnology20 (2009).

[18]K.Zhang,Z.H.Zhou,L.J.Guo,Int.J.HydrogenEnergy36(2011)9469–9478.

[19]S.Lacombe,H.Cardy,N.Soggiu,S.Blanc,J.L.Habib-Jiwan,J.P.Soumillion, Micro-porousMesoporousMater.46(2001)311–325.

[20]H.J.Zhai,L.S.Wang,J.Am.Chem.Soc.129(2007)3022–3026.

[21]J.A.Moulijn,A.E.vanDiepen,F.Kapteijn,Appl.Catal.,A:Gen.212(2001) 3–16.

[22]F.Gracia,J.P.Holgado,A.Caballero,A.R.Gonzalez-Elipe,J.Phys.Chem.B108 (2004)17466–17476.

[23]Q.L.Song,W.Liu,C.D.Bohn,R.N.Harper,E.Sivaniah,S.A.Scott,J.S.Dennis, EnergyEnviron.Sci.6(2013)288–298.

[24]S.M.Chang,R.A.Doong,J.Phys.Chem.B108(2004)18098–18103.

[25]S.M.Chang,R.A.Doong,Chem.Mater.17(2005)4837–4844.

[26]J.H.Li,J.J.Chen,R.Ke,C.K.Luo,J.M.Hao,Catal.Commun.8(2007)1896–1900.

[27]V.Singh,V.Natarajan,J.J.Zhu,Opt.Mater.30(2007)468–472.

[28]C.Fabrega,T.Andreu,A.Cabot,J.R.Morante,J.Photochem.Photobiol.,A:Chem. 211(2010)170–175.

[29]G.H.Li,N.M.Dimitrijevic,L.Chen,T.Rajh,K.A.Gray,J.Phys.Chem.C112(2008) 19040–19044.

[30]A.M.Shough,D.J.Doren,B.Ogunnaike,Chem.Mater.21(2009)1232–1241.

[31]D.Y.Lee,W.J.Lee,J.S.Song,J.H.Koh,Y.S.Kim,Comput.Mater.Sci.30(2004) 383–388.

[32]A.L.J.Pereira,L.Gracia,A.Beltran,P.N.Lisboa,J.H.D.daSilva,J.Andres,J.Phys. Chem.C116(2012)8753–8762.

[33]H.W.Peng,J.B.Li,S.S.Li,J.B.Xia,J.Phys.Condens.Matter20(2008).

[34]M.L.Guo,J.L.Du,PhysicaB:Condens.Matter407(2012)1003–1007.

[35]N.Nakajima,H.Kato,T.Okazaki,Y.Sakisaka,Surf.Sci.561(2004)93–100.

[36]W.G.Chen,P.F.Yuan,S.Zhang,Q.Sun,E.J.Liang,Y.Jia,PhysicaB:Condens. Matter407(2012)1038–1043.

[37]H.Kamisaka,T.Suenaga,H.Nakamura,K.Yamashita,J.Phys.Chem.C114(2010) 12777–12783.

[38]R.Long,N.J.English,Appl.Phys.Lett.98(2011).

[39]J.M.Coronado,A.J.Maira,J.C.Conesa,K.L.Yeung,V.Augugliaro,J.Soria, Lang-muir17(2001)5368–5374.

[40]W.N.Wang,W.J.An,B.Ramalingam,S.Mukherjee,D.M.Niedzwiedzki,S. Gan-gopadhyay,P.Biswas,J.Am.Chem.Soc.134(2012)11276–11281.

[41]Q.P.Wu,Q.Zheng,R.vandeKrol,J.Phys.Chem.C116(2012)7219–7226.

[42]J.F.Zhu,W.Zheng,H.E.Bin,J.L.Zhang,M.Anpo,J.Mol.Catal.A:Chem.216 (2004)35–43.

[43]T.Z.Tong,J.L.Zhang,B.Z.Tian,F.Chen,D.N.He,J.Hazard.Mater.155(2008) 572–579.

[44]H.Chen,S.Chen,X.Quan,H.T.Yu,H.M.Zhao,Y.B.Zhang,J.Phys.Chem.C112 (2008)9285–9290.

[45]S.Yamazoe,Y.Masutani,T.Shishido,T.Tanaka,AIP.Conf.Proc.882(2007) 696–698.

[46]G.Dutta,U.V.Waghmare,T.Baidya,M.S.Hegde,K.R.Priolkar,P.R.Sarode,Chem. Mater.18(2006)3249–3256.

[47]T.Z.Tong,J.L.Zhang,B.Z.Tian,F.Chen,D.N.He,M.Anpo,J.ColloidInterfaceSci. 315(2007)382–388.

[48]Y.Cong,B.Z.Tian,J.L.Zhang,Appl.Catal.,B:Environ.101(2011)376–381.

[49]Y.F.Ma,J.L.Zhang,B.Z.Tian,F.Chen,L.Z.Wang,J.Hazard.Mater.182(2010) 386–393.

數據

Fig. 1. The cross-sectional view of surface-doped TiO 2 particles.
Fig. 2. (a) TEM image, (b) EDS line-scanning and (c) mapping results for the Fe- Fe-doped TiO 2 particles
Fig. 3. EPR spectra for both the pure and the M-doped TiO 2 powders (M = V, Mn, Fe,
Fig. 4. EPR difference spectra for the M-doped TiO 2 powders. I = I O 2 − I vac , where I O 2 and I vac represent the intensity of the signals recorded in the O 2 atmosphere and in
+4

參考文獻

相關文件

6 《中論·觀因緣品》,《佛藏要籍選刊》第 9 冊,上海古籍出版社 1994 年版,第 1

The first row shows the eyespot with white inner ring, black middle ring, and yellow outer ring in Bicyclus anynana.. The second row provides the eyespot with black inner ring

You are given the wavelength and total energy of a light pulse and asked to find the number of photons it

substance) is matter that has distinct properties and a composition that does not vary from sample

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

Hope theory: A member of the positive psychology family. Lopez (Eds.), Handbook of positive

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;

compounds, focusing on their thermoelectric, half-metallic, and topological properties. Experimental people continue synthesizing novel Heusler compounds and investigating