• 沒有找到結果。

Section 15.6 Triple Integrals

N/A
N/A
Protected

Academic year: 2022

Share "Section 15.6 Triple Integrals"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

Section 15.6 Triple Integrals

568 ¤ CHAPTER 15 MULTIPLE INTEGRALS

2. There are six different possible orders of integration.



( + 2)  =2 0

1 0

3

0 ( + 2)    =2 0

1 0

 +133=3

=0  =2 0

1

0 (3 + 9)  

=2 0

3

22+ 9=1

=0  =2 0

3 2 + 9

 =3

42+ 92 0= 21



( + 2)  =1 0

2 0

3

0 ( + 2)    =1 0

2 0

 +133=3

=0  =1 0

2

0 (3 + 9)  

=1 0

3

22 + 9=2

=0 =1

0 (6 + 18)  =

32+ 181 0= 21



( + 2)  =2 0

3 0

1

0 ( + 2)    =2 0

3 0

1

22+ 2=1

=0  =2 0

3 0

1 2 + 2

 

=2 0

1

2 +133=3

=0 =2 0

3 2 + 9

 =3

42+ 92 0 = 21



( + 2)  =3 0

2 0

1

0 ( + 2)    =3 0

2 0

1

22+ 2=1

=0  =3 0

2 0

1

2 + 2

 

=3 0

1

42+ 2=2

=0 =3 0

1 + 22

 =

 +2333 0= 21



( + 2)  =1 0

3 0

2

0 ( + 2)    =1 0

3 0

1

22 + 2=2

=0   =1 0

3 0

2 + 22

 

=1 0

2 +233=3

=0 =1

0 (6 + 18)  =

32+ 181 0= 21



( + 2)  =3 0

1 0

2

0 ( + 2)    =3 0

1 0

1

22 + 2=2

=0   =3 0

1 0

2 + 22

 

=3 0

2+ 22=1

=0 =3 0

1 + 22

 =

 +2333 0 = 21 3.2

0

2 0

−

0 (2 − )    =2 0

2 0

2− =−

=0   =2 0

2 0

( − )2− ( − )

 

=2 0

2 0

2− 

  =2 0

2122=2

=0  =2 0

4125



=1

5512162

0=3256412 =1615 4.1

0

2

+

0 6    =1 0

2

6=+

=0   =1 0

2

6( + )   =1 0

2

(62 + 62)  

=1 0

23 + 322=2

=  =1

0 234 = 23551 0= 235 5.2

1

2

0

ln 

0 −   =2 1

2

0

−−=ln 

=0   =2 1

2

0

−− ln + 0

 

=2 1

2

0 (−1 + )   =2 1

− +122=2

=0 

=2 1

−2 + 22

 =

−2+2332

1= −4 +163 + 1 −23 = 53

6.

1 0

1 0

 √1−2 0

 + 1   =

1 0

1 0

 

 + 1· 

=

1−2

=0

  =

1 0

1 0

√ 1 − 2

 + 1  

=

1 0

−13(1 − 2)32

 + 1

=1

=0

 =1 3

1 0

1

 + 1 = 1

3ln( + 1)

1 0

= 13(ln 2 − ln 1) =13ln 2

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 15.6 TRIPLE INTEGRALS ¤ 569 7.

0

1 0

 √1−2

0  sin     = 0

1 0

 sin =

1−2

=0   = 0

1 0 √

1 − 2 sin   

= 0 sin 

13(1 − 2)32=1

=0 = 0

1

3sin   = −13cos 

0 = −13(−1 − 1) =23

8.1 0

1 0

2−2−2

0    =1 0

1 0

=2−2−2

=0   =1 0

1

0(2−2−2− )  

=1 0

−122−2−2122=1

=0 =1 0

−121−212 +122−2



=

1

41−2142142−21

0=141414 −14 + 0 +142=14212

9. 

  =3 0

0

+

−     =3 0

0

=+

=−  =3 0

0 22 

=3 0

2

33=

=0 =3 0

2

33 = 1643

0= 816 = 272

10. 

 =1 0

1



0   =1 0

1

=

=0

 

=1 0

1

(− )   =1 0

− =1

= =1 0

 −  − + 2



=1

22122− ( − 1)+1331

0 [integrate by parts]

=12 −12 +13 − 1 = 12 −76

11.



2+ 2  =

4 1

4

0

2+ 2    =

4 1

4

 ·1

tan−1

=

=0

 

=4 1

4

tan−1(1) − tan−1(0)

  =4 1

4

4 − 0

  =44 1

=4

=

= 44

1(4 − )  = 4

4 −1224 1= 4

16 − 8 − 4 +12

=98

12. Here  = {(  ) | 0 ≤  ≤  0 ≤  ≤  −  0 ≤  ≤ }, so



sin   = 0

−

0

0 sin     = 0

−

0

 sin =

=0  = 0

−

0  sin   

= 0

− cos =−

=0  =

0 [− cos( − ) + ] 

=

 sin( − ) − cos( − ) +122

0 [integrate by parts]

= 0 − 1 +122− 0 − 1 − 0 =122− 2

13. Here  = {(  ) | 0 ≤  ≤ 1 0 ≤  ≤√

 0 ≤  ≤ 1 +  + }, so



6  =1 0

0

1++

0 6    =1 0

0

6=1++

=0  

=1 0

0 6(1 +  + )   =1 0

32+ 322+ 23=

=0 

=1

0 (32+ 33+ 252)  =

3+344+47721 0= 6528

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 15.6 TRIPLE INTEGRALS ¤ 569 7.

0

1 0

 √1−2

0  sin     = 0

1 0

 sin =

1−2

=0   = 0

1 0 √

1 − 2 sin   

= 0 sin 

13(1 − 2)32=1

=0 = 0

1

3sin   = −13cos 

0 = −13(−1 − 1) =23

8.1 0

1 0

2−2−2

0    =1 0

1 0

=2−2−2

=0   =1 0

1

0(2−2−2− )  

=1 0

122−2−2122=1

=0 =1 0

121−212 +122−2



=

1

41−2142142−21

0=141414 −14 + 0 +142=14212

9. 

  =3 0

0

+

−     =3 0

0

=+

=−  =3 0

0 22 

=3 0

2 33=

=0 =3 0

2

33 = 1643

0= 816 = 272

10. 

 =1 0

1



0   =1 0

1

=

=0

 

=1 0

1

(− )   =1 0

− =1

= =1 0

 −  − + 2



=1

22122− ( − 1)+1331

0 [integrate by parts]

=12 −12 +13 − 1 = 12 −76

11.



2+ 2  =

4 1

4

0

2+ 2    =

4 1

4

 ·1

tan−1

=

=0

 

=4 1

4

tan−1(1) − tan−1(0)

  =4 1

4

4 − 0

  =44 1

=4

=

= 44

1(4 − )  = 4

4 −1224 1= 4

16 − 8 − 4 +12

=98

12. Here  = {(  ) | 0 ≤  ≤  0 ≤  ≤  −  0 ≤  ≤ }, so



sin   = 0

−

0

0 sin     = 0

−

0

 sin =

=0  = 0

−

0  sin   

= 0

− cos =−

=0  =

0 [− cos( − ) + ] 

=

 sin( − ) − cos( − ) +122

0 [integrate by parts]

= 0 − 1 +122− 0 − 1 − 0 =122− 2

13. Here  = {(  ) | 0 ≤  ≤ 1 0 ≤  ≤√

 0 ≤  ≤ 1 +  + }, so



6  =1 0

0

1++

0 6    =1 0

0

6=1++

=0  

=1 0

0 6(1 +  + )   =1 0

32+ 322+ 23=

=0 

=1

0 (32+ 33+ 252)  =

3+344+47721 0= 6528

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

570 ¤ CHAPTER 15 MULTIPLE INTEGRALS

14. Here  =

(  ) | −1 ≤  ≤ 1 0 ≤  ≤ 2 2− 1 ≤  ≤ 1 − 2. Thus,



( − )  =1

−1

2 0

1−2

2−1( − )   

=1

−1

2

0 ( − )(1 − 2− (2− 1))  

=1

−1

2

0 (2 − 23− 2 + 22)  

=1

−1

2 − 23 − 2+ 22=2

=0 

=1

−1(4 − 43− 4 + 42) 

=

22− 4− 4 +4331

−1= −53113 = −163

15. Here  = {(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 2 −  0 ≤  ≤ 2 −  − }.

Thus,



2 =2 0

2−

0

2−−

02  

=2 0

2−

02(2 −  − )  

=2 0

2−

0 [(2 − )2− 3]  

=2 0

(2 − )1

33

144=2−

=0 

=2 0

1

3(2 − )414(2 − )4

 =2 0

1

12(2 − )4

=1 12

−15

(2 − )52

0= −601(0 − 32) =158

16. The projection of  onto the -plane is the triangle bounded by the lines

 = ,  = 0, and  = 1. Then

 = {(  ) | 0 ≤  ≤ 1  ≤  ≤ 1 0 ≤  ≤  − }, and



  =1 0

1

−

0     =1 0

1

( − )  

=1 0

1

(2− 2)   =1 0

1

331222=1

= 

=1 0

1

3 −122134+124



=1

62163+30151

0=1616 +301 =301

17. The projection of  onto the -plane is the disk 2+ 2≤ 1. Using polar coordinates  =  cos  and  =  sin , we get



  =

4

42+ 42 

 = 12

42− (42+ 42)2



= 82

0

1

0(1 − 4)    = 82

0 1

0( − 5) 

= 8(2)1

221661 0=163

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

572 ¤ CHAPTER 15 MULTIPLE INTEGRALS 22. Here  =

(  ) | −1 ≤  ≤ 4 −  2+ 2≤ 4, so

 =

2

−2

 √4−2

4−2

4−

−1

   =

2

−2

 √4−2

4−2(4 −  + 1)  

=

2

−2

5 −122=

4−2

=

4−2  =

2

−2

10

4 − 2

= 10

2

√4 − 2+ 2 sin−1

2

2

−2

using trigonometric substitution or Formula 30 in the Table of Integrals

= 10

2 sin−1(1) − 2 sin−1(−1)

= 20 2 −

2

= 20

Alternatively, use polar coordinates to evaluate the double integral:

2

−2

 √4−2

4−2(5 − )   =

2

0

2

0 (5 −  sin )   

=2

0

5

22133sin =2

=0 

=2

0

10 −83sin 



= 10 +83cos 2

0 = 20

23. (a) The wedge can be described as the region

 =

(  ) | 2+ 2≤ 1, 0 ≤  ≤ 1, 0 ≤  ≤ 

=

(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤ 1 − 2 So the integral expressing the volume of the wedge is



 =1 0

0

 √1− 2

0   .

(b) A CAS gives1 0

0

 √1− 2

0    = 413. (Or use Formulas 30 and 87 from the Table of Integrals.)

24. (a) Divide  into 8 cubes of size ∆ = 8. With (  ) =

2+ 2+ 2, the Midpoint Rule gives



2+ 2+ 2 ≈

2

 = 1

2

 = 1

2

 = 1



  

∆

= 8[ (1 1 1) +  (1 1 3) +  (1 3 1) +  (1 3 3) +  (3 1 1) +  (3 1 3) +  (3 3 1) +  (3 3 3)]

≈ 23964 (b) Using a CAS we have

2+ 2+ 2 =4 0

4 0

4 0

2+ 2+ 2   ≈ 24591. This differs from the

estimate in part (a) by about 2.5%.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

SECTION 15.6 TRIPLE INTEGRALS ¤ 573

25. Here (  ) = cos() and ∆ =12 ·12 ·12 =18, so the Midpoint Rule gives



 (  )  ≈

=1

=1

=1



  

∆

= 18

1

41414 + 1

41434 + 1

43414 + 1

43434 + 3

41414 + 3

41434 + 3

43414 + 3

43434

= 18

cos641 + cos643 + cos643 + cos649 + cos643 + cos649 + cos649 + cos2764

≈ 0985 26. Here (  ) = √ and ∆ = 2 ·12· 1 = 1, so the Midpoint Rule gives



 (  )  ≈

=1

=1

=1



  

∆

= 1

 11412

+  11432

+  13412

+  13432 + 

31412 + 

31432 + 

33412 + 

33432

= 18+ 38+ 38+ 98+√

338+√

398+√

398+√

3278≈ 70932 27.  = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ 1 − , 0 ≤  ≤ 2 − 2},

the solid bounded by the three coordinate planes and the planes

 = 1 − ,  = 2 − 2.

28.  =

(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 2 −  0 ≤  ≤ 4 − 2

 the solid bounded by the three coordinate planes, the plane  = 2 − , and the cylindrical surface  = 4 − 2.

29.

[continued]

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 15.6 TRIPLE INTEGRALS ¤ 577 Then 

 (  )  =2 0

2 2−

(+−2)2

0  (  )    =2 0

2 2−

(+−2)2

0  (  )   

=2 0

2 0

2

2−+2 (  )    =1 0

2 2

2

2−+2 (  )   

=2 0

2 0

2

2−+2 (  )    =1 0

2 2

2

2−+2 (  )   

33.

The diagrams show the projections of  onto the -, -, and -planes.

Therefore

1 0

1

1− 

0  (  )    =1 0

2 0

1−

0  (  )    =1 0

1−

0

2

0  (  )   

=1 0

1−

0

2

0  (  )    =1 0

1 0

1−

 (  )   

=1 0

(1−)2 0

1−

 (  )   

34.

The projections of  onto the

- and -planes are as in the first two diagrams and so

1 0

1−2 0

1− 

0  (  )    =1 0

1−

0

1−

0  (  )   

=1 0

1−

0

1−2

0  (  )    =1 0

1−

0

1−2

0  (  )   

Now the surface  = 1 − 2intersects the plane  = 1 −  in a curve whose projection in the -plane is  = 1 − (1 − )2 or  = 2 − 2. So we must split up the projection of  on the -plane into two regions as in the third diagram. For ( ) in 1, 0 ≤  ≤ 1 −  and for ( ) in 2, 0 ≤  ≤√

1 − , and so the given integral is also equal to

1 0

1 1−

0

1−

0  (  )    +1 0

1 1

1−

1−

0  (  )   

=1 0

2−2 0

1−

0  (  )    +1 0

1 2−2

1−

0  (  )   

35.

1 0

1

0  (  )    =

 (  )  where  = {(  ) | 0 ≤  ≤ ,  ≤  ≤ 1, 0 ≤  ≤ 1}.

[continued]

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

(3)

578 ¤ CHAPTER 15 MULTIPLE INTEGRALS

If 1, 2, and 3are the projections of  onto the -, - and -planes then

1= {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ },

2= {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}, and

3= {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}.

Thus we also have

 = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤ } = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ 1}

= {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ 1} = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ }

= {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ } .

Then 1

0

1

0  (  )    =1 0

0

0  (  )    =1 0

0

1

 (  )   

=1 0

1

1

 (  )    =1 0

0

 (  )   

=1 0

1

 (  )   

36.

1 0

1

0  (  )    =

 (  )  where  = {(  ) | 0 ≤  ≤ ,  ≤  ≤ 1, 0 ≤  ≤ 1}.

Notice that  is bounded below by two different surfaces, so we must split the projection of  onto the -plane into two regions as in the second diagram. If 1, 2, and 3are the projections of  on the -, - and -planes then

1 = 1∪ 2= {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } ∪ {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}

= {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} ∪ {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ },

2= {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ }, and

3= {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ }.

Thus we also have

 = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ 1} ∪ {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ 1}

= {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ 1} ∪ {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ 1}

= {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤ } = {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1, 0 ≤  ≤ }

= {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤ } .

Then 1

0

1

0  (  )    =1 0

0

1

 (  )    +1 0

1

1

 (  )   

=1 0

1

1

 (  )    +1 0

0

1

 (  )   

=1 0

0

0  (  )    =1 0

1

0  (  )   

=1 0

0

0  (  )   

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

582 ¤ CHAPTER 15 MULTIPLE INTEGRALS (b) (  ) where  = −11

0

3 3

 √9−2

0 (2+ 2)    ≈ 0375,

 = −11 0

3 3

 √9−2

0 (2+ 2)    = 4564 ≈ 2209,

 = −11 0

3 3

 √9−2

0 (2+ 2)    =1516 = 09375.

(c) =1 0

3 3

 √9−2

0 (2+ 2)2   =10,464175 ≈ 5979 51. (a) (  ) is a joint density function, so we know

R3 (  )  = 1. Here we have



R3 (  )  =

−∞

−∞

−∞ (  )    =2 0

2 0

2

0    

= 2 0  2

0  2

0   = 1

222 0

1

222 0

1

222 0= 8

Then we must have 8 = 1 ⇒  = 18. (b)  ( ≤ 1  ≤ 1  ≤ 1) =1

−∞

1

−∞

1

−∞ (  )    =1 0

1 0

1 0 1

8   

= 181 0  1

0  1

0   = 181 221

0

1 221

0

1 221

0=181 2

3

= 641

(c)  ( +  +  ≤ 1) =  ((  ) ∈ ) where  is the solid region in the first octant bounded by the coordinate planes and the plane  +  +  = 1. The plane  +  +  = 1 meets the -plane in the line  +  = 1, so we have

 ( +  +  ≤ 1) =

 (  )  =1 0

1−

0

1−−

0 1

8   

=181 0

1−

0 1

22=1−−

=0   = 1611 0

1−

0 (1 −  − )2 

=1611 0

1−

0 [(3− 22+ ) + (22− 2)2+ 3]  

=1611 0

(3− 22+ )122+ (22− 2)133+ 1

44=1−

=0 

=19211

0( − 42+ 63− 44+ 5)  = 19211 30

=57601

52. (a) (  ) is a joint density function, so we know

R3 (  )  = 1. Here we have



R3 (  )  =

−∞

−∞

−∞ (  )    =

0

0

0 −(05+02+01)  

= 

0−05

0−02

0−01

=  lim

→∞

0−05 lim

→∞

0−02 lim

→∞

0−01

=  lim

→∞

−2−05 0 lim

→∞

−5−02 0 lim

→∞

−10−01 0

=  lim

→∞

−2(−05− 1)

lim→∞

−5(−02− 1)

lim→∞

−10(−01− 1)

=  · (−2)(0 − 1) · (−5)(0 − 1) · (−10)(0 − 1) = 100

So we must have 100 = 1 ⇒  =1001 . (b) We have no restriction on , so

 ( ≤ 1  ≤ 1) =1

−∞

1

−∞

−∞ (  )    =1 0

1 0

0

1

100−(05+02+01)  

=10011

0−051

0−02

0−01

=1001

−2−051 0

−5−021 0 lim

→∞

−10−01

0 [by part (a)]

=1001 (2 − 2−05)(5 − 5−02)(10) = (1 − −05)(1 − −02) ≈ 007132

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

3

參考文獻

相關文件

- If there is a fact that matches the goal, then the query succeeds and responds 'yes’ otherwise the query fails and responds with 'no.‘.. Some Basic Concepts

Set up and evaluate the definite integral that yields the total loss of value of the machine over the first 3 years

Walker provides all past (and present) flower children an opportunity to get in touch with their roots in her article, "Where Have All the Flowers Gone?". Walker uses

[r]

If your integral domain is exact but the integral value is not true, give you some points ac- corddng to the wrong

[r]

From the graph, it appears that F is conservative, since around all closed paths, the number and size of the field vectors pointing in directions similar to that of the path seem to

For any closed path we draw in the field, it appears that some vectors on the curve point in approximately the same direction as the curve and a similar number point in roughly