Introduction to Heusler compounds: From the case of Fe

39  Download (0)

Full text

(1)

Introduction to Heusler compounds:

From the case of Fe 2 VAl

Chin Shan Lue (呂欽山)

2017-03-28-NTU

(2)

Outline

1) Introduction to Heusler compounds Full-Heusler compounds

Half-Heusler compounds 2) Case study of Fe

2

VAl

3) Promising characteristics of Heusler compounds Thermoelectric properties

Spintronic applications

Topological materials

4) Summary

(3)

Full-Heusler compounds: X

2

YZ Half-Heusler compounds: XYZ

Heusler compounds

First full-Heusler Cu2MnAl in 1903

More than 1000 real Heusler compounds

Fritz Heusler (Germany)

First half-Heusler NiMnSb in 1951

(4)

L

2

1 structure

Cu2MnAl-type

16 atoms per unit cell

Fe2VAl, Ru2NbGa, Ni2MnGa (HT), …

B2 structure

CsCl-type

2 atoms per unit cell

Co2MnAl, Ru2NbAl, Ru2VAl, …

Common crystal structures of Heusler compounds

Anti-site disorder

First determination of crystal structure for Cu2MnAl by Otto Heusler in 1934

(5)

DO

3

structure

BiF3-type

16 atoms per unit cell Fe3Al; Fe3Ga; Fe3Si, ...

C1

b

structure

MgAgAs-type

12 atoms per unit cell

NiMnSb, NiZrSn, CoTiSb, …

Half-Heusler XYZ

X = Y

X + void

Binary compounds X

3

Z

(6)

Various properties of Heusler compounds

Ferromagnetism: Co2MnZ, Pd2Mn(In,Sn), …

Superconductivity: Pd2YSn (TC = 4.9 K), Ni2NbSn, Pd2ErSn, …

Shape memory behavior: Ni2MnGa (Martensitic transformation TM = 220 K), … Semiconducting: Fe2VAl, Ru2TaAl, IrNbSb, NiHfSn, CoTiSb, …

(7)

Unusual physical behavior in Fe

2

VAl

Paramagnetic behavior in Fe

2

VAl by Webster & Ziebeck in 1983

(Fe1-xVx)3Al

x=0.33 Fe2VAl

Semiconductor-like in ρ Tc = 0 K Fe3Al Tc = 790 K

semimetal

(8)

Possible 3d heavy fermion for Fe

2

VAl

Low-T C = C

e

+ C

ph

= g T + b T

3

C/T = g + b T

2

Expected behavior for ordinary semimetals (low Fermi-level DOS)

g = 14 mJ/mol K

2

e F

B

th

k N ( E )  m 3

2

2

g

Sommerfeld coefficient based on free electron model

100 50

*

e

  

e th

xp

m m g

g for Fe

2

VAl

g = 1.07 mJ/mol K2

Semimetallic Ru2TaAl

e

 3

th xp

g g

from C. M. Wei et al.

(9)

Simple concept for heavy fermions

CeAl3 g =1620 mJ/mol K2 CeCu6 g =1300 mJ/mol K2 UBe13 g =1100 mJ/mol K2 U2Zn17 g = 500 mJ/mol K2

…….

hybridization

It is less likely to observe heavy fermion behavior in d-electron systems since the corresponding wave-functions of d-orbitals are more dispersive.

DOS

E EF

E

k EF

f-electrons f-electron heavy fermions

Spinel LiV2O4 g = 420 mJ/mol K2

d-electron heavy fermion???

PRL 78, 3729 (1997); PRL 85, 1052 (2000) PRL 89, 267201 (2002); PRL 99, 167402 (2007)

Nat. Comm. 3, 981 (2012); PRL 113, 236402 (2014);

...….

s-electrons

(10)

Band structure calculations for Fe

2

VAl

郭光宇

Electronic structure, local moments, and transport in Fe2VAl, D. J. Singh & I. I. Mazin, Phys. Rev. B 57, 14352 (1998)

Excitonic correlations in the intermetallic Fe2VAl, R. Weht & W. E. Pickett, Phys. Rev. B 58, 6855 (1998)

Electronic structure and magnetism of Fe3-xVxX (X=Si, Ga, and Al) alloys by the KKR-CPA method, A. Bansil, et al., Phys. Rev. B 60, 13396 (1999)

Hybridization-induced band gaps in transition-metal aluminides, M. Weinert & R. E. Watson, Phys. Rev. B 58, 9732 (1998)

N(E

F

) = 0.08 states/eV atom

(11)

NMR evidence for semimetallic behavior in Fe

2

VAl

Low V-3d N(E

F

) = 0.11 states/eV atom Thermally excited carriers

across electronic bands near E

F

Korringa relation 1/T

1

T ~ C[N(E

F

)]

2

Activation energy E

A

~ 0.27 eV

(12)

Question of possible 3d heavy fermion for Fe

2

VAl

Small g = 1.5 mJ/mol K

2

Sample-dependent

Field-dependent

(13)

False heavy fermion behavior in Fe

2

VAl

For non-interacting magnetic clusters with spin J >1/2, the magnetic specific heat can be generated by the so-called multi- level Schottky function as

T k

H x g

B

B

unit formula

per population

% 36 . 0

7 . 3 ) 1 2 (

3

f

J J g

J  

B

B

The low-T upturn in C is not intrinsic;

It is reasonably associated with magnetic clusters due to anti-site disorder in real samples.

Ru2TaAl

(14)

Effects of magnetic clusters in Fe

2

VAl, Fe

2

VGa and Fe

2

TiSn

“Weak ferromagnetism induced by atomic disorder in Fe2TiSn”, A. Ślebarski, M. B. Maple, et al., Phys. Rev. B 62, 3296 (2000)

“Kondo-type behavior in Fe2-xMxTiSn(M=Co,Ni)”,

A. Ślebarski, M. B. Maple, et al., Phys. Rev. B 63, 214416 (2001)

“Fe−3s core-level splitting and local magnetism in Fe2VAl”, Phys. Rev. B 63, 054419 (2001)

“Superparamagnetism and magnetic defects in Fe2VAl and Fe2VGa”, J. Phys.: Condens. Matter 13, 1585 (2001)

“Structure and magnetic order in Fe2+xV1-xAl”, J. Phys.: Condens. Matter 13, 5487 (2001)

“NMR and Mössbauer study of spin dynamics and electronic structure of Fe2+xV1-xAl and Fe2VGa”,

Phys. Rev. B 67, 224425 (2003)

“Transport and magnetic properties of the Heusler-type Fe2-xV1+xAl system (−0.01⩽x⩽0.08)”,

Phys. Rev. B 71, 094425 (2005)

“Evidence for cluster glass behavior in Fe2VAl Heusler alloys”, Phys. Rev. B 78, 064401 (2008)

(15)

Band structure calculations for Fe

2

VAl

郭光宇

Electronic structure, local moments, and transport in Fe2VAl, D. J. Singh & I. I. Mazin, Phys. Rev. B 57, 14352 (1998)

Excitonic correlations in the intermetallic Fe2VAl, R. Weht & W. E. Pickett, Phys. Rev. B 58, 6855 (1998)

Electronic structure and magnetism of Fe3-xVxX (X=Si, Ga, and Al) alloys by the KKR-CPA method, A. Bansil, et al., Phys. Rev. B 60, 13396 (1999)

Hybridization-induced band gaps in transition-metal aluminides, M. Weinert & R. E. Watson, Phys. Rev. B 58, 9732 (1998)

(16)

More first-principles calculations on Fe

2

VAl

“Electronic structure and x-ray magnetic circular dichroism in Heusler-type Fe2-xV1+xAl: First-principles calculations”,

Phys. Rev. B 77, 134444 (2008)

“Density functional study of elastic and vibrational properties of the Heusler- type alloys Fe2VAl and Fe2VGa”,

Phys. Rev. B 80, 125108 (2009)

“Electronic and thermoelectric properties of Fe2VAl: The role of defects and disorder”,

Phys. Rev. B 83, 205204 (2011)

“Effect of onsite Coulomb repulsion on thermoelectric properties of full- Heusler compounds with pseudogaps”,

Phys. Rev. B 84, 125104 (2011)

“Low-Dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states”, Phys. Rev. Lett. 114, 136601 (2015)

“Quantum many-body intermetallics: Phase stability of Fe3Al and small-gap formation in Fe2VAl”,

Phys. Rev. B 95, 045114 (2017)

……

(17)

Thermoelectric materials

RSC Advances 5, 52 (2015)

Thermoelectric generator module

(18)

ZT: Figure of merit 熱電優質

ZT = 1 → 10.8%

ZT = 2 → 16.4%

T

c

/T

h

= 0.5 2 .

, with

, 1

1 ) 1

(

2 max

h c

h h c

c

h

T T

S T Z

T T T

Z T Z T

T

T   

 

 

Thermoelectric efficiency

: Generated electrical energy/Absorbed heat energy

(19)

Thermoelectric performance ZT = S

2

T/

(

e+

l)

Physical approach based on Mott equation,

DOS

EF E

S: Seebeck coefficient

 : electrical resistivity

e

: electronic thermal conductivity

l

: lattice thermal conductivity

EF

E

e

E

E N E

N S e



 

  ( )

) ( 1 1

Chemical approach by partially substituting heavy elements and/or vacancies to enhance the phonons scattering and thus reduce the contribution of 

l

.

Naive expectation:

S = 200 V/K

 = 1000 W-cm

 = 2 W/m-K

ZT=1 at 500 K

(20)

Full-Heusler compounds with L

2

1-type structure

Total number of valence electrons per formula unit VEC = Z

t

= 24

A simple rule with number of valence electrons

In principles → Semiconductors In reality → Semimetals

Half-Heusler compounds with C

b

1-type structure

Total number of valence electrons per formula unit VEC = Z

t

= 18 In principles → Semiconductors

In reality → Semimetals

Fe2VAl, Fe2VGa, Fe2TiSn, Ru2NbGa, Ru2TaAl, Ru2TiSi, ….

NiTiSn, NiZrSn, NiHfSn, CoTiSb, FeVSb….

(21)

Thermoelectric studies of Fe

2

VAl and related compounds

Nishino et al., Phys. Rev. B 63, 233303 (2001)

C. S. Lue & Y. K. Kuo, Phys. Rev. B 66, 085121 (2002)

High  Large S

Nishino’s group

Phys. Rev. B 71, 094425 (2005) Phys. Rev. B 71, 245112 (2005) Phys. Rev. B 74, 115115 (2006)

………

C. S. Lue & Y. K. Kuo,

J. Appl. Phys. 96, 2681 (2004) Phys. Rev. B 71, 064202 (2005) Phys. Rev. B 72, 054116 (2005) Phys. Rev. B 75, 064202 (2007) Phys. Rev. B 78, 165117 (2008) Other groups

J. Alloys Compd. 349, 37 (2003) Phys. Rev. B 77, 224415 (2008) J. Appl. Phys. 111, 093710 (2012)

……..

(22)

Thermoelectric studies of Fe

2

VAl-based compounds

J. Appl. Phys. 115, 033704 (2014)

Optimized ZT ~ 0.2

(23)

Thermoelectric studies of half-Heusler compounds with Z

t

= 18

“Gap at the Fermi level in the intermetallic vacancy system RNiSn (R=Ti,Zr,Hf)”, Z. Phys. B 75, 116 (1989).

“Narrow band in the intermetallic compounds MNiSn (M=Ti,Zr,Hf)”, Z. Phys. B 80, 353 (1990).

“Band gap and stability in the ternary intermetallic compounds NiSnM (M=Ti,Zr,Hf):

A first principles study”,

Phys. Rev. B 51, 10443 (1995).

…..

“Effect of substitutions and defects in half-Heusler FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations”, Phys. Rev. B 70, 184207 (2004).

“Electronic structure and thermoelectric properties of half-Heusler Zr0.5Hf0.5NiSn by first-principles calculations”,

Appl. Phys. Lett. 113, 193705 (2013).

...

(24)

“Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds”, Appl. Phys. Lett. 86, 082105 (2005).

“Thermoelectric performance of half-Heusler compounds TiNiSn and TiCoSb”, Appl. Phys. Lett. 105, 013709 (2009).

“Thermoelectric property study of nano-structured p-type half-Heuslers (Hf,Zr,Ti)CoSb0.8Sn0.2”, Advanced Energy Materials 3, 1195 (2013).

...

(25)

Thermoelectric materials based on half-Heusler compounds

Translational Materials Research 2, 025001 (2015)

(26)

Half-metallic Heusler compounds

Half-metals Half-Heusler

100% polarization

(27)

A semi-empirical general rule: Slater-Pauling curve

Half-Heusler compounds

Hybridization between Ni and Mn in minority bands in NiMnSb

I. Galanakis, P. H. Dederiches, N. Papanikolaou, Phys. Rev. B 66 134428 (2002).

(28)

Slater-Pauling curve for full-Heusler compounds

Full-Heusler compounds

Hybridization between Co-Co and Mn in minority bands in Co2MnSi(Ge)

I. Galanakis, P. H. Dederiches, and N. Papanikolaou, Phys. Rev. B 66 174429 (2002).

(29)

More first-principles calculations

Review article: J. Phys.:

Condens. Matter 19 315213 (2007).

“Computational investigation of half-Heusler compounds for spintronics applications”, Phys. Rev. B 95, 024411 (2017).

“First-principles calculation of the effects of partial alloy disorder on the static and dynamic magnetic properties of Co2MnSi”, Phys. Rev. B 95, 094425 (2017).

Spin-resolved DOS for Co2MnZ

(30)

Recent advances in the Heusler-based spin gapless semiconductors

HM SGS

Ti2CoSi

L21 structure Cu2MnAl-type XA structure

HgCu2Ti-type

Ti Co Si

Inverse Heusler

(31)

Generalized Slater-Pauling rule for inverse Heusler compounds

S. Skaftouros, K. Ozdogan, E. Sasioglu, I. Galanakis, Phys. Rev. B 87 024420 (2013).

(32)

Possible SGSs: Theoretical studies

Appl. Phys. Lett. 102 022402 (2013)

Phys. Rev. B 77 014427 (2008)

Phys. Rev. B 91 094409 (2015)

(33)

Possible SGSs: Experimental studies

Phys. Rev, Lett. 110, 100401 (2013)

Polycrystalline Mn2CoAl

Polycrystalline V3Al

Thin film Ti2MnAl Polycrystalline CrVTiAl

Phys. Status Solidi RRL 9 641 (2015) Phys. Rev. B 91 094409 (2015)

Appl. Phys. Lett. 121 053903 (2017)

Claudia Felser’s group

(34)

Topological materials in half-Heusler compounds

S. Chadov et al., Nature Materials 9, 541 (2010) Claudia Felser’s group

J. A. Logan et al., Nature Communications 9, 11993 (2016)

Band inversion

(35)

Topological materials in half-Heusler compounds

Hsin Lin et al., Nature Materials 9, 546 (2010)

Cava’s group

(36)

Evidence for topological behavior in half-Heusler compounds

“Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films”

J. A. Logan et al., Nature Communications 9, 11993 (2016)

“Large anomalous Hall effect in a half-Heusler antiferromagnet”

T. Suzuki et al., Nature Physics 12, 1119 (2016)

“Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y)”

Z. K. Liu et al., Nature Communications 7, 12924 (2016)

(37)

Topological materials in full-Heusler compounds

“Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half metallic Heusler Co2TiX (X=Si, Ge, or Sn)”

Guoqing Chang et al., Scientific Reports 6, 38839 (2016).

“Time-reversal-breaking Weyl fermions in magnetic Heusler alloys”

Zhijun Wang et al., Phys. Rev. Lett. 17, 236401 (2016).

Cava’s group

Single crystalline Co2ZrSn

Our group

(38)

Summary

Theoretical people continue paying attention to Heusler

compounds, focusing on their thermoelectric, half-metallic, and topological properties.

Experimental people continue synthesizing novel Heusler

compounds and investigating their promising properties

for further applications.

(39)

Thanks for your attention!

Figure

Updating...

References

Related subjects :